#include "qemu/osdep.h" #include "target/arm/idau.h" #include "trace.h" #include "cpu.h" #include "internals.h" #include "exec/gdbstub.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" #include "sysemu/arch_init.h" #include "sysemu/sysemu.h" #include "qemu/bitops.h" #include "qemu/crc32c.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "arm_ldst.h" #include /* For crc32 */ #include "exec/semihost.h" #include "sysemu/kvm.h" #include "fpu/softfloat.h" #include "qemu/range.h" #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ #ifndef CONFIG_USER_ONLY /* Cacheability and shareability attributes for a memory access */ typedef struct ARMCacheAttrs { unsigned int attrs:8; /* as in the MAIR register encoding */ unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ } ARMCacheAttrs; static bool get_phys_addr(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size_ptr, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); /* Security attributes for an address, as returned by v8m_security_lookup. */ typedef struct V8M_SAttributes { bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ bool ns; bool nsc; uint8_t sregion; bool srvalid; uint8_t iregion; bool irvalid; } V8M_SAttributes; static void v8m_security_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, V8M_SAttributes *sattrs); #endif static void switch_mode(CPUARMState *env, int mode); static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; /* VFP data registers are always little-endian. */ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { stq_le_p(buf, *aa32_vfp_dreg(env, reg)); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { /* Aliases for Q regs. */ nregs += 16; if (reg < nregs) { uint64_t *q = aa32_vfp_qreg(env, reg - 32); stq_le_p(buf, q[0]); stq_le_p(buf + 8, q[1]); return 16; } } switch (reg - nregs) { case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; } return 0; } static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { nregs += 16; if (reg < nregs) { uint64_t *q = aa32_vfp_qreg(env, reg - 32); q[0] = ldq_le_p(buf); q[1] = ldq_le_p(buf + 8); return 16; } } switch (reg - nregs) { case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; } return 0; } static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0 ... 31: /* 128 bit FP register */ { uint64_t *q = aa64_vfp_qreg(env, reg); stq_le_p(buf, q[0]); stq_le_p(buf + 8, q[1]); return 16; } case 32: /* FPSR */ stl_p(buf, vfp_get_fpsr(env)); return 4; case 33: /* FPCR */ stl_p(buf, vfp_get_fpcr(env)); return 4; default: return 0; } } static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { switch (reg) { case 0 ... 31: /* 128 bit FP register */ { uint64_t *q = aa64_vfp_qreg(env, reg); q[0] = ldq_le_p(buf); q[1] = ldq_le_p(buf + 8); return 16; } case 32: /* FPSR */ vfp_set_fpsr(env, ldl_p(buf)); return 4; case 33: /* FPCR */ vfp_set_fpcr(env, ldl_p(buf)); return 4; default: return 0; } } static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) { assert(ri->fieldoffset); if (cpreg_field_is_64bit(ri)) { return CPREG_FIELD64(env, ri); } else { return CPREG_FIELD32(env, ri); } } static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { assert(ri->fieldoffset); if (cpreg_field_is_64bit(ri)) { CPREG_FIELD64(env, ri) = value; } else { CPREG_FIELD32(env, ri) = value; } } static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) { return (char *)env + ri->fieldoffset; } uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) { /* Raw read of a coprocessor register (as needed for migration, etc). */ if (ri->type & ARM_CP_CONST) { return ri->resetvalue; } else if (ri->raw_readfn) { return ri->raw_readfn(env, ri); } else if (ri->readfn) { return ri->readfn(env, ri); } else { return raw_read(env, ri); } } static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t v) { /* Raw write of a coprocessor register (as needed for migration, etc). * Note that constant registers are treated as write-ignored; the * caller should check for success by whether a readback gives the * value written. */ if (ri->type & ARM_CP_CONST) { return; } else if (ri->raw_writefn) { ri->raw_writefn(env, ri, v); } else if (ri->writefn) { ri->writefn(env, ri, v); } else { raw_write(env, ri, v); } } static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) { ARMCPU *cpu = arm_env_get_cpu(env); const ARMCPRegInfo *ri; uint32_t key; key = cpu->dyn_xml.cpregs_keys[reg]; ri = get_arm_cp_reginfo(cpu->cp_regs, key); if (ri) { if (cpreg_field_is_64bit(ri)) { return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); } else { return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); } } return 0; } static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) { return 0; } static bool raw_accessors_invalid(const ARMCPRegInfo *ri) { /* Return true if the regdef would cause an assertion if you called * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a * program bug for it not to have the NO_RAW flag). * NB that returning false here doesn't necessarily mean that calling * read/write_raw_cp_reg() is safe, because we can't distinguish "has * read/write access functions which are safe for raw use" from "has * read/write access functions which have side effects but has forgotten * to provide raw access functions". * The tests here line up with the conditions in read/write_raw_cp_reg() * and assertions in raw_read()/raw_write(). */ if ((ri->type & ARM_CP_CONST) || ri->fieldoffset || ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { return false; } return true; } bool write_cpustate_to_list(ARMCPU *cpu) { /* Write the coprocessor state from cpu->env to the (index,value) list. */ int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); const ARMCPRegInfo *ri; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!ri) { ok = false; continue; } if (ri->type & ARM_CP_NO_RAW) { continue; } cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); } return ok; } bool write_list_to_cpustate(ARMCPU *cpu) { int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); uint64_t v = cpu->cpreg_values[i]; const ARMCPRegInfo *ri; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!ri) { ok = false; continue; } if (ri->type & ARM_CP_NO_RAW) { continue; } /* Write value and confirm it reads back as written * (to catch read-only registers and partially read-only * registers where the incoming migration value doesn't match) */ write_raw_cp_reg(&cpu->env, ri, v); if (read_raw_cp_reg(&cpu->env, ri) != v) { ok = false; } } return ok; } static void add_cpreg_to_list(gpointer key, gpointer opaque) { ARMCPU *cpu = opaque; uint64_t regidx; const ARMCPRegInfo *ri; regidx = *(uint32_t *)key; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); /* The value array need not be initialized at this point */ cpu->cpreg_array_len++; } } static void count_cpreg(gpointer key, gpointer opaque) { ARMCPU *cpu = opaque; uint64_t regidx; const ARMCPRegInfo *ri; regidx = *(uint32_t *)key; ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { cpu->cpreg_array_len++; } } static gint cpreg_key_compare(gconstpointer a, gconstpointer b) { uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); if (aidx > bidx) { return 1; } if (aidx < bidx) { return -1; } return 0; } void init_cpreg_list(ARMCPU *cpu) { /* Initialise the cpreg_tuples[] array based on the cp_regs hash. * Note that we require cpreg_tuples[] to be sorted by key ID. */ GList *keys; int arraylen; keys = g_hash_table_get_keys(cpu->cp_regs); keys = g_list_sort(keys, cpreg_key_compare); cpu->cpreg_array_len = 0; g_list_foreach(keys, count_cpreg, cpu); arraylen = cpu->cpreg_array_len; cpu->cpreg_indexes = g_new(uint64_t, arraylen); cpu->cpreg_values = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; cpu->cpreg_array_len = 0; g_list_foreach(keys, add_cpreg_to_list, cpu); assert(cpu->cpreg_array_len == arraylen); g_list_free(keys); } /* * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but * they are accessible when EL3 is using AArch64 regardless of EL3.NS. * * access_el3_aa32ns: Used to check AArch32 register views. * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. */ static CPAccessResult access_el3_aa32ns(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { bool secure = arm_is_secure_below_el3(env); assert(!arm_el_is_aa64(env, 3)); if (secure) { return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (!arm_el_is_aa64(env, 3)) { return access_el3_aa32ns(env, ri, isread); } return CP_ACCESS_OK; } /* Some secure-only AArch32 registers trap to EL3 if used from * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). * Note that an access from Secure EL1 can only happen if EL3 is AArch64. * We assume that the .access field is set to PL1_RW. */ static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 3) { return CP_ACCESS_OK; } if (arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL3; } /* This will be EL1 NS and EL2 NS, which just UNDEF */ return CP_ACCESS_TRAP_UNCATEGORIZED; } /* Check for traps to "powerdown debug" registers, which are controlled * by MDCR.TDOSA */ static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || (env->cp15.mdcr_el2 & MDCR_TDE) || (arm_hcr_el2_eff(env) & HCR_TGE); if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } /* Check for traps to "debug ROM" registers, which are controlled * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. */ static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || (env->cp15.mdcr_el2 & MDCR_TDE) || (arm_hcr_el2_eff(env) & HCR_TGE); if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } /* Check for traps to general debug registers, which are controlled * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. */ static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || (env->cp15.mdcr_el2 & MDCR_TDE) || (arm_hcr_el2_eff(env) & HCR_TGE); if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } /* Check for traps to performance monitor registers, which are controlled * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. */ static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { int el = arm_current_el(env); if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); raw_write(env, ri, value); tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ } static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); if (raw_read(env, ri) != value) { /* Unlike real hardware the qemu TLB uses virtual addresses, * not modified virtual addresses, so this causes a TLB flush. */ tlb_flush(CPU(cpu)); raw_write(env, ri, value); } } static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) && !extended_addresses_enabled(env)) { /* For VMSA (when not using the LPAE long descriptor page table * format) this register includes the ASID, so do a TLB flush. * For PMSA it is purely a process ID and no action is needed. */ tlb_flush(CPU(cpu)); } raw_write(env, ri, value); } /* IS variants of TLB operations must affect all cores */ static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_all_cpus_synced(cs); } static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_all_cpus_synced(cs); } static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); } static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); } /* * Non-IS variants of TLB operations are upgraded to * IS versions if we are at NS EL1 and HCR_EL2.FB is set to * force broadcast of these operations. */ static bool tlb_force_broadcast(CPUARMState *env) { return (env->cp15.hcr_el2 & HCR_FB) && arm_current_el(env) == 1 && arm_is_secure_below_el3(env); } static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate all (TLBIALL) */ ARMCPU *cpu = arm_env_get_cpu(env); if (tlb_force_broadcast(env)) { tlbiall_is_write(env, NULL, value); return; } tlb_flush(CPU(cpu)); } static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ ARMCPU *cpu = arm_env_get_cpu(env); if (tlb_force_broadcast(env)) { tlbimva_is_write(env, NULL, value); return; } tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); } static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by ASID (TLBIASID) */ ARMCPU *cpu = arm_env_get_cpu(env); if (tlb_force_broadcast(env)) { tlbiasid_is_write(env, NULL, value); return; } tlb_flush(CPU(cpu)); } static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ ARMCPU *cpu = arm_env_get_cpu(env); if (tlb_force_broadcast(env)) { tlbimvaa_is_write(env, NULL, value); return; } tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); } static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by IPA. This has to invalidate any structures that * contain only stage 2 translation information, but does not need * to apply to structures that contain combined stage 1 and stage 2 * translation information. * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. */ CPUState *cs = ENV_GET_CPU(env); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 40); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); } static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 40); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S2NS); } static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); } static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); } static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); } static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1E2); } static const ARMCPRegInfo cp_reginfo[] = { /* Define the secure and non-secure FCSE identifier CP registers * separately because there is no secure bank in V8 (no _EL3). This allows * the secure register to be properly reset and migrated. There is also no * v8 EL1 version of the register so the non-secure instance stands alone. */ { .name = "FCSEIDR", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, { .name = "FCSEIDR_S", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, /* Define the secure and non-secure context identifier CP registers * separately because there is no secure bank in V8 (no _EL3). This allows * the secure register to be properly reset and migrated. In the * non-secure case, the 32-bit register will have reset and migration * disabled during registration as it is handled by the 64-bit instance. */ { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v8_cp_reginfo[] = { /* NB: Some of these registers exist in v8 but with more precise * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). */ /* MMU Domain access control / MPU write buffer control */ { .name = "DACR", .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), offsetoflow32(CPUARMState, cp15.dacr_ns) } }, /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. * For v6 and v5, these mappings are overly broad. */ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, /* Cache maintenance ops; some of this space may be overridden later. */ { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v6_cp_reginfo[] = { /* Not all pre-v6 cores implemented this WFI, so this is slightly * over-broad. */ { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, .access = PL1_W, .type = ARM_CP_WFI }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v7_cp_reginfo[] = { /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which * is UNPREDICTABLE; we choose to NOP as most implementations do). */ { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_WFI }, /* L1 cache lockdown. Not architectural in v6 and earlier but in practice * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and * OMAPCP will override this space. */ { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), .resetvalue = 0 }, { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), .resetvalue = 0 }, /* v6 doesn't have the cache ID registers but Linux reads them anyway */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; * implementing it as RAZ means the "debug architecture version" bits * will read as a reserved value, which should cause Linux to not try * to use the debug hardware. */ { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* MMU TLB control. Note that the wildcarding means we cover not just * the unified TLB ops but also the dside/iside/inner-shareable variants. */ { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, .type = ARM_CP_NO_RAW }, { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, .type = ARM_CP_NO_RAW }, { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint32_t mask = 0; /* In ARMv8 most bits of CPACR_EL1 are RES0. */ if (!arm_feature(env, ARM_FEATURE_V8)) { /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. */ if (arm_feature(env, ARM_FEATURE_VFP)) { /* VFP coprocessor: cp10 & cp11 [23:20] */ mask |= (1 << 31) | (1 << 30) | (0xf << 20); if (!arm_feature(env, ARM_FEATURE_NEON)) { /* ASEDIS [31] bit is RAO/WI */ value |= (1 << 31); } /* VFPv3 and upwards with NEON implement 32 double precision * registers (D0-D31). */ if (!arm_feature(env, ARM_FEATURE_NEON) || !arm_feature(env, ARM_FEATURE_VFP3)) { /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ value |= (1 << 30); } } value &= mask; } env->cp15.cpacr_el1 = value; } static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { /* Call cpacr_write() so that we reset with the correct RAO bits set * for our CPU features. */ cpacr_write(env, ri, 0); } static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_feature(env, ARM_FEATURE_V8)) { /* Check if CPACR accesses are to be trapped to EL2 */ if (arm_current_el(env) == 1 && (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { return CP_ACCESS_TRAP_EL2; /* Check if CPACR accesses are to be trapped to EL3 */ } else if (arm_current_el(env) < 3 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { return CP_ACCESS_TRAP_EL3; } } return CP_ACCESS_OK; } static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Check if CPTR accesses are set to trap to EL3 */ if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static const ARMCPRegInfo v6_cp_reginfo[] = { /* prefetch by MVA in v6, NOP in v7 */ { .name = "MVA_prefetch", .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, /* We need to break the TB after ISB to execute self-modifying code * correctly and also to take any pending interrupts immediately. * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. */ { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), offsetof(CPUARMState, cp15.ifar_ns) }, .resetvalue = 0, }, /* Watchpoint Fault Address Register : should actually only be present * for 1136, 1176, 11MPCore. */ { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), .resetfn = cpacr_reset, .writefn = cpacr_write }, REGINFO_SENTINEL }; /* Definitions for the PMU registers */ #define PMCRN_MASK 0xf800 #define PMCRN_SHIFT 11 #define PMCRD 0x8 #define PMCRC 0x4 #define PMCRE 0x1 static inline uint32_t pmu_num_counters(CPUARMState *env) { return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; } /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ static inline uint64_t pmu_counter_mask(CPUARMState *env) { return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); } static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Performance monitor registers user accessibility is controlled * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable * trapping to EL2 or EL3 for other accesses. */ int el = arm_current_el(env); if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { return CP_ACCESS_TRAP; } if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) && !arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* ER: event counter read trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 && isread) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } static CPAccessResult pmreg_access_swinc(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* SW: software increment write trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 && !isread) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } #ifndef CONFIG_USER_ONLY static CPAccessResult pmreg_access_selr(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* ER: event counter read trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } static CPAccessResult pmreg_access_ccntr(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* CR: cycle counter read trap control */ if (arm_feature(env, ARM_FEATURE_V8) && arm_current_el(env) == 0 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 && isread) { return CP_ACCESS_OK; } return pmreg_access(env, ri, isread); } static inline bool arm_ccnt_enabled(CPUARMState *env) { /* This does not support checking PMCCFILTR_EL0 register */ if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { return false; } return true; } void pmccntr_sync(CPUARMState *env) { uint64_t temp_ticks; temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ temp_ticks /= 64; } if (arm_ccnt_enabled(env)) { env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; } } static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmccntr_sync(env); if (value & PMCRC) { /* The counter has been reset */ env->cp15.c15_ccnt = 0; } /* only the DP, X, D and E bits are writable */ env->cp15.c9_pmcr &= ~0x39; env->cp15.c9_pmcr |= (value & 0x39); pmccntr_sync(env); } static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) { uint64_t total_ticks; if (!arm_ccnt_enabled(env)) { /* Counter is disabled, do not change value */ return env->cp15.c15_ccnt; } total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ total_ticks /= 64; } return total_ticks - env->cp15.c15_ccnt; } static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are * accessed. */ env->cp15.c9_pmselr = value & 0x1f; } static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint64_t total_ticks; if (!arm_ccnt_enabled(env)) { /* Counter is disabled, set the absolute value */ env->cp15.c15_ccnt = value; return; } total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); if (env->cp15.c9_pmcr & PMCRD) { /* Increment once every 64 processor clock cycles */ total_ticks /= 64; } env->cp15.c15_ccnt = total_ticks - value; } static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { uint64_t cur_val = pmccntr_read(env, NULL); pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); } #else /* CONFIG_USER_ONLY */ void pmccntr_sync(CPUARMState *env) { } #endif static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { pmccntr_sync(env); env->cp15.pmccfiltr_el0 = value & 0xfc000000; pmccntr_sync(env); } static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pmcnten |= value; } static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pmcnten &= ~value; } static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pmovsr &= ~value; } static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when * PMSELR value is equal to or greater than the number of implemented * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. */ if (env->cp15.c9_pmselr == 0x1f) { pmccfiltr_write(env, ri, value); } } static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) { /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). */ if (env->cp15.c9_pmselr == 0x1f) { return env->cp15.pmccfiltr_el0; } else { return 0; } } static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_feature(env, ARM_FEATURE_V8)) { env->cp15.c9_pmuserenr = value & 0xf; } else { env->cp15.c9_pmuserenr = value & 1; } } static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* We have no event counters so only the C bit can be changed */ value &= pmu_counter_mask(env); env->cp15.c9_pminten |= value; } static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= pmu_counter_mask(env); env->cp15.c9_pminten &= ~value; } static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Note that even though the AArch64 view of this register has bits * [10:0] all RES0 we can only mask the bottom 5, to comply with the * architectural requirements for bits which are RES0 only in some * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) */ raw_write(env, ri, value & ~0x1FULL); } static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Begin with base v8.0 state. */ uint32_t valid_mask = 0x3fff; ARMCPU *cpu = arm_env_get_cpu(env); if (arm_el_is_aa64(env, 3)) { value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ valid_mask &= ~SCR_NET; } else { valid_mask &= ~(SCR_RW | SCR_ST); } if (!arm_feature(env, ARM_FEATURE_EL2)) { valid_mask &= ~SCR_HCE; /* On ARMv7, SMD (or SCD as it is called in v7) is only * supported if EL2 exists. The bit is UNK/SBZP when * EL2 is unavailable. In QEMU ARMv7, we force it to always zero * when EL2 is unavailable. * On ARMv8, this bit is always available. */ if (arm_feature(env, ARM_FEATURE_V7) && !arm_feature(env, ARM_FEATURE_V8)) { valid_mask &= ~SCR_SMD; } } if (cpu_isar_feature(aa64_lor, cpu)) { valid_mask |= SCR_TLOR; } /* Clear all-context RES0 bits. */ value &= valid_mask; raw_write(env, ri, value); } static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); /* Acquire the CSSELR index from the bank corresponding to the CCSIDR * bank */ uint32_t index = A32_BANKED_REG_GET(env, csselr, ri->secure & ARM_CP_SECSTATE_S); return cpu->ccsidr[index]; } static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { raw_write(env, ri, value & 0xf); } static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) { CPUState *cs = ENV_GET_CPU(env); uint64_t hcr_el2 = arm_hcr_el2_eff(env); uint64_t ret = 0; if (hcr_el2 & HCR_IMO) { if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { ret |= CPSR_I; } } else { if (cs->interrupt_request & CPU_INTERRUPT_HARD) { ret |= CPSR_I; } } if (hcr_el2 & HCR_FMO) { if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { ret |= CPSR_F; } } else { if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { ret |= CPSR_F; } } /* External aborts are not possible in QEMU so A bit is always clear */ return ret; } static const ARMCPRegInfo v7_cp_reginfo[] = { /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_NOP }, /* Performance monitors are implementation defined in v7, * but with an ARM recommended set of registers, which we * follow (although we don't actually implement any counters) * * Performance registers fall into three categories: * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) * For the cases controlled by PMUSERENR we must set .access to PL0_RW * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. */ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), .writefn = pmcntenset_write, .accessfn = pmreg_access, .raw_writefn = raw_write }, { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, .access = PL0_RW, .accessfn = pmreg_access, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, .writefn = pmcntenset_write, .raw_writefn = raw_write }, { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), .accessfn = pmreg_access, .writefn = pmcntenclr_write, .type = ARM_CP_ALIAS }, { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .writefn = pmcntenclr_write }, { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, .access = PL0_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), .accessfn = pmreg_access, .writefn = pmovsr_write, .raw_writefn = raw_write }, { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), .writefn = pmovsr_write, .raw_writefn = raw_write }, /* Unimplemented so WI. */ { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, #ifndef CONFIG_USER_ONLY { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, .access = PL0_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), .accessfn = pmreg_access_selr, .writefn = pmselr_write, .raw_writefn = raw_write}, { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, .access = PL0_RW, .accessfn = pmreg_access_selr, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), .writefn = pmselr_write, .raw_writefn = raw_write, }, { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, .readfn = pmccntr_read, .writefn = pmccntr_write32, .accessfn = pmreg_access_ccntr }, { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, .access = PL0_RW, .accessfn = pmreg_access_ccntr, .type = ARM_CP_IO, .readfn = pmccntr_read, .writefn = pmccntr_write, }, #endif { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, .writefn = pmccfiltr_write, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), .resetvalue = 0, }, { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, /* Unimplemented, RAZ/WI. */ { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, .accessfn = pmreg_access_xevcntr }, { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, .access = PL0_R | PL1_RW, .accessfn = access_tpm, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), .resetvalue = 0, .writefn = pmuserenr_write, .raw_writefn = raw_write }, { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), .resetvalue = 0, .writefn = pmuserenr_write, .raw_writefn = raw_write }, { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), .resetvalue = 0, .writefn = pmintenset_write, .raw_writefn = raw_write }, { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .writefn = pmintenset_write, .raw_writefn = raw_write, .resetvalue = 0x0 }, { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .writefn = pmintenclr_write, }, { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS | ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .writefn = pmintenclr_write }, { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), offsetof(CPUARMState, cp15.csselr_ns) } }, /* Auxiliary ID register: this actually has an IMPDEF value but for now * just RAZ for all cores: */ { .name = "AIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* Auxiliary fault status registers: these also are IMPDEF, and we * choose to RAZ/WI for all cores. */ { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* MAIR can just read-as-written because we don't implement caches * and so don't need to care about memory attributes. */ { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), .resetvalue = 0 }, { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), .resetvalue = 0 }, /* For non-long-descriptor page tables these are PRRR and NMRR; * regardless they still act as reads-as-written for QEMU. */ /* MAIR0/1 are defined separately from their 64-bit counterpart which * allows them to assign the correct fieldoffset based on the endianness * handled in the field definitions. */ { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), offsetof(CPUARMState, cp15.mair0_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), offsetof(CPUARMState, cp15.mair1_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, /* 32 bit ITLB invalidates */ { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, /* 32 bit DTLB invalidates */ { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, /* 32 bit TLB invalidates */ { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, REGINFO_SENTINEL }; static const ARMCPRegInfo v7mp_cp_reginfo[] = { /* 32 bit TLB invalidates, Inner Shareable */ { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_is_write }, { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_is_write }, REGINFO_SENTINEL }; static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= 1; env->teecr = value; } static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 0 && (env->teecr & 1)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static const ARMCPRegInfo t2ee_cp_reginfo[] = { { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), .resetvalue = 0, .writefn = teecr_write }, { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), .accessfn = teehbr_access, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo v6k_cp_reginfo[] = { { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, .access = PL0_R|PL1_W, .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), .resetvalue = 0}, { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL0_R|PL1_W, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, .access = PL1_RW, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, .resetvalue = 0 }, REGINFO_SENTINEL }; #ifndef CONFIG_USER_ONLY static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. * Writable only at the highest implemented exception level. */ int el = arm_current_el(env); switch (el) { case 0: if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { return CP_ACCESS_TRAP; } break; case 1: if (!isread && ri->state == ARM_CP_STATE_AA32 && arm_is_secure_below_el3(env)) { /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ return CP_ACCESS_TRAP_UNCATEGORIZED; } break; case 2: case 3: break; } if (!isread && el < arm_highest_el(env)) { return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, bool isread) { unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ if (cur_el == 0 && !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { return CP_ACCESS_TRAP; } if (arm_feature(env, ARM_FEATURE_EL2) && timeridx == GTIMER_PHYS && !secure && cur_el < 2 && !extract32(env->cp15.cnthctl_el2, 0, 1)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, bool isread) { unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if * EL0[PV]TEN is zero. */ if (cur_el == 0 && !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { return CP_ACCESS_TRAP; } if (arm_feature(env, ARM_FEATURE_EL2) && timeridx == GTIMER_PHYS && !secure && cur_el < 2 && !extract32(env->cp15.cnthctl_el2, 1, 1)) { return CP_ACCESS_TRAP_EL2; } return CP_ACCESS_OK; } static CPAccessResult gt_pct_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_counter_access(env, GTIMER_PHYS, isread); } static CPAccessResult gt_vct_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_counter_access(env, GTIMER_VIRT, isread); } static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_timer_access(env, GTIMER_PHYS, isread); } static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { return gt_timer_access(env, GTIMER_VIRT, isread); } static CPAccessResult gt_stimer_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* The AArch64 register view of the secure physical timer is * always accessible from EL3, and configurably accessible from * Secure EL1. */ switch (arm_current_el(env)) { case 1: if (!arm_is_secure(env)) { return CP_ACCESS_TRAP; } if (!(env->cp15.scr_el3 & SCR_ST)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; case 0: case 2: return CP_ACCESS_TRAP; case 3: return CP_ACCESS_OK; default: g_assert_not_reached(); } } static uint64_t gt_get_countervalue(CPUARMState *env) { return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; } static void gt_recalc_timer(ARMCPU *cpu, int timeridx) { ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; if (gt->ctl & 1) { /* Timer enabled: calculate and set current ISTATUS, irq, and * reset timer to when ISTATUS next has to change */ uint64_t offset = timeridx == GTIMER_VIRT ? cpu->env.cp15.cntvoff_el2 : 0; uint64_t count = gt_get_countervalue(&cpu->env); /* Note that this must be unsigned 64 bit arithmetic: */ int istatus = count - offset >= gt->cval; uint64_t nexttick; int irqstate; gt->ctl = deposit32(gt->ctl, 2, 1, istatus); irqstate = (istatus && !(gt->ctl & 2)); qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); if (istatus) { /* Next transition is when count rolls back over to zero */ nexttick = UINT64_MAX; } else { /* Next transition is when we hit cval */ nexttick = gt->cval + offset; } /* Note that the desired next expiry time might be beyond the * signed-64-bit range of a QEMUTimer -- in this case we just * set the timer for as far in the future as possible. When the * timer expires we will reset the timer for any remaining period. */ if (nexttick > INT64_MAX / GTIMER_SCALE) { nexttick = INT64_MAX / GTIMER_SCALE; } timer_mod(cpu->gt_timer[timeridx], nexttick); trace_arm_gt_recalc(timeridx, irqstate, nexttick); } else { /* Timer disabled: ISTATUS and timer output always clear */ gt->ctl &= ~4; qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); timer_del(cpu->gt_timer[timeridx]); trace_arm_gt_recalc_disabled(timeridx); } } static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx) { ARMCPU *cpu = arm_env_get_cpu(env); timer_del(cpu->gt_timer[timeridx]); } static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_get_countervalue(env); } static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_get_countervalue(env) - env->cp15.cntvoff_el2; } static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx, uint64_t value) { trace_arm_gt_cval_write(timeridx, value); env->cp15.c14_timer[timeridx].cval = value; gt_recalc_timer(arm_env_get_cpu(env), timeridx); } static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx) { uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; return (uint32_t)(env->cp15.c14_timer[timeridx].cval - (gt_get_countervalue(env) - offset)); } static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx, uint64_t value) { uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; trace_arm_gt_tval_write(timeridx, value); env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + sextract64(value, 0, 32); gt_recalc_timer(arm_env_get_cpu(env), timeridx); } static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, int timeridx, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; trace_arm_gt_ctl_write(timeridx, value); env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); if ((oldval ^ value) & 1) { /* Enable toggled */ gt_recalc_timer(cpu, timeridx); } else if ((oldval ^ value) & 2) { /* IMASK toggled: don't need to recalculate, * just set the interrupt line based on ISTATUS */ int irqstate = (oldval & 4) && !(value & 2); trace_arm_gt_imask_toggle(timeridx, irqstate); qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); } } static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_PHYS); } static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_PHYS, value); } static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_PHYS); } static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_PHYS, value); } static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_PHYS, value); } static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_VIRT); } static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_VIRT, value); } static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_VIRT); } static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_VIRT, value); } static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_VIRT, value); } static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); trace_arm_gt_cntvoff_write(value); raw_write(env, ri, value); gt_recalc_timer(cpu, GTIMER_VIRT); } static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_HYP); } static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_HYP, value); } static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_HYP); } static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_HYP, value); } static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_HYP, value); } static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) { gt_timer_reset(env, ri, GTIMER_SEC); } static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_cval_write(env, ri, GTIMER_SEC, value); } static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) { return gt_tval_read(env, ri, GTIMER_SEC); } static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_tval_write(env, ri, GTIMER_SEC, value); } static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { gt_ctl_write(env, ri, GTIMER_SEC, value); } void arm_gt_ptimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_PHYS); } void arm_gt_vtimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_VIRT); } void arm_gt_htimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_HYP); } void arm_gt_stimer_cb(void *opaque) { ARMCPU *cpu = opaque; gt_recalc_timer(cpu, GTIMER_SEC); } static const ARMCPRegInfo generic_timer_cp_reginfo[] = { /* Note that CNTFRQ is purely reads-as-written for the benefit * of software; writing it doesn't actually change the timer frequency. * Our reset value matches the fixed frequency we implement the timer at. */ { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, .type = ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), }, { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, }, /* overall control: mostly access permissions */ { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), .resetvalue = 0, }, /* per-timer control */ { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, .secure = ARM_CP_SECSTATE_NS, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTP_CTL_S", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, .secure = ARM_CP_SECSTATE_S, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, .type = ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), .resetvalue = 0, .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, .type = ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), .resetvalue = 0, .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, }, /* TimerValue views: a 32 bit downcounting view of the underlying state */ { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, .secure = ARM_CP_SECSTATE_NS, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, }, { .name = "CNTP_TVAL_S", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, .secure = ARM_CP_SECSTATE_S, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, }, { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, }, { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, }, { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, }, /* The counter itself */ { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_pct_access, .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, }, { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_pct_access, .readfn = gt_cnt_read, }, { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, }, { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, }, /* Comparison value, indicating when the timer goes off */ { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, .secure = ARM_CP_SECSTATE_NS, .access = PL1_RW | PL0_R, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), .accessfn = gt_ptimer_access, .writefn = gt_phys_cval_write, .raw_writefn = raw_write, }, { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, .secure = ARM_CP_SECSTATE_S, .access = PL1_RW | PL0_R, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), .accessfn = gt_ptimer_access, .writefn = gt_sec_cval_write, .raw_writefn = raw_write, }, { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, .access = PL1_RW | PL0_R, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), .resetvalue = 0, .accessfn = gt_ptimer_access, .writefn = gt_phys_cval_write, .raw_writefn = raw_write, }, { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, .access = PL1_RW | PL0_R, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), .accessfn = gt_vtimer_access, .writefn = gt_virt_cval_write, .raw_writefn = raw_write, }, { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, .access = PL1_RW | PL0_R, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), .resetvalue = 0, .accessfn = gt_vtimer_access, .writefn = gt_virt_cval_write, .raw_writefn = raw_write, }, /* Secure timer -- this is actually restricted to only EL3 * and configurably Secure-EL1 via the accessfn. */ { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, .accessfn = gt_stimer_access, .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, .resetfn = gt_sec_timer_reset, }, { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, .type = ARM_CP_IO, .access = PL1_RW, .accessfn = gt_stimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), .resetvalue = 0, .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, }, { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, .type = ARM_CP_IO, .access = PL1_RW, .accessfn = gt_stimer_access, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), .writefn = gt_sec_cval_write, .raw_writefn = raw_write, }, REGINFO_SENTINEL }; #else /* In user-mode most of the generic timer registers are inaccessible * however modern kernels (4.12+) allow access to cntvct_el0 */ static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) { /* Currently we have no support for QEMUTimer in linux-user so we * can't call gt_get_countervalue(env), instead we directly * call the lower level functions. */ return cpu_get_clock() / GTIMER_SCALE; } static const ARMCPRegInfo generic_timer_cp_reginfo[] = { { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, }, { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, .readfn = gt_virt_cnt_read, }, REGINFO_SENTINEL }; #endif static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_feature(env, ARM_FEATURE_LPAE)) { raw_write(env, ri, value); } else if (arm_feature(env, ARM_FEATURE_V7)) { raw_write(env, ri, value & 0xfffff6ff); } else { raw_write(env, ri, value & 0xfffff1ff); } } #ifndef CONFIG_USER_ONLY /* get_phys_addr() isn't present for user-mode-only targets */ static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (ri->opc2 & 4) { /* The ATS12NSO* operations must trap to EL3 if executed in * Secure EL1 (which can only happen if EL3 is AArch64). * They are simply UNDEF if executed from NS EL1. * They function normally from EL2 or EL3. */ if (arm_current_el(env) == 1) { if (arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; } return CP_ACCESS_TRAP_UNCATEGORIZED; } } return CP_ACCESS_OK; } static uint64_t do_ats_write(CPUARMState *env, uint64_t value, MMUAccessType access_type, ARMMMUIdx mmu_idx) { hwaddr phys_addr; target_ulong page_size; int prot; bool ret; uint64_t par64; bool format64 = false; MemTxAttrs attrs = {}; ARMMMUFaultInfo fi = {}; ARMCacheAttrs cacheattrs = {}; ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, &prot, &page_size, &fi, &cacheattrs); if (is_a64(env)) { format64 = true; } else if (arm_feature(env, ARM_FEATURE_LPAE)) { /* * ATS1Cxx: * * TTBCR.EAE determines whether the result is returned using the * 32-bit or the 64-bit PAR format * * Instructions executed in Hyp mode always use the 64bit format * * ATS1S2NSOxx uses the 64bit format if any of the following is true: * * The Non-secure TTBCR.EAE bit is set to 1 * * The implementation includes EL2, and the value of HCR.VM is 1 * * (Note that HCR.DC makes HCR.VM behave as if it is 1.) * * ATS1Hx always uses the 64bit format. */ format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); if (arm_feature(env, ARM_FEATURE_EL2)) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); } else { format64 |= arm_current_el(env) == 2; } } } if (format64) { /* Create a 64-bit PAR */ par64 = (1 << 11); /* LPAE bit always set */ if (!ret) { par64 |= phys_addr & ~0xfffULL; if (!attrs.secure) { par64 |= (1 << 9); /* NS */ } par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ par64 |= cacheattrs.shareability << 7; /* SH */ } else { uint32_t fsr = arm_fi_to_lfsc(&fi); par64 |= 1; /* F */ par64 |= (fsr & 0x3f) << 1; /* FS */ if (fi.stage2) { par64 |= (1 << 9); /* S */ } if (fi.s1ptw) { par64 |= (1 << 8); /* PTW */ } } } else { /* fsr is a DFSR/IFSR value for the short descriptor * translation table format (with WnR always clear). * Convert it to a 32-bit PAR. */ if (!ret) { /* We do not set any attribute bits in the PAR */ if (page_size == (1 << 24) && arm_feature(env, ARM_FEATURE_V7)) { par64 = (phys_addr & 0xff000000) | (1 << 1); } else { par64 = phys_addr & 0xfffff000; } if (!attrs.secure) { par64 |= (1 << 9); /* NS */ } } else { uint32_t fsr = arm_fi_to_sfsc(&fi); par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | ((fsr & 0xf) << 1) | 1; } } return par64; } static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; uint64_t par64; ARMMMUIdx mmu_idx; int el = arm_current_el(env); bool secure = arm_is_secure_below_el3(env); switch (ri->opc2 & 6) { case 0: /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ switch (el) { case 3: mmu_idx = ARMMMUIdx_S1E3; break; case 2: mmu_idx = ARMMMUIdx_S1NSE1; break; case 1: mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; break; default: g_assert_not_reached(); } break; case 2: /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ switch (el) { case 3: mmu_idx = ARMMMUIdx_S1SE0; break; case 2: mmu_idx = ARMMMUIdx_S1NSE0; break; case 1: mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; break; default: g_assert_not_reached(); } break; case 4: /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ mmu_idx = ARMMMUIdx_S12NSE1; break; case 6: /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ mmu_idx = ARMMMUIdx_S12NSE0; break; default: g_assert_not_reached(); } par64 = do_ats_write(env, value, access_type, mmu_idx); A32_BANKED_CURRENT_REG_SET(env, par, par64); } static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; uint64_t par64; par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); A32_BANKED_CURRENT_REG_SET(env, par, par64); } static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; ARMMMUIdx mmu_idx; int secure = arm_is_secure_below_el3(env); switch (ri->opc2 & 6) { case 0: switch (ri->opc1) { case 0: /* AT S1E1R, AT S1E1W */ mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; break; case 4: /* AT S1E2R, AT S1E2W */ mmu_idx = ARMMMUIdx_S1E2; break; case 6: /* AT S1E3R, AT S1E3W */ mmu_idx = ARMMMUIdx_S1E3; break; default: g_assert_not_reached(); } break; case 2: /* AT S1E0R, AT S1E0W */ mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; break; case 4: /* AT S12E1R, AT S12E1W */ mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; break; case 6: /* AT S12E0R, AT S12E0W */ mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; break; default: g_assert_not_reached(); } env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); } #endif static const ARMCPRegInfo vapa_cp_reginfo[] = { { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), offsetoflow32(CPUARMState, cp15.par_ns) }, .writefn = par_write }, #ifndef CONFIG_USER_ONLY /* This underdecoding is safe because the reginfo is NO_RAW. */ { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .accessfn = ats_access, .writefn = ats_write, .type = ARM_CP_NO_RAW }, #endif REGINFO_SENTINEL }; /* Return basic MPU access permission bits. */ static uint32_t simple_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val >> i) & mask; mask <<= 2; } return ret; } /* Pad basic MPU access permission bits to extended format. */ static uint32_t extended_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val & mask) << i; mask <<= 2; } return ret; } static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); } static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); } static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); } static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) { return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); } static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) { uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); if (!u32p) { return 0; } u32p += env->pmsav7.rnr[M_REG_NS]; return *u32p; } static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); if (!u32p) { return; } u32p += env->pmsav7.rnr[M_REG_NS]; tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ *u32p = value; } static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); uint32_t nrgs = cpu->pmsav7_dregion; if (value >= nrgs) { qemu_log_mask(LOG_GUEST_ERROR, "PMSAv7 RGNR write >= # supported regions, %" PRIu32 " > %" PRIu32 "\n", (uint32_t)value, nrgs); return; } raw_write(env, ri, value); } static const ARMCPRegInfo pmsav7_cp_reginfo[] = { /* Reset for all these registers is handled in arm_cpu_reset(), * because the PMSAv7 is also used by M-profile CPUs, which do * not register cpregs but still need the state to be reset. */ { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NO_RAW, .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = arm_cp_reset_ignore }, { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_NO_RAW, .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = arm_cp_reset_ignore }, { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, .access = PL1_RW, .type = ARM_CP_NO_RAW, .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = arm_cp_reset_ignore }, { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), .writefn = pmsav7_rgnr_write, .resetfn = arm_cp_reset_ignore }, REGINFO_SENTINEL }; static const ARMCPRegInfo pmsav5_cp_reginfo[] = { { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), .resetvalue = 0, }, { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), .resetvalue = 0, }, { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, /* Protection region base and size registers */ { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, REGINFO_SENTINEL }; static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { TCR *tcr = raw_ptr(env, ri); int maskshift = extract32(value, 0, 3); if (!arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when * using Long-desciptor translation table format */ value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); } else if (arm_feature(env, ARM_FEATURE_EL3)) { /* In an implementation that includes the Security Extensions * TTBCR has additional fields PD0 [4] and PD1 [5] for * Short-descriptor translation table format. */ value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; } else { value &= TTBCR_N; } } /* Update the masks corresponding to the TCR bank being written * Note that we always calculate mask and base_mask, but * they are only used for short-descriptor tables (ie if EAE is 0); * for long-descriptor tables the TCR fields are used differently * and the mask and base_mask values are meaningless. */ tcr->raw_tcr = value; tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); } static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); TCR *tcr = raw_ptr(env, ri); if (arm_feature(env, ARM_FEATURE_LPAE)) { /* With LPAE the TTBCR could result in a change of ASID * via the TTBCR.A1 bit, so do a TLB flush. */ tlb_flush(CPU(cpu)); } /* Preserve the high half of TCR_EL1, set via TTBCR2. */ value = deposit64(tcr->raw_tcr, 0, 32, value); vmsa_ttbcr_raw_write(env, ri, value); } static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { TCR *tcr = raw_ptr(env, ri); /* Reset both the TCR as well as the masks corresponding to the bank of * the TCR being reset. */ tcr->raw_tcr = 0; tcr->mask = 0; tcr->base_mask = 0xffffc000u; } static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); TCR *tcr = raw_ptr(env, ri); /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ tlb_flush(CPU(cpu)); tcr->raw_tcr = value; } static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ if (cpreg_field_is_64bit(ri) && extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { ARMCPU *cpu = arm_env_get_cpu(env); tlb_flush(CPU(cpu)); } raw_write(env, ri, value); } static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ if (raw_read(env, ri) != value) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); raw_write(env, ri, value); } } static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_ALIAS, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), offsetof(CPUARMState, cp15.dfar_ns) } }, { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), .resetvalue = 0, }, REGINFO_SENTINEL }; static const ARMCPRegInfo vmsa_cp_reginfo[] = { { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), offsetof(CPUARMState, cp15.ttbr0_ns) } }, { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), offsetof(CPUARMState, cp15.ttbr1_ns) } }, { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .writefn = vmsa_tcr_el1_write, .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, .raw_writefn = vmsa_ttbcr_raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, REGINFO_SENTINEL }; /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing * qemu tlbs nor adjusting cached masks. */ static const ARMCPRegInfo ttbcr2_reginfo = { .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, .access = PL1_RW, .type = ARM_CP_ALIAS, .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, }; static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_ticonfig = value & 0xe7; /* The OS_TYPE bit in this register changes the reported CPUID! */ env->cp15.c0_cpuid = (value & (1 << 5)) ? ARM_CPUID_TI915T : ARM_CPUID_TI925T; } static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_threadid = value & 0xffff; } static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Wait-for-interrupt (deprecated) */ cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); } static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* On OMAP there are registers indicating the max/min index of dcache lines * containing a dirty line; cache flush operations have to reset these. */ env->cp15.c15_i_max = 0x000; env->cp15.c15_i_min = 0xff0; } static const ARMCPRegInfo omap_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, .writefn = omap_ticonfig_write }, { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0xff0, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, .writefn = omap_threadid_write }, { .name = "TI925T_STATUS", .cp = 15, .crn = 15, .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NO_RAW, .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, /* TODO: Peripheral port remap register: * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), * when MMU is off. */ { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, .writefn = omap_cachemaint_write }, { .name = "C9", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_cpar = value & 0x3fff; } static const ARMCPRegInfo xscale_cp_reginfo[] = { { .name = "XSCALE_CPAR", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, .writefn = xscale_cpar_write, }, { .name = "XSCALE_AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), .resetvalue = 0, }, /* XScale specific cache-lockdown: since we have no cache we NOP these * and hope the guest does not really rely on cache behaviour. */ { .name = "XSCALE_LOCK_ICACHE_LINE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "XSCALE_UNLOCK_ICACHE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "XSCALE_DCACHE_LOCK", .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "XSCALE_UNLOCK_DCACHE", .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { /* RAZ/WI the whole crn=15 space, when we don't have a more specific * implementation of this implementation-defined space. * Ideally this should eventually disappear in favour of actually * implementing the correct behaviour for all cores. */ { .name = "C15_IMPDEF", .cp = 15, .crn = 15, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { /* Cache status: RAZ because we have no cache so it's always clean */ { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { /* We never have a a block transfer operation in progress */ { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = 0 }, /* The cache ops themselves: these all NOP for QEMU */ { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { /* The cache test-and-clean instructions always return (1 << 30) * to indicate that there are no dirty cache lines. */ { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = (1 << 30) }, { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, .resetvalue = (1 << 30) }, REGINFO_SENTINEL }; static const ARMCPRegInfo strongarm_cp_reginfo[] = { /* Ignore ReadBuffer accesses */ { .name = "C9_READBUFFER", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, REGINFO_SENTINEL }; static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { return env->cp15.vpidr_el2; } return raw_read(env, ri); } static uint64_t mpidr_read_val(CPUARMState *env) { ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); uint64_t mpidr = cpu->mp_affinity; if (arm_feature(env, ARM_FEATURE_V7MP)) { mpidr |= (1U << 31); /* Cores which are uniprocessor (non-coherent) * but still implement the MP extensions set * bit 30. (For instance, Cortex-R5). */ if (cpu->mp_is_up) { mpidr |= (1u << 30); } } return mpidr; } static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) { unsigned int cur_el = arm_current_el(env); bool secure = arm_is_secure(env); if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { return env->cp15.vmpidr_el2; } return mpidr_read_val(env); } static const ARMCPRegInfo mpidr_cp_reginfo[] = { { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, REGINFO_SENTINEL }; static const ARMCPRegInfo lpae_cp_reginfo[] = { /* NOP AMAIR0/1 */ { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), offsetof(CPUARMState, cp15.par_ns)} }, { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), offsetof(CPUARMState, cp15.ttbr0_ns) }, .writefn = vmsa_ttbr_write, }, { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), offsetof(CPUARMState, cp15.ttbr1_ns) }, .writefn = vmsa_ttbr_write, }, REGINFO_SENTINEL }; static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) { return vfp_get_fpcr(env); } static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { vfp_set_fpcr(env, value); } static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) { return vfp_get_fpsr(env); } static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { vfp_set_fpsr(env, value); } static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->daif = value & PSTATE_DAIF; } static CPAccessResult aa64_cacheop_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless * SCTLR_EL1.UCI is set. */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions * Page D4-1736 (DDI0487A.b) */ static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); bool sec = arm_is_secure_below_el3(env); if (sec) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); if (tlb_force_broadcast(env)) { tlbi_aa64_vmalle1is_write(env, NULL, value); return; } if (arm_is_secure_below_el3(env)) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Note that the 'ALL' scope must invalidate both stage 1 and * stage 2 translations, whereas most other scopes only invalidate * stage 1 translations. */ ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); if (arm_is_secure_below_el3(env)) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { if (arm_feature(env, ARM_FEATURE_EL2)) { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } else { tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } } static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Note that the 'ALL' scope must invalidate both stage 1 and * stage 2 translations, whereas most other scopes only invalidate * stage 1 translations. */ CPUState *cs = ENV_GET_CPU(env); bool sec = arm_is_secure_below_el3(env); bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); if (sec) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else if (has_el2) { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0 | ARMMMUIdxBit_S2NS); } else { tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA, EL2 * Currently handles both VAE2 and VALE2, since we don't support * flush-last-level-only. */ ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA, EL3 * Currently handles both VAE3 and VALE3, since we don't support * flush-last-level-only. */ ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); bool sec = arm_is_secure_below_el3(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); if (sec) { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by VA, EL1&0 (AArch64 version). * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, * since we don't support flush-for-specific-ASID-only or * flush-last-level-only. */ ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr = sextract64(value << 12, 0, 56); if (tlb_force_broadcast(env)) { tlbi_aa64_vae1is_write(env, NULL, value); return; } if (arm_is_secure_below_el3(env)) { tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1SE1 | ARMMMUIdxBit_S1SE0); } else { tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S12NSE1 | ARMMMUIdxBit_S12NSE0); } } static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1E2); } static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); uint64_t pageaddr = sextract64(value << 12, 0, 56); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S1E3); } static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by IPA. This has to invalidate any structures that * contain only stage 2 translation information, but does not need * to apply to structures that contain combined stage 1 and stage 2 * translation information. * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. */ ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 48); tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); } static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { CPUState *cs = ENV_GET_CPU(env); uint64_t pageaddr; if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { return; } pageaddr = sextract64(value << 12, 0, 48); tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_S2NS); } static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* We don't implement EL2, so the only control on DC ZVA is the * bit in the SCTLR which can prohibit access for EL0. */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); int dzp_bit = 1 << 4; /* DZP indicates whether DC ZVA access is allowed */ if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { dzp_bit = 0; } return cpu->dcz_blocksize | dzp_bit; } static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (!(env->pstate & PSTATE_SP)) { /* Access to SP_EL0 is undefined if it's being used as * the stack pointer. */ return CP_ACCESS_TRAP_UNCATEGORIZED; } return CP_ACCESS_OK; } static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) { return env->pstate & PSTATE_SP; } static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) { update_spsel(env, val); } static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); if (raw_read(env, ri) == value) { /* Skip the TLB flush if nothing actually changed; Linux likes * to do a lot of pointless SCTLR writes. */ return; } if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { /* M bit is RAZ/WI for PMSA with no MPU implemented */ value &= ~SCTLR_M; } raw_write(env, ri, value); /* ??? Lots of these bits are not implemented. */ /* This may enable/disable the MMU, so do a TLB flush. */ tlb_flush(CPU(cpu)); } static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { return CP_ACCESS_TRAP_FP_EL2; } if (env->cp15.cptr_el[3] & CPTR_TFP) { return CP_ACCESS_TRAP_FP_EL3; } return CP_ACCESS_OK; } static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; } static const ARMCPRegInfo v8_cp_reginfo[] = { /* Minimal set of EL0-visible registers. This will need to be expanded * significantly for system emulation of AArch64 CPUs. */ { .name = "NZCV", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, .access = PL0_RW, .type = ARM_CP_NZCV }, { .name = "DAIF", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, .type = ARM_CP_NO_RAW, .access = PL0_RW, .accessfn = aa64_daif_access, .fieldoffset = offsetof(CPUARMState, daif), .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, { .name = "FPCR", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, { .name = "FPSR", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, .access = PL0_R, .type = ARM_CP_NO_RAW, .readfn = aa64_dczid_read }, { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, .access = PL0_W, .type = ARM_CP_DC_ZVA, #ifndef CONFIG_USER_ONLY /* Avoid overhead of an access check that always passes in user-mode */ .accessfn = aa64_zva_access, #endif }, { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, .access = PL1_R, .type = ARM_CP_CURRENTEL }, /* Cache ops: all NOPs since we don't emulate caches */ { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, .access = PL0_W, .type = ARM_CP_NOP, .accessfn = aa64_cacheop_access }, { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NOP }, /* TLBI operations */ { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1is_write }, { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1is_write }, { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1is_write }, { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1_write }, { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vmalle1_write }, { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae1_write }, { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1is_write }, { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1is_write }, { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1is_write }, { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1is_write }, { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1_write }, { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_ipas2e1_write }, { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1_write }, { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle1is_write }, #ifndef CONFIG_USER_ONLY /* 64 bit address translation operations */ { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), .writefn = par_write }, #endif /* TLB invalidate last level of translation table walk */ { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_is_write }, { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_write }, { .name = "TLBIMVALHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_is_write }, { .name = "TLBIIPAS2", .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_write }, { .name = "TLBIIPAS2IS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_is_write }, { .name = "TLBIIPAS2L", .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_write }, { .name = "TLBIIPAS2LIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiipas2_is_write }, /* 32 bit cache operations */ { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, .type = ARM_CP_NOP, .access = PL1_W }, { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, /* MMU Domain access control / MPU write buffer control */ { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), offsetoflow32(CPUARMState, cp15.dacr_ns) } }, { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, /* We rely on the access checks not allowing the guest to write to the * state field when SPSel indicates that it's being used as the stack * pointer. */ { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, .access = PL1_RW, .accessfn = sp_el0_access, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, { .name = "SPSel", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), .access = PL2_RW, .accessfn = fpexc32_access }, { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, .resetvalue = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, { .name = "SDCR", .type = ARM_CP_ALIAS, .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, .access = PL1_RW, .accessfn = access_trap_aa32s_el1, .writefn = sdcr_write, .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, REGINFO_SENTINEL }; /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, .access = PL2_RW, .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_NO_RAW, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "VTTBR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 6, .crm = 2, .access = PL2_RW, .accessfn = access_el3_aa32ns, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, .access = PL2_RW, .accessfn = access_tda, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "HIFAR", .state = ARM_CP_STATE_AA32, .type = ARM_CP_CONST, .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, .access = PL2_RW, .resetvalue = 0 }, REGINFO_SENTINEL }; /* Ditto, but for registers which exist in ARMv8 but not v7 */ static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { { .name = "HCR2", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); uint64_t valid_mask = HCR_MASK; if (arm_feature(env, ARM_FEATURE_EL3)) { valid_mask &= ~HCR_HCD; } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. * However, if we're using the SMC PSCI conduit then QEMU is * effectively acting like EL3 firmware and so the guest at * EL2 should retain the ability to prevent EL1 from being * able to make SMC calls into the ersatz firmware, so in * that case HCR.TSC should be read/write. */ valid_mask &= ~HCR_TSC; } if (cpu_isar_feature(aa64_lor, cpu)) { valid_mask |= HCR_TLOR; } /* Clear RES0 bits. */ value &= valid_mask; /* These bits change the MMU setup: * HCR_VM enables stage 2 translation * HCR_PTW forbids certain page-table setups * HCR_DC Disables stage1 and enables stage2 translation */ if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { tlb_flush(CPU(cpu)); } env->cp15.hcr_el2 = value; /* * Updates to VI and VF require us to update the status of * virtual interrupts, which are the logical OR of these bits * and the state of the input lines from the GIC. (This requires * that we have the iothread lock, which is done by marking the * reginfo structs as ARM_CP_IO.) * Note that if a write to HCR pends a VIRQ or VFIQ it is never * possible for it to be taken immediately, because VIRQ and * VFIQ are masked unless running at EL0 or EL1, and HCR * can only be written at EL2. */ g_assert(qemu_mutex_iothread_locked()); arm_cpu_update_virq(cpu); arm_cpu_update_vfiq(cpu); } static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ value = deposit64(env->cp15.hcr_el2, 32, 32, value); hcr_write(env, NULL, value); } static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Handle HCR write, i.e. write to low half of HCR_EL2 */ value = deposit64(env->cp15.hcr_el2, 0, 32, value); hcr_write(env, NULL, value); } /* * Return the effective value of HCR_EL2. * Bits that are not included here: * RW (read from SCR_EL3.RW as needed) */ uint64_t arm_hcr_el2_eff(CPUARMState *env) { uint64_t ret = env->cp15.hcr_el2; if (arm_is_secure_below_el3(env)) { /* * "This register has no effect if EL2 is not enabled in the * current Security state". This is ARMv8.4-SecEL2 speak for * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). * * Prior to that, the language was "In an implementation that * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves * as if this field is 0 for all purposes other than a direct * read or write access of HCR_EL2". With lots of enumeration * on a per-field basis. In current QEMU, this is condition * is arm_is_secure_below_el3. * * Since the v8.4 language applies to the entire register, and * appears to be backward compatible, use that. */ ret = 0; } else if (ret & HCR_TGE) { /* These bits are up-to-date as of ARMv8.4. */ if (ret & HCR_E2H) { ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); } else { ret |= HCR_FMO | HCR_IMO | HCR_AMO; } ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | HCR_TLOR); } return ret; } static const ARMCPRegInfo el2_cp_reginfo[] = { { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), .writefn = hcr_write }, { .name = "HCR", .state = ARM_CP_STATE_AA32, .type = ARM_CP_ALIAS | ARM_CP_IO, .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), .writefn = hcr_writelow }, { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, { .name = "HIFAR", .state = ARM_CP_STATE_AA32, .type = ARM_CP_ALIAS, .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, .access = PL2_RW, .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, .access = PL2_RW, .writefn = vbar_write, .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), .resetvalue = 0 }, { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), .resetvalue = 0 }, { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_ALIAS, .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, .access = PL2_RW, /* no .writefn needed as this can't cause an ASID change; * no .raw_writefn or .resetfn needed as we never use mask/base_mask */ .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, { .name = "VTCR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, .type = ARM_CP_ALIAS, .access = PL2_RW, .accessfn = access_el3_aa32ns, .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, .access = PL2_RW, /* no .writefn needed as this can't cause an ASID change; * no .raw_writefn or .resetfn needed as we never use mask/base_mask */ .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, { .name = "VTTBR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 6, .crm = 2, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .access = PL2_RW, .accessfn = access_el3_aa32ns, .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), .writefn = vttbr_write }, { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, .access = PL2_RW, .writefn = vttbr_write, .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, { .name = "TLBIALLNSNH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_nsnh_write }, { .name = "TLBIALLNSNHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_nsnh_is_write }, { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_hyp_write }, { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbiall_hyp_is_write }, { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_write }, { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbimva_hyp_is_write }, { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_alle2_write }, { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_vae2_write }, { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae2_write }, { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle2is_write }, { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, .type = ARM_CP_NO_RAW, .access = PL2_W, .writefn = tlbi_aa64_vae2is_write }, { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae2is_write }, #ifndef CONFIG_USER_ONLY /* Unlike the other EL2-related AT operations, these must * UNDEF from EL3 if EL2 is not implemented, which is why we * define them here rather than with the rest of the AT ops. */ { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, .access = PL2_W, .accessfn = at_s1e2_access, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, .access = PL2_W, .accessfn = at_s1e2_access, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose * to behave as if SCR.NS was 1. */ { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, .access = PL2_W, .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, .access = PL2_W, .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the * reset values as IMPDEF. We choose to reset to 3 to comply with * both ARMv7 and ARMv8. */ .access = PL2_RW, .resetvalue = 3, .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, .writefn = gt_cntvoff_write, .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, .writefn = gt_cntvoff_write, .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), .type = ARM_CP_IO, .access = PL2_RW, .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, .resetfn = gt_hyp_timer_reset, .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), .resetvalue = 0, .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, #endif /* The only field of MDCR_EL2 that has a defined architectural reset value * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we * don't impelment any PMU event counters, so using zero as a reset * value for MDCR_EL2 is okay */ { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, .access = PL2_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, { .name = "HPFAR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, .access = PL2_RW, .accessfn = access_el3_aa32ns, .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, REGINFO_SENTINEL }; static const ARMCPRegInfo el2_v8_cp_reginfo[] = { { .name = "HCR2", .state = ARM_CP_STATE_AA32, .type = ARM_CP_ALIAS | ARM_CP_IO, .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, .access = PL2_RW, .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), .writefn = hcr_writehigh }, REGINFO_SENTINEL }; static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. * At Secure EL1 it traps to EL3. */ if (arm_current_el(env) == 3) { return CP_ACCESS_OK; } if (arm_is_secure_below_el3(env)) { return CP_ACCESS_TRAP_EL3; } /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ if (isread) { return CP_ACCESS_OK; } return CP_ACCESS_TRAP_UNCATEGORIZED; } static const ARMCPRegInfo el3_cp_reginfo[] = { { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), .resetvalue = 0, .writefn = scr_write }, { .name = "SCR", .type = ARM_CP_ALIAS, .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, .access = PL1_RW, .accessfn = access_trap_aa32s_el1, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), .writefn = scr_write }, { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.sder) }, { .name = "SDER", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, .access = PL1_RW, .accessfn = access_trap_aa32s_el1, .writefn = vbar_write, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, .access = PL3_RW, /* no .writefn needed as this can't cause an ASID change; * we must provide a .raw_writefn and .resetfn because we handle * reset and migration for the AArch32 TTBCR(S), which might be * using mask and base_mask. */ .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_ALIAS, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, .access = PL3_RW, .writefn = vbar_write, .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), .resetvalue = 0 }, { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, .access = PL3_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle3is_write }, { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3is_write }, { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3is_write }, { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_alle3_write }, { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3_write }, { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = tlbi_aa64_vae3_write }, REGINFO_SENTINEL }; static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, * but the AArch32 CTR has its own reginfo struct) */ if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; } static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Writes to OSLAR_EL1 may update the OS lock status, which can be * read via a bit in OSLSR_EL1. */ int oslock; if (ri->state == ARM_CP_STATE_AA32) { oslock = (value == 0xC5ACCE55); } else { oslock = value & 1; } env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); } static const ARMCPRegInfo debug_cp_reginfo[] = { /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; * unlike DBGDRAR it is never accessible from EL0. * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 * accessor. */ { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .accessfn = access_tdra, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, .access = PL1_R, .accessfn = access_tdra, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .accessfn = access_tdra, .type = ARM_CP_CONST, .resetvalue = 0 }, /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), .resetvalue = 0 }, /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. * We don't implement the configurable EL0 access. */ { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, .type = ARM_CP_ALIAS, .access = PL1_R, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_NO_RAW, .accessfn = access_tdosa, .writefn = oslar_write }, { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, .access = PL1_R, .resetvalue = 10, .accessfn = access_tdosa, .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, /* Dummy OSDLR_EL1: 32-bit Linux will read this */ { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, .access = PL1_RW, .accessfn = access_tdosa, .type = ARM_CP_NOP }, /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't * implement vector catch debug events yet. */ { .name = "DBGVCR", .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, .access = PL1_RW, .accessfn = access_tda, .type = ARM_CP_NOP }, /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor * to save and restore a 32-bit guest's DBGVCR) */ { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, .access = PL2_RW, .accessfn = access_tda, .type = ARM_CP_NOP }, /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications * Channel but Linux may try to access this register. The 32-bit * alias is DBGDCCINT. */ { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, .access = PL1_RW, .accessfn = access_tda, .type = ARM_CP_NOP }, REGINFO_SENTINEL }; static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { /* 64 bit access versions of the (dummy) debug registers */ { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, REGINFO_SENTINEL }; /* Return the exception level to which exceptions should be taken * via SVEAccessTrap. If an exception should be routed through * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should * take care of raising that exception. * C.f. the ARM pseudocode function CheckSVEEnabled. */ int sve_exception_el(CPUARMState *env, int el) { #ifndef CONFIG_USER_ONLY if (el <= 1) { bool disabled = false; /* The CPACR.ZEN controls traps to EL1: * 0, 2 : trap EL0 and EL1 accesses * 1 : trap only EL0 accesses * 3 : trap no accesses */ if (!extract32(env->cp15.cpacr_el1, 16, 1)) { disabled = true; } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { disabled = el == 0; } if (disabled) { /* route_to_el2 */ return (arm_feature(env, ARM_FEATURE_EL2) && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); } /* Check CPACR.FPEN. */ if (!extract32(env->cp15.cpacr_el1, 20, 1)) { disabled = true; } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { disabled = el == 0; } if (disabled) { return 0; } } /* CPTR_EL2. Since TZ and TFP are positive, * they will be zero when EL2 is not present. */ if (el <= 2 && !arm_is_secure_below_el3(env)) { if (env->cp15.cptr_el[2] & CPTR_TZ) { return 2; } if (env->cp15.cptr_el[2] & CPTR_TFP) { return 0; } } /* CPTR_EL3. Since EZ is negative we must check for EL3. */ if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.cptr_el[3] & CPTR_EZ)) { return 3; } #endif return 0; } /* * Given that SVE is enabled, return the vector length for EL. */ uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) { ARMCPU *cpu = arm_env_get_cpu(env); uint32_t zcr_len = cpu->sve_max_vq - 1; if (el <= 1) { zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); } if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); } if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); } return zcr_len; } static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { int cur_el = arm_current_el(env); int old_len = sve_zcr_len_for_el(env, cur_el); int new_len; /* Bits other than [3:0] are RAZ/WI. */ raw_write(env, ri, value & 0xf); /* * Because we arrived here, we know both FP and SVE are enabled; * otherwise we would have trapped access to the ZCR_ELn register. */ new_len = sve_zcr_len_for_el(env, cur_el); if (new_len < old_len) { aarch64_sve_narrow_vq(env, new_len + 1); } } static const ARMCPRegInfo zcr_el1_reginfo = { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_SVE, .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), .writefn = zcr_write, .raw_writefn = raw_write }; static const ARMCPRegInfo zcr_el2_reginfo = { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_SVE, .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), .writefn = zcr_write, .raw_writefn = raw_write }; static const ARMCPRegInfo zcr_no_el2_reginfo = { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, .access = PL2_RW, .type = ARM_CP_SVE, .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }; static const ARMCPRegInfo zcr_el3_reginfo = { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, .access = PL3_RW, .type = ARM_CP_SVE, .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), .writefn = zcr_write, .raw_writefn = raw_write }; void hw_watchpoint_update(ARMCPU *cpu, int n) { CPUARMState *env = &cpu->env; vaddr len = 0; vaddr wvr = env->cp15.dbgwvr[n]; uint64_t wcr = env->cp15.dbgwcr[n]; int mask; int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; if (env->cpu_watchpoint[n]) { cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); env->cpu_watchpoint[n] = NULL; } if (!extract64(wcr, 0, 1)) { /* E bit clear : watchpoint disabled */ return; } switch (extract64(wcr, 3, 2)) { case 0: /* LSC 00 is reserved and must behave as if the wp is disabled */ return; case 1: flags |= BP_MEM_READ; break; case 2: flags |= BP_MEM_WRITE; break; case 3: flags |= BP_MEM_ACCESS; break; } /* Attempts to use both MASK and BAS fields simultaneously are * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, * thus generating a watchpoint for every byte in the masked region. */ mask = extract64(wcr, 24, 4); if (mask == 1 || mask == 2) { /* Reserved values of MASK; we must act as if the mask value was * some non-reserved value, or as if the watchpoint were disabled. * We choose the latter. */ return; } else if (mask) { /* Watchpoint covers an aligned area up to 2GB in size */ len = 1ULL << mask; /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE * whether the watchpoint fires when the unmasked bits match; we opt * to generate the exceptions. */ wvr &= ~(len - 1); } else { /* Watchpoint covers bytes defined by the byte address select bits */ int bas = extract64(wcr, 5, 8); int basstart; if (bas == 0) { /* This must act as if the watchpoint is disabled */ return; } if (extract64(wvr, 2, 1)) { /* Deprecated case of an only 4-aligned address. BAS[7:4] are * ignored, and BAS[3:0] define which bytes to watch. */ bas &= 0xf; } /* The BAS bits are supposed to be programmed to indicate a contiguous * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether * we fire for each byte in the word/doubleword addressed by the WVR. * We choose to ignore any non-zero bits after the first range of 1s. */ basstart = ctz32(bas); len = cto32(bas >> basstart); wvr += basstart; } cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, &env->cpu_watchpoint[n]); } void hw_watchpoint_update_all(ARMCPU *cpu) { int i; CPUARMState *env = &cpu->env; /* Completely clear out existing QEMU watchpoints and our array, to * avoid possible stale entries following migration load. */ cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { hw_watchpoint_update(cpu, i); } } static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; /* Bits [63:49] are hardwired to the value of bit [48]; that is, the * register reads and behaves as if values written are sign extended. * Bits [1:0] are RES0. */ value = sextract64(value, 0, 49) & ~3ULL; raw_write(env, ri, value); hw_watchpoint_update(cpu, i); } static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; raw_write(env, ri, value); hw_watchpoint_update(cpu, i); } void hw_breakpoint_update(ARMCPU *cpu, int n) { CPUARMState *env = &cpu->env; uint64_t bvr = env->cp15.dbgbvr[n]; uint64_t bcr = env->cp15.dbgbcr[n]; vaddr addr; int bt; int flags = BP_CPU; if (env->cpu_breakpoint[n]) { cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); env->cpu_breakpoint[n] = NULL; } if (!extract64(bcr, 0, 1)) { /* E bit clear : watchpoint disabled */ return; } bt = extract64(bcr, 20, 4); switch (bt) { case 4: /* unlinked address mismatch (reserved if AArch64) */ case 5: /* linked address mismatch (reserved if AArch64) */ qemu_log_mask(LOG_UNIMP, "arm: address mismatch breakpoint types not implemented\n"); return; case 0: /* unlinked address match */ case 1: /* linked address match */ { /* Bits [63:49] are hardwired to the value of bit [48]; that is, * we behave as if the register was sign extended. Bits [1:0] are * RES0. The BAS field is used to allow setting breakpoints on 16 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether * a bp will fire if the addresses covered by the bp and the addresses * covered by the insn overlap but the insn doesn't start at the * start of the bp address range. We choose to require the insn and * the bp to have the same address. The constraints on writing to * BAS enforced in dbgbcr_write mean we have only four cases: * 0b0000 => no breakpoint * 0b0011 => breakpoint on addr * 0b1100 => breakpoint on addr + 2 * 0b1111 => breakpoint on addr * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). */ int bas = extract64(bcr, 5, 4); addr = sextract64(bvr, 0, 49) & ~3ULL; if (bas == 0) { return; } if (bas == 0xc) { addr += 2; } break; } case 2: /* unlinked context ID match */ case 8: /* unlinked VMID match (reserved if no EL2) */ case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ qemu_log_mask(LOG_UNIMP, "arm: unlinked context breakpoint types not implemented\n"); return; case 9: /* linked VMID match (reserved if no EL2) */ case 11: /* linked context ID and VMID match (reserved if no EL2) */ case 3: /* linked context ID match */ default: /* We must generate no events for Linked context matches (unless * they are linked to by some other bp/wp, which is handled in * updates for the linking bp/wp). We choose to also generate no events * for reserved values. */ return; } cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); } void hw_breakpoint_update_all(ARMCPU *cpu) { int i; CPUARMState *env = &cpu->env; /* Completely clear out existing QEMU breakpoints and our array, to * avoid possible stale entries following migration load. */ cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { hw_breakpoint_update(cpu, i); } } static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; raw_write(env, ri, value); hw_breakpoint_update(cpu, i); } static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); int i = ri->crm; /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only * copy of BAS[0]. */ value = deposit64(value, 6, 1, extract64(value, 5, 1)); value = deposit64(value, 8, 1, extract64(value, 7, 1)); raw_write(env, ri, value); hw_breakpoint_update(cpu, i); } static void define_debug_regs(ARMCPU *cpu) { /* Define v7 and v8 architectural debug registers. * These are just dummy implementations for now. */ int i; int wrps, brps, ctx_cmps; ARMCPRegInfo dbgdidr = { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .accessfn = access_tda, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, }; /* Note that all these register fields hold "number of Xs minus 1". */ brps = extract32(cpu->dbgdidr, 24, 4); wrps = extract32(cpu->dbgdidr, 28, 4); ctx_cmps = extract32(cpu->dbgdidr, 20, 4); assert(ctx_cmps <= brps); /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties * of the debug registers such as number of breakpoints; * check that if they both exist then they agree. */ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); } define_one_arm_cp_reg(cpu, &dbgdidr); define_arm_cp_regs(cpu, debug_cp_reginfo); if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); } for (i = 0; i < brps + 1; i++) { ARMCPRegInfo dbgregs[] = { { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), .writefn = dbgbvr_write, .raw_writefn = raw_write }, { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), .writefn = dbgbcr_write, .raw_writefn = raw_write }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, dbgregs); } for (i = 0; i < wrps + 1; i++) { ARMCPRegInfo dbgregs[] = { { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), .writefn = dbgwvr_write, .raw_writefn = raw_write }, { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, .access = PL1_RW, .accessfn = access_tda, .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), .writefn = dbgwcr_write, .raw_writefn = raw_write }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, dbgregs); } } /* We don't know until after realize whether there's a GICv3 * attached, and that is what registers the gicv3 sysregs. * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 * at runtime. */ static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); uint64_t pfr1 = cpu->id_pfr1; if (env->gicv3state) { pfr1 |= 1 << 28; } return pfr1; } static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); uint64_t pfr0 = cpu->isar.id_aa64pfr0; if (env->gicv3state) { pfr0 |= 1 << 24; } return pfr0; } /* Shared logic between LORID and the rest of the LOR* registers. * Secure state has already been delt with. */ static CPAccessResult access_lor_ns(CPUARMState *env) { int el = arm_current_el(env); if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { return CP_ACCESS_TRAP_EL2; } if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { return CP_ACCESS_TRAP_EL3; } return CP_ACCESS_OK; } static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_is_secure_below_el3(env)) { /* Access ok in secure mode. */ return CP_ACCESS_OK; } return access_lor_ns(env); } static CPAccessResult access_lor_other(CPUARMState *env, const ARMCPRegInfo *ri, bool isread) { if (arm_is_secure_below_el3(env)) { /* Access denied in secure mode. */ return CP_ACCESS_TRAP; } return access_lor_ns(env); } void register_cp_regs_for_features(ARMCPU *cpu) { /* Register all the coprocessor registers based on feature bits */ CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_M)) { /* M profile has no coprocessor registers */ return; } define_arm_cp_regs(cpu, cp_reginfo); if (!arm_feature(env, ARM_FEATURE_V8)) { /* Must go early as it is full of wildcards that may be * overridden by later definitions. */ define_arm_cp_regs(cpu, not_v8_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V6)) { /* The ID registers all have impdef reset values */ ARMCPRegInfo v6_idregs[] = { { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_pfr0 }, /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know * the value of the GIC field until after we define these regs. */ { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, .access = PL1_R, .type = ARM_CP_NO_RAW, .readfn = id_pfr1_read, .writefn = arm_cp_write_ignore }, { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_dfr0 }, { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_afr0 }, { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr0 }, { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr1 }, { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr2 }, { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr3 }, { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_isar0 }, { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_isar1 }, { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_isar2 }, { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_isar3 }, { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_isar4 }, { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_isar5 }, { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr4 }, { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_isar6 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, v6_idregs); define_arm_cp_regs(cpu, v6_cp_reginfo); } else { define_arm_cp_regs(cpu, not_v6_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V6K)) { define_arm_cp_regs(cpu, v6k_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7MP) && !arm_feature(env, ARM_FEATURE_PMSA)) { define_arm_cp_regs(cpu, v7mp_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7)) { /* v7 performance monitor control register: same implementor * field as main ID register, and we implement only the cycle * count register. */ #ifndef CONFIG_USER_ONLY ARMCPRegInfo pmcr = { .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), .accessfn = pmreg_access, .writefn = pmcr_write, .raw_writefn = raw_write, }; ARMCPRegInfo pmcr64 = { .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, .access = PL0_RW, .accessfn = pmreg_access, .type = ARM_CP_IO, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), .resetvalue = cpu->midr & 0xff000000, .writefn = pmcr_write, .raw_writefn = raw_write, }; define_one_arm_cp_reg(cpu, &pmcr); define_one_arm_cp_reg(cpu, &pmcr64); #endif ARMCPRegInfo clidr = { .name = "CLIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr }; define_one_arm_cp_reg(cpu, &clidr); define_arm_cp_regs(cpu, v7_cp_reginfo); define_debug_regs(cpu); } else { define_arm_cp_regs(cpu, not_v7_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V8)) { /* AArch64 ID registers, which all have impdef reset values. * Note that within the ID register ranges the unused slots * must all RAZ, not UNDEF; future architecture versions may * define new registers here. */ ARMCPRegInfo v8_idregs[] = { /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't * know the right value for the GIC field until after we * define these regs. */ { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, .access = PL1_R, .type = ARM_CP_NO_RAW, .readfn = id_aa64pfr0_read, .writefn = arm_cp_write_ignore }, { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_aa64pfr1}, { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, /* At present, only SVEver == 0 is defined anyway. */ .resetvalue = 0 }, { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64dfr0 }, { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64dfr1 }, { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64afr0 }, { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_aa64afr1 }, { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_aa64isar0 }, { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_aa64isar1 }, { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_aa64mmfr0 }, { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.id_aa64mmfr1 }, { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.mvfr0 }, { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.mvfr1 }, { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->isar.mvfr2 }, { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = cpu->pmceid0 }, { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = cpu->pmceid0 }, { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = cpu->pmceid1 }, { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, .resetvalue = cpu->pmceid1 }, REGINFO_SENTINEL }; /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ if (!arm_feature(env, ARM_FEATURE_EL3) && !arm_feature(env, ARM_FEATURE_EL2)) { ARMCPRegInfo rvbar = { .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar }; define_one_arm_cp_reg(cpu, &rvbar); } define_arm_cp_regs(cpu, v8_idregs); define_arm_cp_regs(cpu, v8_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_EL2)) { uint64_t vmpidr_def = mpidr_read_val(env); ARMCPRegInfo vpidr_regs[] = { { .name = "VPIDR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, .access = PL2_RW, .accessfn = access_el3_aa32ns, .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, .access = PL2_RW, .resetvalue = cpu->midr, .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, .access = PL2_RW, .accessfn = access_el3_aa32ns, .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, .access = PL2_RW, .resetvalue = vmpidr_def, .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, vpidr_regs); define_arm_cp_regs(cpu, el2_cp_reginfo); if (arm_feature(env, ARM_FEATURE_V8)) { define_arm_cp_regs(cpu, el2_v8_cp_reginfo); } /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ if (!arm_feature(env, ARM_FEATURE_EL3)) { ARMCPRegInfo rvbar = { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar }; define_one_arm_cp_reg(cpu, &rvbar); } } else { /* If EL2 is missing but higher ELs are enabled, we need to * register the no_el2 reginfos. */ if (arm_feature(env, ARM_FEATURE_EL3)) { /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value * of MIDR_EL1 and MPIDR_EL1. */ ARMCPRegInfo vpidr_regs[] = { { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_CONST, .resetvalue = cpu->midr, .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, vpidr_regs); define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); if (arm_feature(env, ARM_FEATURE_V8)) { define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); } } } if (arm_feature(env, ARM_FEATURE_EL3)) { define_arm_cp_regs(cpu, el3_cp_reginfo); ARMCPRegInfo el3_regs[] = { { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), .resetvalue = cpu->reset_sctlr }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, el3_regs); } /* The behaviour of NSACR is sufficiently various that we don't * try to describe it in a single reginfo: * if EL3 is 64 bit, then trap to EL3 from S EL1, * reads as constant 0xc00 from NS EL1 and NS EL2 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 * if v7 without EL3, register doesn't exist * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 */ if (arm_feature(env, ARM_FEATURE_EL3)) { if (arm_feature(env, ARM_FEATURE_AARCH64)) { ARMCPRegInfo nsacr = { .name = "NSACR", .type = ARM_CP_CONST, .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, .access = PL1_RW, .accessfn = nsacr_access, .resetvalue = 0xc00 }; define_one_arm_cp_reg(cpu, &nsacr); } else { ARMCPRegInfo nsacr = { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, .access = PL3_RW | PL1_R, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }; define_one_arm_cp_reg(cpu, &nsacr); } } else { if (arm_feature(env, ARM_FEATURE_V8)) { ARMCPRegInfo nsacr = { .name = "NSACR", .type = ARM_CP_CONST, .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, .access = PL1_R, .resetvalue = 0xc00 }; define_one_arm_cp_reg(cpu, &nsacr); } } if (arm_feature(env, ARM_FEATURE_PMSA)) { if (arm_feature(env, ARM_FEATURE_V6)) { /* PMSAv6 not implemented */ assert(arm_feature(env, ARM_FEATURE_V7)); define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); define_arm_cp_regs(cpu, pmsav7_cp_reginfo); } else { define_arm_cp_regs(cpu, pmsav5_cp_reginfo); } } else { define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); define_arm_cp_regs(cpu, vmsa_cp_reginfo); /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); } } if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { define_arm_cp_regs(cpu, t2ee_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { define_arm_cp_regs(cpu, generic_timer_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_VAPA)) { define_arm_cp_regs(cpu, vapa_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_OMAPCP)) { define_arm_cp_regs(cpu, omap_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_STRONGARM)) { define_arm_cp_regs(cpu, strongarm_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_XSCALE)) { define_arm_cp_regs(cpu, xscale_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_LPAE)) { define_arm_cp_regs(cpu, lpae_cp_reginfo); } /* Slightly awkwardly, the OMAP and StrongARM cores need all of * cp15 crn=0 to be writes-ignored, whereas for other cores they should * be read-only (ie write causes UNDEF exception). */ { ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { /* Pre-v8 MIDR space. * Note that the MIDR isn't a simple constant register because * of the TI925 behaviour where writes to another register can * cause the MIDR value to change. * * Unimplemented registers in the c15 0 0 0 space default to * MIDR. Define MIDR first as this entire space, then CTR, TCMTR * and friends override accordingly. */ { .name = "MIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .resetvalue = cpu->midr, .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, .readfn = midr_read, .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), .type = ARM_CP_OVERRIDE }, /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; ARMCPRegInfo id_v8_midr_cp_reginfo[] = { { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), .readfn = midr_read }, /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_R, .resetvalue = cpu->midr }, { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, .access = PL1_R, .resetvalue = cpu->midr }, { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, REGINFO_SENTINEL }; ARMCPRegInfo id_cp_reginfo[] = { /* These are common to v8 and pre-v8 */ { .name = "CTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, .access = PL0_R, .accessfn = ctr_el0_access, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ { .name = "TCMTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; /* TLBTR is specific to VMSA */ ARMCPRegInfo id_tlbtr_reginfo = { .name = "TLBTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, }; /* MPUIR is specific to PMSA V6+ */ ARMCPRegInfo id_mpuir_reginfo = { .name = "MPUIR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->pmsav7_dregion << 8 }; ARMCPRegInfo crn0_wi_reginfo = { .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }; if (arm_feature(env, ARM_FEATURE_OMAPCP) || arm_feature(env, ARM_FEATURE_STRONGARM)) { ARMCPRegInfo *r; /* Register the blanket "writes ignored" value first to cover the * whole space. Then update the specific ID registers to allow write * access, so that they ignore writes rather than causing them to * UNDEF. */ define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); for (r = id_pre_v8_midr_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { r->access = PL1_RW; } for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { r->access = PL1_RW; } id_mpuir_reginfo.access = PL1_RW; id_tlbtr_reginfo.access = PL1_RW; } if (arm_feature(env, ARM_FEATURE_V8)) { define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); } else { define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); } define_arm_cp_regs(cpu, id_cp_reginfo); if (!arm_feature(env, ARM_FEATURE_PMSA)) { define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); } else if (arm_feature(env, ARM_FEATURE_V7)) { define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); } } if (arm_feature(env, ARM_FEATURE_MPIDR)) { define_arm_cp_regs(cpu, mpidr_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_AUXCR)) { ARMCPRegInfo auxcr_reginfo[] = { { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, auxcr_reginfo); if (arm_feature(env, ARM_FEATURE_V8)) { /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ ARMCPRegInfo hactlr2_reginfo = { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }; define_one_arm_cp_reg(cpu, &hactlr2_reginfo); } } if (arm_feature(env, ARM_FEATURE_CBAR)) { if (arm_feature(env, ARM_FEATURE_AARCH64)) { /* 32 bit view is [31:18] 0...0 [43:32]. */ uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) | extract64(cpu->reset_cbar, 32, 12); ARMCPRegInfo cbar_reginfo[] = { { .name = "CBAR", .type = ARM_CP_CONST, .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, .access = PL1_R, .resetvalue = cpu->reset_cbar }, { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_CONST, .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, .access = PL1_R, .resetvalue = cbar32 }, REGINFO_SENTINEL }; /* We don't implement a r/w 64 bit CBAR currently */ assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); define_arm_cp_regs(cpu, cbar_reginfo); } else { ARMCPRegInfo cbar = { .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address) }; if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { cbar.access = PL1_R; cbar.fieldoffset = 0; cbar.type = ARM_CP_CONST; } define_one_arm_cp_reg(cpu, &cbar); } } if (arm_feature(env, ARM_FEATURE_VBAR)) { ARMCPRegInfo vbar_cp_reginfo[] = { { .name = "VBAR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .writefn = vbar_write, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), offsetof(CPUARMState, cp15.vbar_ns) }, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, vbar_cp_reginfo); } /* Generic registers whose values depend on the implementation */ { ARMCPRegInfo sctlr = { .name = "SCTLR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, .access = PL1_RW, .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), offsetof(CPUARMState, cp15.sctlr_ns) }, .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, .raw_writefn = raw_write, }; if (arm_feature(env, ARM_FEATURE_XSCALE)) { /* Normally we would always end the TB on an SCTLR write, but Linux * arch/arm/mach-pxa/sleep.S expects two instructions following * an MMU enable to execute from cache. Imitate this behaviour. */ sctlr.type |= ARM_CP_SUPPRESS_TB_END; } define_one_arm_cp_reg(cpu, &sctlr); } if (cpu_isar_feature(aa64_lor, cpu)) { /* * A trivial implementation of ARMv8.1-LOR leaves all of these * registers fixed at 0, which indicates that there are zero * supported Limited Ordering regions. */ static const ARMCPRegInfo lor_reginfo[] = { { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, .access = PL1_RW, .accessfn = access_lor_other, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, .access = PL1_R, .accessfn = access_lorid, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, lor_reginfo); } if (cpu_isar_feature(aa64_sve, cpu)) { define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); if (arm_feature(env, ARM_FEATURE_EL2)) { define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); } else { define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); } if (arm_feature(env, ARM_FEATURE_EL3)) { define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); } } } void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) { CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_AARCH64)) { gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, aarch64_fpu_gdb_set_reg, 34, "aarch64-fpu.xml", 0); } else if (arm_feature(env, ARM_FEATURE_NEON)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 51, "arm-neon.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP3)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 35, "arm-vfp3.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP)) { gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 19, "arm-vfp.xml", 0); } gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, arm_gen_dynamic_xml(cs), "system-registers.xml", 0); } /* Sort alphabetically by type name, except for "any". */ static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { return 1; } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { return -1; } else { return strcmp(name_a, name_b); } } static void arm_cpu_list_entry(gpointer data, gpointer user_data) { ObjectClass *oc = data; CPUListState *s = user_data; const char *typename; char *name; typename = object_class_get_name(oc); name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); (*s->cpu_fprintf)(s->file, " %s\n", name); g_free(name); } void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) { CPUListState s = { .file = f, .cpu_fprintf = cpu_fprintf, }; GSList *list; list = object_class_get_list(TYPE_ARM_CPU, false); list = g_slist_sort(list, arm_cpu_list_compare); (*cpu_fprintf)(f, "Available CPUs:\n"); g_slist_foreach(list, arm_cpu_list_entry, &s); g_slist_free(list); } static void arm_cpu_add_definition(gpointer data, gpointer user_data) { ObjectClass *oc = data; CpuDefinitionInfoList **cpu_list = user_data; CpuDefinitionInfoList *entry; CpuDefinitionInfo *info; const char *typename; typename = object_class_get_name(oc); info = g_malloc0(sizeof(*info)); info->name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); info->q_typename = g_strdup(typename); entry = g_malloc0(sizeof(*entry)); entry->value = info; entry->next = *cpu_list; *cpu_list = entry; } CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) { CpuDefinitionInfoList *cpu_list = NULL; GSList *list; list = object_class_get_list(TYPE_ARM_CPU, false); g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); g_slist_free(list); return cpu_list; } static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque, int state, int secstate, int crm, int opc1, int opc2, const char *name) { /* Private utility function for define_one_arm_cp_reg_with_opaque(): * add a single reginfo struct to the hash table. */ uint32_t *key = g_new(uint32_t, 1); ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; r2->name = g_strdup(name); /* Reset the secure state to the specific incoming state. This is * necessary as the register may have been defined with both states. */ r2->secure = secstate; if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { /* Register is banked (using both entries in array). * Overwriting fieldoffset as the array is only used to define * banked registers but later only fieldoffset is used. */ r2->fieldoffset = r->bank_fieldoffsets[ns]; } if (state == ARM_CP_STATE_AA32) { if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { /* If the register is banked then we don't need to migrate or * reset the 32-bit instance in certain cases: * * 1) If the register has both 32-bit and 64-bit instances then we * can count on the 64-bit instance taking care of the * non-secure bank. * 2) If ARMv8 is enabled then we can count on a 64-bit version * taking care of the secure bank. This requires that separate * 32 and 64-bit definitions are provided. */ if ((r->state == ARM_CP_STATE_BOTH && ns) || (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { r2->type |= ARM_CP_ALIAS; } } else if ((secstate != r->secure) && !ns) { /* The register is not banked so we only want to allow migration of * the non-secure instance. */ r2->type |= ARM_CP_ALIAS; } if (r->state == ARM_CP_STATE_BOTH) { /* We assume it is a cp15 register if the .cp field is left unset. */ if (r2->cp == 0) { r2->cp = 15; } #ifdef HOST_WORDS_BIGENDIAN if (r2->fieldoffset) { r2->fieldoffset += sizeof(uint32_t); } #endif } } if (state == ARM_CP_STATE_AA64) { /* To allow abbreviation of ARMCPRegInfo * definitions, we treat cp == 0 as equivalent to * the value for "standard guest-visible sysreg". * STATE_BOTH definitions are also always "standard * sysreg" in their AArch64 view (the .cp value may * be non-zero for the benefit of the AArch32 view). */ if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { r2->cp = CP_REG_ARM64_SYSREG_CP; } *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, r2->opc0, opc1, opc2); } else { *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); } if (opaque) { r2->opaque = opaque; } /* reginfo passed to helpers is correct for the actual access, * and is never ARM_CP_STATE_BOTH: */ r2->state = state; /* Make sure reginfo passed to helpers for wildcarded regs * has the correct crm/opc1/opc2 for this reg, not CP_ANY: */ r2->crm = crm; r2->opc1 = opc1; r2->opc2 = opc2; /* By convention, for wildcarded registers only the first * entry is used for migration; the others are marked as * ALIAS so we don't try to transfer the register * multiple times. Special registers (ie NOP/WFI) are * never migratable and not even raw-accessible. */ if ((r->type & ARM_CP_SPECIAL)) { r2->type |= ARM_CP_NO_RAW; } if (((r->crm == CP_ANY) && crm != 0) || ((r->opc1 == CP_ANY) && opc1 != 0) || ((r->opc2 == CP_ANY) && opc2 != 0)) { r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; } /* Check that raw accesses are either forbidden or handled. Note that * we can't assert this earlier because the setup of fieldoffset for * banked registers has to be done first. */ if (!(r2->type & ARM_CP_NO_RAW)) { assert(!raw_accessors_invalid(r2)); } /* Overriding of an existing definition must be explicitly * requested. */ if (!(r->type & ARM_CP_OVERRIDE)) { ARMCPRegInfo *oldreg; oldreg = g_hash_table_lookup(cpu->cp_regs, key); if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { fprintf(stderr, "Register redefined: cp=%d %d bit " "crn=%d crm=%d opc1=%d opc2=%d, " "was %s, now %s\n", r2->cp, 32 + 32 * is64, r2->crn, r2->crm, r2->opc1, r2->opc2, oldreg->name, r2->name); g_assert_not_reached(); } } g_hash_table_insert(cpu->cp_regs, key, r2); } void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque) { /* Define implementations of coprocessor registers. * We store these in a hashtable because typically * there are less than 150 registers in a space which * is 16*16*16*8*8 = 262144 in size. * Wildcarding is supported for the crm, opc1 and opc2 fields. * If a register is defined twice then the second definition is * used, so this can be used to define some generic registers and * then override them with implementation specific variations. * At least one of the original and the second definition should * include ARM_CP_OVERRIDE in its type bits -- this is just a guard * against accidental use. * * The state field defines whether the register is to be * visible in the AArch32 or AArch64 execution state. If the * state is set to ARM_CP_STATE_BOTH then we synthesise a * reginfo structure for the AArch32 view, which sees the lower * 32 bits of the 64 bit register. * * Only registers visible in AArch64 may set r->opc0; opc0 cannot * be wildcarded. AArch64 registers are always considered to be 64 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of * the register, if any. */ int crm, opc1, opc2, state; int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; /* 64 bit registers have only CRm and Opc1 fields */ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); /* op0 only exists in the AArch64 encodings */ assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 * encodes a minimum access level for the register. We roll this * runtime check into our general permission check code, so check * here that the reginfo's specified permissions are strict enough * to encompass the generic architectural permission check. */ if (r->state != ARM_CP_STATE_AA32) { int mask = 0; switch (r->opc1) { case 0: case 1: case 2: /* min_EL EL1 */ mask = PL1_RW; break; case 3: /* min_EL EL0 */ mask = PL0_RW; break; case 4: /* min_EL EL2 */ mask = PL2_RW; break; case 5: /* unallocated encoding, so not possible */ assert(false); break; case 6: /* min_EL EL3 */ mask = PL3_RW; break; case 7: /* min_EL EL1, secure mode only (we don't check the latter) */ mask = PL1_RW; break; default: /* broken reginfo with out-of-range opc1 */ assert(false); break; } /* assert our permissions are not too lax (stricter is fine) */ assert((r->access & ~mask) == 0); } /* Check that the register definition has enough info to handle * reads and writes if they are permitted. */ if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { if (r->access & PL3_R) { assert((r->fieldoffset || (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || r->readfn); } if (r->access & PL3_W) { assert((r->fieldoffset || (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || r->writefn); } } /* Bad type field probably means missing sentinel at end of reg list */ assert(cptype_valid(r->type)); for (crm = crmmin; crm <= crmmax; crm++) { for (opc1 = opc1min; opc1 <= opc1max; opc1++) { for (opc2 = opc2min; opc2 <= opc2max; opc2++) { for (state = ARM_CP_STATE_AA32; state <= ARM_CP_STATE_AA64; state++) { if (r->state != state && r->state != ARM_CP_STATE_BOTH) { continue; } if (state == ARM_CP_STATE_AA32) { /* Under AArch32 CP registers can be common * (same for secure and non-secure world) or banked. */ char *name; switch (r->secure) { case ARM_CP_SECSTATE_S: case ARM_CP_SECSTATE_NS: add_cpreg_to_hashtable(cpu, r, opaque, state, r->secure, crm, opc1, opc2, r->name); break; default: name = g_strdup_printf("%s_S", r->name); add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_S, crm, opc1, opc2, name); g_free(name); add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, crm, opc1, opc2, r->name); break; } } else { /* AArch64 registers get mapped to non-secure instance * of AArch32 */ add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, crm, opc1, opc2, r->name); } } } } } } void define_arm_cp_regs_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *regs, void *opaque) { /* Define a whole list of registers */ const ARMCPRegInfo *r; for (r = regs; r->type != ARM_CP_SENTINEL; r++) { define_one_arm_cp_reg_with_opaque(cpu, r, opaque); } } const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) { return g_hash_table_lookup(cpregs, &encoded_cp); } void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Helper coprocessor write function for write-ignore registers */ } uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) { /* Helper coprocessor write function for read-as-zero registers */ return 0; } void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) { /* Helper coprocessor reset function for do-nothing-on-reset registers */ } static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) { /* Return true if it is not valid for us to switch to * this CPU mode (ie all the UNPREDICTABLE cases in * the ARM ARM CPSRWriteByInstr pseudocode). */ /* Changes to or from Hyp via MSR and CPS are illegal. */ if (write_type == CPSRWriteByInstr && ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || mode == ARM_CPU_MODE_HYP)) { return 1; } switch (mode) { case ARM_CPU_MODE_USR: return 0; case ARM_CPU_MODE_SYS: case ARM_CPU_MODE_SVC: case ARM_CPU_MODE_ABT: case ARM_CPU_MODE_UND: case ARM_CPU_MODE_IRQ: case ARM_CPU_MODE_FIQ: /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) */ /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR * and CPS are treated as illegal mode changes. */ if (write_type == CPSRWriteByInstr && (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && (arm_hcr_el2_eff(env) & HCR_TGE)) { return 1; } return 0; case ARM_CPU_MODE_HYP: return !arm_feature(env, ARM_FEATURE_EL2) || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); case ARM_CPU_MODE_MON: return arm_current_el(env) < 3; default: return 1; } } uint32_t cpsr_read(CPUARMState *env) { int ZF; ZF = (env->ZF == 0); return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | ((env->condexec_bits & 0xfc) << 8) | (env->GE << 16) | (env->daif & CPSR_AIF); } void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, CPSRWriteType write_type) { uint32_t changed_daif; if (mask & CPSR_NZCV) { env->ZF = (~val) & CPSR_Z; env->NF = val; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; } if (mask & CPSR_Q) env->QF = ((val & CPSR_Q) != 0); if (mask & CPSR_T) env->thumb = ((val & CPSR_T) != 0); if (mask & CPSR_IT_0_1) { env->condexec_bits &= ~3; env->condexec_bits |= (val >> 25) & 3; } if (mask & CPSR_IT_2_7) { env->condexec_bits &= 3; env->condexec_bits |= (val >> 8) & 0xfc; } if (mask & CPSR_GE) { env->GE = (val >> 16) & 0xf; } /* In a V7 implementation that includes the security extensions but does * not include Virtualization Extensions the SCR.FW and SCR.AW bits control * whether non-secure software is allowed to change the CPSR_F and CPSR_A * bits respectively. * * In a V8 implementation, it is permitted for privileged software to * change the CPSR A/F bits regardless of the SCR.AW/FW bits. */ if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && arm_feature(env, ARM_FEATURE_EL3) && !arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure(env)) { changed_daif = (env->daif ^ val) & mask; if (changed_daif & CPSR_A) { /* Check to see if we are allowed to change the masking of async * abort exceptions from a non-secure state. */ if (!(env->cp15.scr_el3 & SCR_AW)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to switch CPSR_A flag from " "non-secure world with SCR.AW bit clear\n"); mask &= ~CPSR_A; } } if (changed_daif & CPSR_F) { /* Check to see if we are allowed to change the masking of FIQ * exceptions from a non-secure state. */ if (!(env->cp15.scr_el3 & SCR_FW)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to switch CPSR_F flag from " "non-secure world with SCR.FW bit clear\n"); mask &= ~CPSR_F; } /* Check whether non-maskable FIQ (NMFI) support is enabled. * If this bit is set software is not allowed to mask * FIQs, but is allowed to set CPSR_F to 0. */ if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && (val & CPSR_F)) { qemu_log_mask(LOG_GUEST_ERROR, "Ignoring attempt to enable CPSR_F flag " "(non-maskable FIQ [NMFI] support enabled)\n"); mask &= ~CPSR_F; } } } env->daif &= ~(CPSR_AIF & mask); env->daif |= val & CPSR_AIF & mask; if (write_type != CPSRWriteRaw && ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { /* Note that we can only get here in USR mode if this is a * gdb stub write; for this case we follow the architectural * behaviour for guest writes in USR mode of ignoring an attempt * to switch mode. (Those are caught by translate.c for writes * triggered by guest instructions.) */ mask &= ~CPSR_M; } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in * v7, and has defined behaviour in v8: * + leave CPSR.M untouched * + allow changes to the other CPSR fields * + set PSTATE.IL * For user changes via the GDB stub, we don't set PSTATE.IL, * as this would be unnecessarily harsh for a user error. */ mask &= ~CPSR_M; if (write_type != CPSRWriteByGDBStub && arm_feature(env, ARM_FEATURE_V8)) { mask |= CPSR_IL; val |= CPSR_IL; } qemu_log_mask(LOG_GUEST_ERROR, "Illegal AArch32 mode switch attempt from %s to %s\n", aarch32_mode_name(env->uncached_cpsr), aarch32_mode_name(val)); } else { qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", write_type == CPSRWriteExceptionReturn ? "Exception return from AArch32" : "AArch32 mode switch from", aarch32_mode_name(env->uncached_cpsr), aarch32_mode_name(val), env->regs[15]); switch_mode(env, val & CPSR_M); } } mask &= ~CACHED_CPSR_BITS; env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); } /* Sign/zero extend */ uint32_t HELPER(sxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(int8_t)x; res |= (uint32_t)(int8_t)(x >> 16) << 16; return res; } uint32_t HELPER(uxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(uint8_t)x; res |= (uint32_t)(uint8_t)(x >> 16) << 16; return res; } int32_t HELPER(sdiv)(int32_t num, int32_t den) { if (den == 0) return 0; if (num == INT_MIN && den == -1) return INT_MIN; return num / den; } uint32_t HELPER(udiv)(uint32_t num, uint32_t den) { if (den == 0) return 0; return num / den; } uint32_t HELPER(rbit)(uint32_t x) { return revbit32(x); } #if defined(CONFIG_USER_ONLY) /* These should probably raise undefined insn exceptions. */ void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) { ARMCPU *cpu = arm_env_get_cpu(env); cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); } uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { ARMCPU *cpu = arm_env_get_cpu(env); cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); return 0; } void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) { /* translate.c should never generate calls here in user-only mode */ g_assert_not_reached(); } void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) { /* translate.c should never generate calls here in user-only mode */ g_assert_not_reached(); } uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) { /* The TT instructions can be used by unprivileged code, but in * user-only emulation we don't have the MPU. * Luckily since we know we are NonSecure unprivileged (and that in * turn means that the A flag wasn't specified), all the bits in the * register must be zero: * IREGION: 0 because IRVALID is 0 * IRVALID: 0 because NS * S: 0 because NS * NSRW: 0 because NS * NSR: 0 because NS * RW: 0 because unpriv and A flag not set * R: 0 because unpriv and A flag not set * SRVALID: 0 because NS * MRVALID: 0 because unpriv and A flag not set * SREGION: 0 becaus SRVALID is 0 * MREGION: 0 because MRVALID is 0 */ return 0; } static void switch_mode(CPUARMState *env, int mode) { ARMCPU *cpu = arm_env_get_cpu(env); if (mode != ARM_CPU_MODE_USR) { cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); } } uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, uint32_t cur_el, bool secure) { return 1; } void aarch64_sync_64_to_32(CPUARMState *env) { g_assert_not_reached(); } #else static void switch_mode(CPUARMState *env, int mode) { int old_mode; int i; old_mode = env->uncached_cpsr & CPSR_M; if (mode == old_mode) return; if (old_mode == ARM_CPU_MODE_FIQ) { memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); } else if (mode == ARM_CPU_MODE_FIQ) { memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); } i = bank_number(old_mode); env->banked_r13[i] = env->regs[13]; env->banked_spsr[i] = env->spsr; i = bank_number(mode); env->regs[13] = env->banked_r13[i]; env->spsr = env->banked_spsr[i]; env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; env->regs[14] = env->banked_r14[r14_bank_number(mode)]; } /* Physical Interrupt Target EL Lookup Table * * [ From ARM ARM section G1.13.4 (Table G1-15) ] * * The below multi-dimensional table is used for looking up the target * exception level given numerous condition criteria. Specifically, the * target EL is based on SCR and HCR routing controls as well as the * currently executing EL and secure state. * * Dimensions: * target_el_table[2][2][2][2][2][4] * | | | | | +--- Current EL * | | | | +------ Non-secure(0)/Secure(1) * | | | +--------- HCR mask override * | | +------------ SCR exec state control * | +--------------- SCR mask override * +------------------ 32-bit(0)/64-bit(1) EL3 * * The table values are as such: * 0-3 = EL0-EL3 * -1 = Cannot occur * * The ARM ARM target EL table includes entries indicating that an "exception * is not taken". The two cases where this is applicable are: * 1) An exception is taken from EL3 but the SCR does not have the exception * routed to EL3. * 2) An exception is taken from EL2 but the HCR does not have the exception * routed to EL2. * In these two cases, the below table contain a target of EL1. This value is * returned as it is expected that the consumer of the table data will check * for "target EL >= current EL" to ensure the exception is not taken. * * SCR HCR * 64 EA AMO From * BIT IRQ IMO Non-secure Secure * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 */ static const int8_t target_el_table[2][2][2][2][2][4] = { {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, }; /* * Determine the target EL for physical exceptions */ uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, uint32_t cur_el, bool secure) { CPUARMState *env = cs->env_ptr; bool rw; bool scr; bool hcr; int target_el; /* Is the highest EL AArch64? */ bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); uint64_t hcr_el2; if (arm_feature(env, ARM_FEATURE_EL3)) { rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); } else { /* Either EL2 is the highest EL (and so the EL2 register width * is given by is64); or there is no EL2 or EL3, in which case * the value of 'rw' does not affect the table lookup anyway. */ rw = is64; } hcr_el2 = arm_hcr_el2_eff(env); switch (excp_idx) { case EXCP_IRQ: scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); hcr = hcr_el2 & HCR_IMO; break; case EXCP_FIQ: scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); hcr = hcr_el2 & HCR_FMO; break; default: scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); hcr = hcr_el2 & HCR_AMO; break; }; /* Perform a table-lookup for the target EL given the current state */ target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; assert(target_el > 0); return target_el; } static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, ARMMMUIdx mmu_idx, bool ignfault) { CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; MemTxAttrs attrs = {}; MemTxResult txres; target_ulong page_size; hwaddr physaddr; int prot; ARMMMUFaultInfo fi = {}; bool secure = mmu_idx & ARM_MMU_IDX_M_S; int exc; bool exc_secure; if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { /* MPU/SAU lookup failed */ if (fi.type == ARMFault_QEMU_SFault) { qemu_log_mask(CPU_LOG_INT, "...SecureFault with SFSR.AUVIOL during stacking\n"); env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; env->v7m.sfar = addr; exc = ARMV7M_EXCP_SECURE; exc_secure = false; } else { qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; exc = ARMV7M_EXCP_MEM; exc_secure = secure; } goto pend_fault; } address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, attrs, &txres); if (txres != MEMTX_OK) { /* BusFault trying to write the data */ qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; exc = ARMV7M_EXCP_BUS; exc_secure = false; goto pend_fault; } return true; pend_fault: /* By pending the exception at this point we are making * the IMPDEF choice "overridden exceptions pended" (see the * MergeExcInfo() pseudocode). The other choice would be to not * pend them now and then make a choice about which to throw away * later if we have two derived exceptions. * The only case when we must not pend the exception but instead * throw it away is if we are doing the push of the callee registers * and we've already generated a derived exception. Even in this * case we will still update the fault status registers. */ if (!ignfault) { armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); } return false; } static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, ARMMMUIdx mmu_idx) { CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; MemTxAttrs attrs = {}; MemTxResult txres; target_ulong page_size; hwaddr physaddr; int prot; ARMMMUFaultInfo fi = {}; bool secure = mmu_idx & ARM_MMU_IDX_M_S; int exc; bool exc_secure; uint32_t value; if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { /* MPU/SAU lookup failed */ if (fi.type == ARMFault_QEMU_SFault) { qemu_log_mask(CPU_LOG_INT, "...SecureFault with SFSR.AUVIOL during unstack\n"); env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; env->v7m.sfar = addr; exc = ARMV7M_EXCP_SECURE; exc_secure = false; } else { qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MUNSTKERR\n"); env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; exc = ARMV7M_EXCP_MEM; exc_secure = secure; } goto pend_fault; } value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, attrs, &txres); if (txres != MEMTX_OK) { /* BusFault trying to read the data */ qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; exc = ARMV7M_EXCP_BUS; exc_secure = false; goto pend_fault; } *dest = value; return true; pend_fault: /* By pending the exception at this point we are making * the IMPDEF choice "overridden exceptions pended" (see the * MergeExcInfo() pseudocode). The other choice would be to not * pend them now and then make a choice about which to throw away * later if we have two derived exceptions. */ armv7m_nvic_set_pending(env->nvic, exc, exc_secure); return false; } /* Write to v7M CONTROL.SPSEL bit for the specified security bank. * This may change the current stack pointer between Main and Process * stack pointers if it is done for the CONTROL register for the current * security state. */ static void write_v7m_control_spsel_for_secstate(CPUARMState *env, bool new_spsel, bool secstate) { bool old_is_psp = v7m_using_psp(env); env->v7m.control[secstate] = deposit32(env->v7m.control[secstate], R_V7M_CONTROL_SPSEL_SHIFT, R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); if (secstate == env->v7m.secure) { bool new_is_psp = v7m_using_psp(env); uint32_t tmp; if (old_is_psp != new_is_psp) { tmp = env->v7m.other_sp; env->v7m.other_sp = env->regs[13]; env->regs[13] = tmp; } } } /* Write to v7M CONTROL.SPSEL bit. This may change the current * stack pointer between Main and Process stack pointers. */ static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) { write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); } void write_v7m_exception(CPUARMState *env, uint32_t new_exc) { /* Write a new value to v7m.exception, thus transitioning into or out * of Handler mode; this may result in a change of active stack pointer. */ bool new_is_psp, old_is_psp = v7m_using_psp(env); uint32_t tmp; env->v7m.exception = new_exc; new_is_psp = v7m_using_psp(env); if (old_is_psp != new_is_psp) { tmp = env->v7m.other_sp; env->v7m.other_sp = env->regs[13]; env->regs[13] = tmp; } } /* Switch M profile security state between NS and S */ static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) { uint32_t new_ss_msp, new_ss_psp; if (env->v7m.secure == new_secstate) { return; } /* All the banked state is accessed by looking at env->v7m.secure * except for the stack pointer; rearrange the SP appropriately. */ new_ss_msp = env->v7m.other_ss_msp; new_ss_psp = env->v7m.other_ss_psp; if (v7m_using_psp(env)) { env->v7m.other_ss_psp = env->regs[13]; env->v7m.other_ss_msp = env->v7m.other_sp; } else { env->v7m.other_ss_msp = env->regs[13]; env->v7m.other_ss_psp = env->v7m.other_sp; } env->v7m.secure = new_secstate; if (v7m_using_psp(env)) { env->regs[13] = new_ss_psp; env->v7m.other_sp = new_ss_msp; } else { env->regs[13] = new_ss_msp; env->v7m.other_sp = new_ss_psp; } } void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) { /* Handle v7M BXNS: * - if the return value is a magic value, do exception return (like BX) * - otherwise bit 0 of the return value is the target security state */ uint32_t min_magic; if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { /* Covers FNC_RETURN and EXC_RETURN magic */ min_magic = FNC_RETURN_MIN_MAGIC; } else { /* EXC_RETURN magic only */ min_magic = EXC_RETURN_MIN_MAGIC; } if (dest >= min_magic) { /* This is an exception return magic value; put it where * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. * Note that if we ever add gen_ss_advance() singlestep support to * M profile this should count as an "instruction execution complete" * event (compare gen_bx_excret_final_code()). */ env->regs[15] = dest & ~1; env->thumb = dest & 1; HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); /* notreached */ } /* translate.c should have made BXNS UNDEF unless we're secure */ assert(env->v7m.secure); switch_v7m_security_state(env, dest & 1); env->thumb = 1; env->regs[15] = dest & ~1; } void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) { /* Handle v7M BLXNS: * - bit 0 of the destination address is the target security state */ /* At this point regs[15] is the address just after the BLXNS */ uint32_t nextinst = env->regs[15] | 1; uint32_t sp = env->regs[13] - 8; uint32_t saved_psr; /* translate.c will have made BLXNS UNDEF unless we're secure */ assert(env->v7m.secure); if (dest & 1) { /* target is Secure, so this is just a normal BLX, * except that the low bit doesn't indicate Thumb/not. */ env->regs[14] = nextinst; env->thumb = 1; env->regs[15] = dest & ~1; return; } /* Target is non-secure: first push a stack frame */ if (!QEMU_IS_ALIGNED(sp, 8)) { qemu_log_mask(LOG_GUEST_ERROR, "BLXNS with misaligned SP is UNPREDICTABLE\n"); } if (sp < v7m_sp_limit(env)) { raise_exception(env, EXCP_STKOF, 0, 1); } saved_psr = env->v7m.exception; if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { saved_psr |= XPSR_SFPA; } /* Note that these stores can throw exceptions on MPU faults */ cpu_stl_data(env, sp, nextinst); cpu_stl_data(env, sp + 4, saved_psr); env->regs[13] = sp; env->regs[14] = 0xfeffffff; if (arm_v7m_is_handler_mode(env)) { /* Write a dummy value to IPSR, to avoid leaking the current secure * exception number to non-secure code. This is guaranteed not * to cause write_v7m_exception() to actually change stacks. */ write_v7m_exception(env, 1); } switch_v7m_security_state(env, 0); env->thumb = 1; env->regs[15] = dest; } static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, bool spsel) { /* Return a pointer to the location where we currently store the * stack pointer for the requested security state and thread mode. * This pointer will become invalid if the CPU state is updated * such that the stack pointers are switched around (eg changing * the SPSEL control bit). * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). * Unlike that pseudocode, we require the caller to pass us in the * SPSEL control bit value; this is because we also use this * function in handling of pushing of the callee-saves registers * part of the v8M stack frame (pseudocode PushCalleeStack()), * and in the tailchain codepath the SPSEL bit comes from the exception * return magic LR value from the previous exception. The pseudocode * opencodes the stack-selection in PushCalleeStack(), but we prefer * to make this utility function generic enough to do the job. */ bool want_psp = threadmode && spsel; if (secure == env->v7m.secure) { if (want_psp == v7m_using_psp(env)) { return &env->regs[13]; } else { return &env->v7m.other_sp; } } else { if (want_psp) { return &env->v7m.other_ss_psp; } else { return &env->v7m.other_ss_msp; } } } static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, uint32_t *pvec) { CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; MemTxResult result; uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; uint32_t vector_entry; MemTxAttrs attrs = {}; ARMMMUIdx mmu_idx; bool exc_secure; mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); /* We don't do a get_phys_addr() here because the rules for vector * loads are special: they always use the default memory map, and * the default memory map permits reads from all addresses. * Since there's no easy way to pass through to pmsav8_mpu_lookup() * that we want this special case which would always say "yes", * we just do the SAU lookup here followed by a direct physical load. */ attrs.secure = targets_secure; attrs.user = false; if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { V8M_SAttributes sattrs = {}; v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); if (sattrs.ns) { attrs.secure = false; } else if (!targets_secure) { /* NS access to S memory */ goto load_fail; } } vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, attrs, &result); if (result != MEMTX_OK) { goto load_fail; } *pvec = vector_entry; return true; load_fail: /* All vector table fetch fails are reported as HardFault, with * HFSR.VECTTBL and .FORCED set. (FORCED is set because * technically the underlying exception is a MemManage or BusFault * that is escalated to HardFault.) This is a terminal exception, * so we will either take the HardFault immediately or else enter * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). */ exc_secure = targets_secure || !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); return false; } static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, bool ignore_faults) { /* For v8M, push the callee-saves register part of the stack frame. * Compare the v8M pseudocode PushCalleeStack(). * In the tailchaining case this may not be the current stack. */ CPUARMState *env = &cpu->env; uint32_t *frame_sp_p; uint32_t frameptr; ARMMMUIdx mmu_idx; bool stacked_ok; uint32_t limit; bool want_psp; if (dotailchain) { bool mode = lr & R_V7M_EXCRET_MODE_MASK; bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || !mode; mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, lr & R_V7M_EXCRET_SPSEL_MASK); want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); if (want_psp) { limit = env->v7m.psplim[M_REG_S]; } else { limit = env->v7m.msplim[M_REG_S]; } } else { mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); frame_sp_p = &env->regs[13]; limit = v7m_sp_limit(env); } frameptr = *frame_sp_p - 0x28; if (frameptr < limit) { /* * Stack limit failure: set SP to the limit value, and generate * STKOF UsageFault. Stack pushes below the limit must not be * performed. It is IMPDEF whether pushes above the limit are * performed; we choose not to. */ qemu_log_mask(CPU_LOG_INT, "...STKOF during callee-saves register stacking\n"); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); *frame_sp_p = limit; return true; } /* Write as much of the stack frame as we can. A write failure may * cause us to pend a derived exception. */ stacked_ok = v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, ignore_faults) && v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, ignore_faults); /* Update SP regardless of whether any of the stack accesses failed. */ *frame_sp_p = frameptr; return !stacked_ok; } static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, bool ignore_stackfaults) { /* Do the "take the exception" parts of exception entry, * but not the pushing of state to the stack. This is * similar to the pseudocode ExceptionTaken() function. */ CPUARMState *env = &cpu->env; uint32_t addr; bool targets_secure; int exc; bool push_failed = false; armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", targets_secure ? "secure" : "nonsecure", exc); if (arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_M_SECURITY) && (lr & R_V7M_EXCRET_S_MASK)) { /* The background code (the owner of the registers in the * exception frame) is Secure. This means it may either already * have or now needs to push callee-saves registers. */ if (targets_secure) { if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { /* We took an exception from Secure to NonSecure * (which means the callee-saved registers got stacked) * and are now tailchaining to a Secure exception. * Clear DCRS so eventual return from this Secure * exception unstacks the callee-saved registers. */ lr &= ~R_V7M_EXCRET_DCRS_MASK; } } else { /* We're going to a non-secure exception; push the * callee-saves registers to the stack now, if they're * not already saved. */ if (lr & R_V7M_EXCRET_DCRS_MASK && !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, ignore_stackfaults); } lr |= R_V7M_EXCRET_DCRS_MASK; } } lr &= ~R_V7M_EXCRET_ES_MASK; if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { lr |= R_V7M_EXCRET_ES_MASK; } lr &= ~R_V7M_EXCRET_SPSEL_MASK; if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { lr |= R_V7M_EXCRET_SPSEL_MASK; } /* Clear registers if necessary to prevent non-secure exception * code being able to see register values from secure code. * Where register values become architecturally UNKNOWN we leave * them with their previous values. */ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { if (!targets_secure) { /* Always clear the caller-saved registers (they have been * pushed to the stack earlier in v7m_push_stack()). * Clear callee-saved registers if the background code is * Secure (in which case these regs were saved in * v7m_push_callee_stack()). */ int i; for (i = 0; i < 13; i++) { /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { env->regs[i] = 0; } } /* Clear EAPSR */ xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); } } } if (push_failed && !ignore_stackfaults) { /* Derived exception on callee-saves register stacking: * we might now want to take a different exception which * targets a different security state, so try again from the top. */ qemu_log_mask(CPU_LOG_INT, "...derived exception on callee-saves register stacking"); v7m_exception_taken(cpu, lr, true, true); return; } if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { /* Vector load failed: derived exception */ qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); v7m_exception_taken(cpu, lr, true, true); return; } /* Now we've done everything that might cause a derived exception * we can go ahead and activate whichever exception we're going to * take (which might now be the derived exception). */ armv7m_nvic_acknowledge_irq(env->nvic); /* Switch to target security state -- must do this before writing SPSEL */ switch_v7m_security_state(env, targets_secure); write_v7m_control_spsel(env, 0); arm_clear_exclusive(env); /* Clear IT bits */ env->condexec_bits = 0; env->regs[14] = lr; env->regs[15] = addr & 0xfffffffe; env->thumb = addr & 1; } static bool v7m_push_stack(ARMCPU *cpu) { /* Do the "set up stack frame" part of exception entry, * similar to pseudocode PushStack(). * Return true if we generate a derived exception (and so * should ignore further stack faults trying to process * that derived exception.) */ bool stacked_ok; CPUARMState *env = &cpu->env; uint32_t xpsr = xpsr_read(env); uint32_t frameptr = env->regs[13]; ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); /* Align stack pointer if the guest wants that */ if ((frameptr & 4) && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { frameptr -= 4; xpsr |= XPSR_SPREALIGN; } frameptr -= 0x20; if (arm_feature(env, ARM_FEATURE_V8)) { uint32_t limit = v7m_sp_limit(env); if (frameptr < limit) { /* * Stack limit failure: set SP to the limit value, and generate * STKOF UsageFault. Stack pushes below the limit must not be * performed. It is IMPDEF whether pushes above the limit are * performed; we choose not to. */ qemu_log_mask(CPU_LOG_INT, "...STKOF during stacking\n"); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); env->regs[13] = limit; return true; } } /* Write as much of the stack frame as we can. If we fail a stack * write this will result in a derived exception being pended * (which may be taken in preference to the one we started with * if it has higher priority). */ stacked_ok = v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); /* Update SP regardless of whether any of the stack accesses failed. */ env->regs[13] = frameptr; return !stacked_ok; } static void do_v7m_exception_exit(ARMCPU *cpu) { CPUARMState *env = &cpu->env; uint32_t excret; uint32_t xpsr; bool ufault = false; bool sfault = false; bool return_to_sp_process; bool return_to_handler; bool rettobase = false; bool exc_secure = false; bool return_to_secure; /* If we're not in Handler mode then jumps to magic exception-exit * addresses don't have magic behaviour. However for the v8M * security extensions the magic secure-function-return has to * work in thread mode too, so to avoid doing an extra check in * the generated code we allow exception-exit magic to also cause the * internal exception and bring us here in thread mode. Correct code * will never try to do this (the following insn fetch will always * fault) so we the overhead of having taken an unnecessary exception * doesn't matter. */ if (!arm_v7m_is_handler_mode(env)) { return; } /* In the spec pseudocode ExceptionReturn() is called directly * from BXWritePC() and gets the full target PC value including * bit zero. In QEMU's implementation we treat it as a normal * jump-to-register (which is then caught later on), and so split * the target value up between env->regs[15] and env->thumb in * gen_bx(). Reconstitute it. */ excret = env->regs[15]; if (env->thumb) { excret |= 1; } qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 " previous exception %d\n", excret, env->v7m.exception); if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", excret); } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { /* EXC_RETURN.ES validation check (R_SMFL). We must do this before * we pick which FAULTMASK to clear. */ if (!env->v7m.secure && ((excret & R_V7M_EXCRET_ES_MASK) || !(excret & R_V7M_EXCRET_DCRS_MASK))) { sfault = 1; /* For all other purposes, treat ES as 0 (R_HXSR) */ excret &= ~R_V7M_EXCRET_ES_MASK; } exc_secure = excret & R_V7M_EXCRET_ES_MASK; } if (env->v7m.exception != ARMV7M_EXCP_NMI) { /* Auto-clear FAULTMASK on return from other than NMI. * If the security extension is implemented then this only * happens if the raw execution priority is >= 0; the * value of the ES bit in the exception return value indicates * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) */ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { env->v7m.faultmask[exc_secure] = 0; } } else { env->v7m.faultmask[M_REG_NS] = 0; } } switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, exc_secure)) { case -1: /* attempt to exit an exception that isn't active */ ufault = true; break; case 0: /* still an irq active now */ break; case 1: /* we returned to base exception level, no nesting. * (In the pseudocode this is written using "NestedActivation != 1" * where we have 'rettobase == false'.) */ rettobase = true; break; default: g_assert_not_reached(); } return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && (excret & R_V7M_EXCRET_S_MASK); if (arm_feature(env, ARM_FEATURE_V8)) { if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); * we choose to take the UsageFault. */ if ((excret & R_V7M_EXCRET_S_MASK) || (excret & R_V7M_EXCRET_ES_MASK) || !(excret & R_V7M_EXCRET_DCRS_MASK)) { ufault = true; } } if (excret & R_V7M_EXCRET_RES0_MASK) { ufault = true; } } else { /* For v7M we only recognize certain combinations of the low bits */ switch (excret & 0xf) { case 1: /* Return to Handler */ break; case 13: /* Return to Thread using Process stack */ case 9: /* Return to Thread using Main stack */ /* We only need to check NONBASETHRDENA for v7M, because in * v8M this bit does not exist (it is RES1). */ if (!rettobase && !(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) { ufault = true; } break; default: ufault = true; } } /* * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in * Handler mode (and will be until we write the new XPSR.Interrupt * field) this does not switch around the current stack pointer. * We must do this before we do any kind of tailchaining, including * for the derived exceptions on integrity check failures, or we will * give the guest an incorrect EXCRET.SPSEL value on exception entry. */ write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); if (sfault) { env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " "stackframe: failed EXC_RETURN.ES validity check\n"); v7m_exception_taken(cpu, excret, true, false); return; } if (ufault) { /* Bad exception return: instead of popping the exception * stack, directly take a usage fault on the current stack. */ env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " "stackframe: failed exception return integrity check\n"); v7m_exception_taken(cpu, excret, true, false); return; } /* * Tailchaining: if there is currently a pending exception that * is high enough priority to preempt execution at the level we're * about to return to, then just directly take that exception now, * avoiding an unstack-and-then-stack. Note that now we have * deactivated the previous exception by calling armv7m_nvic_complete_irq() * our current execution priority is already the execution priority we are * returning to -- none of the state we would unstack or set based on * the EXCRET value affects it. */ if (armv7m_nvic_can_take_pending_exception(env->nvic)) { qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); v7m_exception_taken(cpu, excret, true, false); return; } switch_v7m_security_state(env, return_to_secure); { /* The stack pointer we should be reading the exception frame from * depends on bits in the magic exception return type value (and * for v8M isn't necessarily the stack pointer we will eventually * end up resuming execution with). Get a pointer to the location * in the CPU state struct where the SP we need is currently being * stored; we will use and modify it in place. * We use this limited C variable scope so we don't accidentally * use 'frame_sp_p' after we do something that makes it invalid. */ uint32_t *frame_sp_p = get_v7m_sp_ptr(env, return_to_secure, !return_to_handler, return_to_sp_process); uint32_t frameptr = *frame_sp_p; bool pop_ok = true; ARMMMUIdx mmu_idx; bool return_to_priv = return_to_handler || !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, return_to_priv); if (!QEMU_IS_ALIGNED(frameptr, 8) && arm_feature(env, ARM_FEATURE_V8)) { qemu_log_mask(LOG_GUEST_ERROR, "M profile exception return with non-8-aligned SP " "for destination state is UNPREDICTABLE\n"); } /* Do we need to pop callee-saved registers? */ if (return_to_secure && ((excret & R_V7M_EXCRET_ES_MASK) == 0 || (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { uint32_t expected_sig = 0xfefa125b; uint32_t actual_sig; pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); if (pop_ok && expected_sig != actual_sig) { /* Take a SecureFault on the current stack */ env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " "stackframe: failed exception return integrity " "signature check\n"); v7m_exception_taken(cpu, excret, true, false); return; } pop_ok = pop_ok && v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); frameptr += 0x28; } /* Pop registers */ pop_ok = pop_ok && v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); if (!pop_ok) { /* v7m_stack_read() pended a fault, so take it (as a tail * chained exception on the same stack frame) */ qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); v7m_exception_taken(cpu, excret, true, false); return; } /* Returning from an exception with a PC with bit 0 set is defined * behaviour on v8M (bit 0 is ignored), but for v7M it was specified * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore * the lsbit, and there are several RTOSes out there which incorrectly * assume the r15 in the stack frame should be a Thumb-style "lsbit * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but * complain about the badly behaved guest. */ if (env->regs[15] & 1) { env->regs[15] &= ~1U; if (!arm_feature(env, ARM_FEATURE_V8)) { qemu_log_mask(LOG_GUEST_ERROR, "M profile return from interrupt with misaligned " "PC is UNPREDICTABLE on v7M\n"); } } if (arm_feature(env, ARM_FEATURE_V8)) { /* For v8M we have to check whether the xPSR exception field * matches the EXCRET value for return to handler/thread * before we commit to changing the SP and xPSR. */ bool will_be_handler = (xpsr & XPSR_EXCP) != 0; if (return_to_handler != will_be_handler) { /* Take an INVPC UsageFault on the current stack. * By this point we will have switched to the security state * for the background state, so this UsageFault will target * that state. */ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " "stackframe: failed exception return integrity " "check\n"); v7m_exception_taken(cpu, excret, true, false); return; } } /* Commit to consuming the stack frame */ frameptr += 0x20; /* Undo stack alignment (the SPREALIGN bit indicates that the original * pre-exception SP was not 8-aligned and we added a padding word to * align it, so we undo this by ORing in the bit that increases it * from the current 8-aligned value to the 8-unaligned value. (Adding 4 * would work too but a logical OR is how the pseudocode specifies it.) */ if (xpsr & XPSR_SPREALIGN) { frameptr |= 4; } *frame_sp_p = frameptr; } /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ xpsr_write(env, xpsr, ~XPSR_SPREALIGN); /* The restored xPSR exception field will be zero if we're * resuming in Thread mode. If that doesn't match what the * exception return excret specified then this is a UsageFault. * v7M requires we make this check here; v8M did it earlier. */ if (return_to_handler != arm_v7m_is_handler_mode(env)) { /* Take an INVPC UsageFault by pushing the stack again; * we know we're v7M so this is never a Secure UsageFault. */ bool ignore_stackfaults; assert(!arm_feature(env, ARM_FEATURE_V8)); armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; ignore_stackfaults = v7m_push_stack(cpu); qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " "failed exception return integrity check\n"); v7m_exception_taken(cpu, excret, false, ignore_stackfaults); return; } /* Otherwise, we have a successful exception exit. */ arm_clear_exclusive(env); qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); } static bool do_v7m_function_return(ARMCPU *cpu) { /* v8M security extensions magic function return. * We may either: * (1) throw an exception (longjump) * (2) return true if we successfully handled the function return * (3) return false if we failed a consistency check and have * pended a UsageFault that needs to be taken now * * At this point the magic return value is split between env->regs[15] * and env->thumb. We don't bother to reconstitute it because we don't * need it (all values are handled the same way). */ CPUARMState *env = &cpu->env; uint32_t newpc, newpsr, newpsr_exc; qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); { bool threadmode, spsel; TCGMemOpIdx oi; ARMMMUIdx mmu_idx; uint32_t *frame_sp_p; uint32_t frameptr; /* Pull the return address and IPSR from the Secure stack */ threadmode = !arm_v7m_is_handler_mode(env); spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); frameptr = *frame_sp_p; /* These loads may throw an exception (for MPU faults). We want to * do them as secure, so work out what MMU index that is. */ mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); /* Consistency checks on new IPSR */ newpsr_exc = newpsr & XPSR_EXCP; if (!((env->v7m.exception == 0 && newpsr_exc == 0) || (env->v7m.exception == 1 && newpsr_exc != 0))) { /* Pend the fault and tell our caller to take it */ env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); qemu_log_mask(CPU_LOG_INT, "...taking INVPC UsageFault: " "IPSR consistency check failed\n"); return false; } *frame_sp_p = frameptr + 8; } /* This invalidates frame_sp_p */ switch_v7m_security_state(env, true); env->v7m.exception = newpsr_exc; env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; if (newpsr & XPSR_SFPA) { env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; } xpsr_write(env, 0, XPSR_IT); env->thumb = newpc & 1; env->regs[15] = newpc & ~1; qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); return true; } static void arm_log_exception(int idx) { if (qemu_loglevel_mask(CPU_LOG_INT)) { const char *exc = NULL; static const char * const excnames[] = { [EXCP_UDEF] = "Undefined Instruction", [EXCP_SWI] = "SVC", [EXCP_PREFETCH_ABORT] = "Prefetch Abort", [EXCP_DATA_ABORT] = "Data Abort", [EXCP_IRQ] = "IRQ", [EXCP_FIQ] = "FIQ", [EXCP_BKPT] = "Breakpoint", [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", [EXCP_HVC] = "Hypervisor Call", [EXCP_HYP_TRAP] = "Hypervisor Trap", [EXCP_SMC] = "Secure Monitor Call", [EXCP_VIRQ] = "Virtual IRQ", [EXCP_VFIQ] = "Virtual FIQ", [EXCP_SEMIHOST] = "Semihosting call", [EXCP_NOCP] = "v7M NOCP UsageFault", [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", [EXCP_STKOF] = "v8M STKOF UsageFault", }; if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { exc = excnames[idx]; } if (!exc) { exc = "unknown"; } qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); } } static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, uint32_t addr, uint16_t *insn) { /* Load a 16-bit portion of a v7M instruction, returning true on success, * or false on failure (in which case we will have pended the appropriate * exception). * We need to do the instruction fetch's MPU and SAU checks * like this because there is no MMU index that would allow * doing the load with a single function call. Instead we must * first check that the security attributes permit the load * and that they don't mismatch on the two halves of the instruction, * and then we do the load as a secure load (ie using the security * attributes of the address, not the CPU, as architecturally required). */ CPUState *cs = CPU(cpu); CPUARMState *env = &cpu->env; V8M_SAttributes sattrs = {}; MemTxAttrs attrs = {}; ARMMMUFaultInfo fi = {}; MemTxResult txres; target_ulong page_size; hwaddr physaddr; int prot; v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); if (!sattrs.nsc || sattrs.ns) { /* This must be the second half of the insn, and it straddles a * region boundary with the second half not being S&NSC. */ env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); qemu_log_mask(CPU_LOG_INT, "...really SecureFault with SFSR.INVEP\n"); return false; } if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { /* the MPU lookup failed */ env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); return false; } *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, attrs, &txres); if (txres != MEMTX_OK) { env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); return false; } return true; } static bool v7m_handle_execute_nsc(ARMCPU *cpu) { /* Check whether this attempt to execute code in a Secure & NS-Callable * memory region is for an SG instruction; if so, then emulate the * effect of the SG instruction and return true. Otherwise pend * the correct kind of exception and return false. */ CPUARMState *env = &cpu->env; ARMMMUIdx mmu_idx; uint16_t insn; /* We should never get here unless get_phys_addr_pmsav8() caused * an exception for NS executing in S&NSC memory. */ assert(!env->v7m.secure); assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { return false; } if (!env->thumb) { goto gen_invep; } if (insn != 0xe97f) { /* Not an SG instruction first half (we choose the IMPDEF * early-SG-check option). */ goto gen_invep; } if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { return false; } if (insn != 0xe97f) { /* Not an SG instruction second half (yes, both halves of the SG * insn have the same hex value) */ goto gen_invep; } /* OK, we have confirmed that we really have an SG instruction. * We know we're NS in S memory so don't need to repeat those checks. */ qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 ", executing it\n", env->regs[15]); env->regs[14] &= ~1; switch_v7m_security_state(env, true); xpsr_write(env, 0, XPSR_IT); env->regs[15] += 4; return true; gen_invep: env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); qemu_log_mask(CPU_LOG_INT, "...really SecureFault with SFSR.INVEP\n"); return false; } void arm_v7m_cpu_do_interrupt(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t lr; bool ignore_stackfaults; arm_log_exception(cs->exception_index); /* For exceptions we just mark as pending on the NVIC, and let that handle it. */ switch (cs->exception_index) { case EXCP_UDEF: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; break; case EXCP_NOCP: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; break; case EXCP_INVSTATE: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; break; case EXCP_STKOF: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; break; case EXCP_SWI: /* The PC already points to the next instruction. */ armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); break; case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: /* Note that for M profile we don't have a guest facing FSR, but * the env->exception.fsr will be populated by the code that * raises the fault, in the A profile short-descriptor format. */ switch (env->exception.fsr & 0xf) { case M_FAKE_FSR_NSC_EXEC: /* Exception generated when we try to execute code at an address * which is marked as Secure & Non-Secure Callable and the CPU * is in the Non-Secure state. The only instruction which can * be executed like this is SG (and that only if both halves of * the SG instruction have the same security attributes.) * Everything else must generate an INVEP SecureFault, so we * emulate the SG instruction here. */ if (v7m_handle_execute_nsc(cpu)) { return; } break; case M_FAKE_FSR_SFAULT: /* Various flavours of SecureFault for attempts to execute or * access data in the wrong security state. */ switch (cs->exception_index) { case EXCP_PREFETCH_ABORT: if (env->v7m.secure) { env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; qemu_log_mask(CPU_LOG_INT, "...really SecureFault with SFSR.INVTRAN\n"); } else { env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; qemu_log_mask(CPU_LOG_INT, "...really SecureFault with SFSR.INVEP\n"); } break; case EXCP_DATA_ABORT: /* This must be an NS access to S memory */ env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; qemu_log_mask(CPU_LOG_INT, "...really SecureFault with SFSR.AUVIOL\n"); break; } armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); break; case 0x8: /* External Abort */ switch (cs->exception_index) { case EXCP_PREFETCH_ABORT: env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); break; case EXCP_DATA_ABORT: env->v7m.cfsr[M_REG_NS] |= (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); env->v7m.bfar = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with CFSR.PRECISERR and BFAR 0x%x\n", env->v7m.bfar); break; } armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); break; default: /* All other FSR values are either MPU faults or "can't happen * for M profile" cases. */ switch (cs->exception_index) { case EXCP_PREFETCH_ABORT: env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); break; case EXCP_DATA_ABORT: env->v7m.cfsr[env->v7m.secure] |= (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with CFSR.DACCVIOL and MMFAR 0x%x\n", env->v7m.mmfar[env->v7m.secure]); break; } armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); break; } break; case EXCP_BKPT: if (semihosting_enabled()) { int nr; nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; if (nr == 0xab) { env->regs[15] += 2; qemu_log_mask(CPU_LOG_INT, "...handling as semihosting call 0x%x\n", env->regs[0]); env->regs[0] = do_arm_semihosting(env); return; } } armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); break; case EXCP_IRQ: break; case EXCP_EXCEPTION_EXIT: if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { /* Must be v8M security extension function return */ assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); if (do_v7m_function_return(cpu)) { return; } } else { do_v7m_exception_exit(cpu); return; } break; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); return; /* Never happens. Keep compiler happy. */ } if (arm_feature(env, ARM_FEATURE_V8)) { lr = R_V7M_EXCRET_RES1_MASK | R_V7M_EXCRET_DCRS_MASK | R_V7M_EXCRET_FTYPE_MASK; /* The S bit indicates whether we should return to Secure * or NonSecure (ie our current state). * The ES bit indicates whether we're taking this exception * to Secure or NonSecure (ie our target state). We set it * later, in v7m_exception_taken(). * The SPSEL bit is also set in v7m_exception_taken() for v8M. * This corresponds to the ARM ARM pseudocode for v8M setting * some LR bits in PushStack() and some in ExceptionTaken(); * the distinction matters for the tailchain cases where we * can take an exception without pushing the stack. */ if (env->v7m.secure) { lr |= R_V7M_EXCRET_S_MASK; } } else { lr = R_V7M_EXCRET_RES1_MASK | R_V7M_EXCRET_S_MASK | R_V7M_EXCRET_DCRS_MASK | R_V7M_EXCRET_FTYPE_MASK | R_V7M_EXCRET_ES_MASK; if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { lr |= R_V7M_EXCRET_SPSEL_MASK; } } if (!arm_v7m_is_handler_mode(env)) { lr |= R_V7M_EXCRET_MODE_MASK; } ignore_stackfaults = v7m_push_stack(cpu); v7m_exception_taken(cpu, lr, false, ignore_stackfaults); } /* Function used to synchronize QEMU's AArch64 register set with AArch32 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ void aarch64_sync_32_to_64(CPUARMState *env) { int i; uint32_t mode = env->uncached_cpsr & CPSR_M; /* We can blanket copy R[0:7] to X[0:7] */ for (i = 0; i < 8; i++) { env->xregs[i] = env->regs[i]; } /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. * Otherwise, they come from the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 8; i < 13; i++) { env->xregs[i] = env->usr_regs[i - 8]; } } else { for (i = 8; i < 13; i++) { env->xregs[i] = env->regs[i]; } } /* Registers x13-x23 are the various mode SP and FP registers. Registers * r13 and r14 are only copied if we are in that mode, otherwise we copy * from the mode banked register. */ if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { env->xregs[13] = env->regs[13]; env->xregs[14] = env->regs[14]; } else { env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; /* HYP is an exception in that it is copied from r14 */ if (mode == ARM_CPU_MODE_HYP) { env->xregs[14] = env->regs[14]; } else { env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; } } if (mode == ARM_CPU_MODE_HYP) { env->xregs[15] = env->regs[13]; } else { env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; } if (mode == ARM_CPU_MODE_IRQ) { env->xregs[16] = env->regs[14]; env->xregs[17] = env->regs[13]; } else { env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; } if (mode == ARM_CPU_MODE_SVC) { env->xregs[18] = env->regs[14]; env->xregs[19] = env->regs[13]; } else { env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; } if (mode == ARM_CPU_MODE_ABT) { env->xregs[20] = env->regs[14]; env->xregs[21] = env->regs[13]; } else { env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; } if (mode == ARM_CPU_MODE_UND) { env->xregs[22] = env->regs[14]; env->xregs[23] = env->regs[13]; } else { env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; } /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ * mode, then we can copy from r8-r14. Otherwise, we copy from the * FIQ bank for r8-r14. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 24; i < 31; i++) { env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ } } else { for (i = 24; i < 29; i++) { env->xregs[i] = env->fiq_regs[i - 24]; } env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; } env->pc = env->regs[15]; } /* Function used to synchronize QEMU's AArch32 register set with AArch64 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ void aarch64_sync_64_to_32(CPUARMState *env) { int i; uint32_t mode = env->uncached_cpsr & CPSR_M; /* We can blanket copy X[0:7] to R[0:7] */ for (i = 0; i < 8; i++) { env->regs[i] = env->xregs[i]; } /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. * Otherwise, we copy x8-x12 into the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 8; i < 13; i++) { env->usr_regs[i - 8] = env->xregs[i]; } } else { for (i = 8; i < 13; i++) { env->regs[i] = env->xregs[i]; } } /* Registers r13 & r14 depend on the current mode. * If we are in a given mode, we copy the corresponding x registers to r13 * and r14. Otherwise, we copy the x register to the banked r13 and r14 * for the mode. */ if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { env->regs[13] = env->xregs[13]; env->regs[14] = env->xregs[14]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; /* HYP is an exception in that it does not have its own banked r14 but * shares the USR r14 */ if (mode == ARM_CPU_MODE_HYP) { env->regs[14] = env->xregs[14]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; } } if (mode == ARM_CPU_MODE_HYP) { env->regs[13] = env->xregs[15]; } else { env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; } if (mode == ARM_CPU_MODE_IRQ) { env->regs[14] = env->xregs[16]; env->regs[13] = env->xregs[17]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; } if (mode == ARM_CPU_MODE_SVC) { env->regs[14] = env->xregs[18]; env->regs[13] = env->xregs[19]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; } if (mode == ARM_CPU_MODE_ABT) { env->regs[14] = env->xregs[20]; env->regs[13] = env->xregs[21]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; } if (mode == ARM_CPU_MODE_UND) { env->regs[14] = env->xregs[22]; env->regs[13] = env->xregs[23]; } else { env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; } /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ * mode, then we can copy to r8-r14. Otherwise, we copy to the * FIQ bank for r8-r14. */ if (mode == ARM_CPU_MODE_FIQ) { for (i = 24; i < 31; i++) { env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ } } else { for (i = 24; i < 29; i++) { env->fiq_regs[i - 24] = env->xregs[i]; } env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; } env->regs[15] = env->pc; } static void take_aarch32_exception(CPUARMState *env, int new_mode, uint32_t mask, uint32_t offset, uint32_t newpc) { /* Change the CPU state so as to actually take the exception. */ switch_mode(env, new_mode); /* * For exceptions taken to AArch32 we must clear the SS bit in both * PSTATE and in the old-state value we save to SPSR_, so zero it now. */ env->uncached_cpsr &= ~PSTATE_SS; env->spsr = cpsr_read(env); /* Clear IT bits. */ env->condexec_bits = 0; /* Switch to the new mode, and to the correct instruction set. */ env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; /* Set new mode endianness */ env->uncached_cpsr &= ~CPSR_E; if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { env->uncached_cpsr |= CPSR_E; } /* J and IL must always be cleared for exception entry */ env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); env->daif |= mask; if (new_mode == ARM_CPU_MODE_HYP) { env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; env->elr_el[2] = env->regs[15]; } else { /* * this is a lie, as there was no c1_sys on V4T/V5, but who cares * and we should just guard the thumb mode on V4 */ if (arm_feature(env, ARM_FEATURE_V4T)) { env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; } env->regs[14] = env->regs[15] + offset; } env->regs[15] = newpc; } static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) { /* * Handle exception entry to Hyp mode; this is sufficiently * different to entry to other AArch32 modes that we handle it * separately here. * * The vector table entry used is always the 0x14 Hyp mode entry point, * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. * The offset applied to the preferred return address is always zero * (see DDI0487C.a section G1.12.3). * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. */ uint32_t addr, mask; ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; switch (cs->exception_index) { case EXCP_UDEF: addr = 0x04; break; case EXCP_SWI: addr = 0x14; break; case EXCP_BKPT: /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: env->cp15.ifar_s = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", (uint32_t)env->exception.vaddress); addr = 0x0c; break; case EXCP_DATA_ABORT: env->cp15.dfar_s = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", (uint32_t)env->exception.vaddress); addr = 0x10; break; case EXCP_IRQ: addr = 0x18; break; case EXCP_FIQ: addr = 0x1c; break; case EXCP_HVC: addr = 0x08; break; case EXCP_HYP_TRAP: addr = 0x14; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); } if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { if (!arm_feature(env, ARM_FEATURE_V8)) { /* * QEMU syndrome values are v8-style. v7 has the IL bit * UNK/SBZP for "field not valid" cases, where v8 uses RES1. * If this is a v7 CPU, squash the IL bit in those cases. */ if (cs->exception_index == EXCP_PREFETCH_ABORT || (cs->exception_index == EXCP_DATA_ABORT && !(env->exception.syndrome & ARM_EL_ISV)) || syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { env->exception.syndrome &= ~ARM_EL_IL; } } env->cp15.esr_el[2] = env->exception.syndrome; } if (arm_current_el(env) != 2 && addr < 0x14) { addr = 0x14; } mask = 0; if (!(env->cp15.scr_el3 & SCR_EA)) { mask |= CPSR_A; } if (!(env->cp15.scr_el3 & SCR_IRQ)) { mask |= CPSR_I; } if (!(env->cp15.scr_el3 & SCR_FIQ)) { mask |= CPSR_F; } addr += env->cp15.hvbar; take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); } static void arm_cpu_do_interrupt_aarch32(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t addr; uint32_t mask; int new_mode; uint32_t offset; uint32_t moe; /* If this is a debug exception we must update the DBGDSCR.MOE bits */ switch (syn_get_ec(env->exception.syndrome)) { case EC_BREAKPOINT: case EC_BREAKPOINT_SAME_EL: moe = 1; break; case EC_WATCHPOINT: case EC_WATCHPOINT_SAME_EL: moe = 10; break; case EC_AA32_BKPT: moe = 3; break; case EC_VECTORCATCH: moe = 5; break; default: moe = 0; break; } if (moe) { env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); } if (env->exception.target_el == 2) { arm_cpu_do_interrupt_aarch32_hyp(cs); return; } switch (cs->exception_index) { case EXCP_UDEF: new_mode = ARM_CPU_MODE_UND; addr = 0x04; mask = CPSR_I; if (env->thumb) offset = 2; else offset = 4; break; case EXCP_SWI: new_mode = ARM_CPU_MODE_SVC; addr = 0x08; mask = CPSR_I; /* The PC already points to the next instruction. */ offset = 0; break; case EXCP_BKPT: /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x0c; mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_DATA_ABORT: A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x10; mask = CPSR_A | CPSR_I; offset = 8; break; case EXCP_IRQ: new_mode = ARM_CPU_MODE_IRQ; addr = 0x18; /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; if (env->cp15.scr_el3 & SCR_IRQ) { /* IRQ routed to monitor mode */ new_mode = ARM_CPU_MODE_MON; mask |= CPSR_F; } break; case EXCP_FIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; if (env->cp15.scr_el3 & SCR_FIQ) { /* FIQ routed to monitor mode */ new_mode = ARM_CPU_MODE_MON; } offset = 4; break; case EXCP_VIRQ: new_mode = ARM_CPU_MODE_IRQ; addr = 0x18; /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_VFIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; offset = 4; break; case EXCP_SMC: new_mode = ARM_CPU_MODE_MON; addr = 0x08; mask = CPSR_A | CPSR_I | CPSR_F; offset = 0; break; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); return; /* Never happens. Keep compiler happy. */ } if (new_mode == ARM_CPU_MODE_MON) { addr += env->cp15.mvbar; } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { /* High vectors. When enabled, base address cannot be remapped. */ addr += 0xffff0000; } else { /* ARM v7 architectures provide a vector base address register to remap * the interrupt vector table. * This register is only followed in non-monitor mode, and is banked. * Note: only bits 31:5 are valid. */ addr += A32_BANKED_CURRENT_REG_GET(env, vbar); } if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { env->cp15.scr_el3 &= ~SCR_NS; } take_aarch32_exception(env, new_mode, mask, offset, addr); } /* Handle exception entry to a target EL which is using AArch64 */ static void arm_cpu_do_interrupt_aarch64(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; unsigned int new_el = env->exception.target_el; target_ulong addr = env->cp15.vbar_el[new_el]; unsigned int new_mode = aarch64_pstate_mode(new_el, true); unsigned int cur_el = arm_current_el(env); /* * Note that new_el can never be 0. If cur_el is 0, then * el0_a64 is is_a64(), else el0_a64 is ignored. */ aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); if (cur_el < new_el) { /* Entry vector offset depends on whether the implemented EL * immediately lower than the target level is using AArch32 or AArch64 */ bool is_aa64; switch (new_el) { case 3: is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; break; case 2: is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; break; case 1: is_aa64 = is_a64(env); break; default: g_assert_not_reached(); } if (is_aa64) { addr += 0x400; } else { addr += 0x600; } } else if (pstate_read(env) & PSTATE_SP) { addr += 0x200; } switch (cs->exception_index) { case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: env->cp15.far_el[new_el] = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", env->cp15.far_el[new_el]); /* fall through */ case EXCP_BKPT: case EXCP_UDEF: case EXCP_SWI: case EXCP_HVC: case EXCP_HYP_TRAP: case EXCP_SMC: if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { /* * QEMU internal FP/SIMD syndromes from AArch32 include the * TA and coproc fields which are only exposed if the exception * is taken to AArch32 Hyp mode. Mask them out to get a valid * AArch64 format syndrome. */ env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); } env->cp15.esr_el[new_el] = env->exception.syndrome; break; case EXCP_IRQ: case EXCP_VIRQ: addr += 0x80; break; case EXCP_FIQ: case EXCP_VFIQ: addr += 0x100; break; case EXCP_SEMIHOST: qemu_log_mask(CPU_LOG_INT, "...handling as semihosting call 0x%" PRIx64 "\n", env->xregs[0]); env->xregs[0] = do_arm_semihosting(env); return; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); } if (is_a64(env)) { env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); aarch64_save_sp(env, arm_current_el(env)); env->elr_el[new_el] = env->pc; } else { env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); env->elr_el[new_el] = env->regs[15]; aarch64_sync_32_to_64(env); env->condexec_bits = 0; } qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", env->elr_el[new_el]); pstate_write(env, PSTATE_DAIF | new_mode); env->aarch64 = 1; aarch64_restore_sp(env, new_el); env->pc = addr; qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", new_el, env->pc, pstate_read(env)); } static inline bool check_for_semihosting(CPUState *cs) { /* Check whether this exception is a semihosting call; if so * then handle it and return true; otherwise return false. */ ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; if (is_a64(env)) { if (cs->exception_index == EXCP_SEMIHOST) { /* This is always the 64-bit semihosting exception. * The "is this usermode" and "is semihosting enabled" * checks have been done at translate time. */ qemu_log_mask(CPU_LOG_INT, "...handling as semihosting call 0x%" PRIx64 "\n", env->xregs[0]); env->xregs[0] = do_arm_semihosting(env); return true; } return false; } else { uint32_t imm; /* Only intercept calls from privileged modes, to provide some * semblance of security. */ if (cs->exception_index != EXCP_SEMIHOST && (!semihosting_enabled() || ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { return false; } switch (cs->exception_index) { case EXCP_SEMIHOST: /* This is always a semihosting call; the "is this usermode" * and "is semihosting enabled" checks have been done at * translate time. */ break; case EXCP_SWI: /* Check for semihosting interrupt. */ if (env->thumb) { imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) & 0xff; if (imm == 0xab) { break; } } else { imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) & 0xffffff; if (imm == 0x123456) { break; } } return false; case EXCP_BKPT: /* See if this is a semihosting syscall. */ if (env->thumb) { imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; if (imm == 0xab) { env->regs[15] += 2; break; } } return false; default: return false; } qemu_log_mask(CPU_LOG_INT, "...handling as semihosting call 0x%x\n", env->regs[0]); env->regs[0] = do_arm_semihosting(env); return true; } } /* Handle a CPU exception for A and R profile CPUs. * Do any appropriate logging, handle PSCI calls, and then hand off * to the AArch64-entry or AArch32-entry function depending on the * target exception level's register width. */ void arm_cpu_do_interrupt(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; unsigned int new_el = env->exception.target_el; assert(!arm_feature(env, ARM_FEATURE_M)); arm_log_exception(cs->exception_index); qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), new_el); if (qemu_loglevel_mask(CPU_LOG_INT) && !excp_is_internal(cs->exception_index)) { qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", syn_get_ec(env->exception.syndrome), env->exception.syndrome); } if (arm_is_psci_call(cpu, cs->exception_index)) { arm_handle_psci_call(cpu); qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); return; } /* Semihosting semantics depend on the register width of the * code that caused the exception, not the target exception level, * so must be handled here. */ if (check_for_semihosting(cs)) { return; } /* Hooks may change global state so BQL should be held, also the * BQL needs to be held for any modification of * cs->interrupt_request. */ g_assert(qemu_mutex_iothread_locked()); arm_call_pre_el_change_hook(cpu); assert(!excp_is_internal(cs->exception_index)); if (arm_el_is_aa64(env, new_el)) { arm_cpu_do_interrupt_aarch64(cs); } else { arm_cpu_do_interrupt_aarch32(cs); } arm_call_el_change_hook(cpu); if (!kvm_enabled()) { cs->interrupt_request |= CPU_INTERRUPT_EXITTB; } } /* Return the exception level which controls this address translation regime */ static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_S2NS: case ARMMMUIdx_S1E2: return 2; case ARMMMUIdx_S1E3: return 3; case ARMMMUIdx_S1SE0: return arm_el_is_aa64(env, 3) ? 1 : 3; case ARMMMUIdx_S1SE1: case ARMMMUIdx_S1NSE0: case ARMMMUIdx_S1NSE1: case ARMMMUIdx_MPrivNegPri: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MPriv: case ARMMMUIdx_MUser: case ARMMMUIdx_MSPrivNegPri: case ARMMMUIdx_MSUserNegPri: case ARMMMUIdx_MSPriv: case ARMMMUIdx_MSUser: return 1; default: g_assert_not_reached(); } } /* Return the SCTLR value which controls this address translation regime */ static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) { return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; } /* Return true if the specified stage of address translation is disabled */ static inline bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx) { if (arm_feature(env, ARM_FEATURE_M)) { switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { case R_V7M_MPU_CTRL_ENABLE_MASK: /* Enabled, but not for HardFault and NMI */ return mmu_idx & ARM_MMU_IDX_M_NEGPRI; case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: /* Enabled for all cases */ return false; case 0: default: /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but * we warned about that in armv7m_nvic.c when the guest set it. */ return true; } } if (mmu_idx == ARMMMUIdx_S2NS) { /* HCR.DC means HCR.VM behaves as 1 */ return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; } if (env->cp15.hcr_el2 & HCR_TGE) { /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { return true; } } if ((env->cp15.hcr_el2 & HCR_DC) && (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { /* HCR.DC means SCTLR_EL1.M behaves as 0 */ return true; } return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; } static inline bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx) { return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; } /* Return the TCR controlling this translation regime */ static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_S2NS) { return &env->cp15.vtcr_el2; } return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; } /* Convert a possible stage1+2 MMU index into the appropriate * stage 1 MMU index */ static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); } return mmu_idx; } /* Returns TBI0 value for current regime el */ uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) { TCR *tcr; uint32_t el; /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert * a stage 1+2 mmu index into the appropriate stage 1 mmu index. */ mmu_idx = stage_1_mmu_idx(mmu_idx); tcr = regime_tcr(env, mmu_idx); el = regime_el(env, mmu_idx); if (el > 1) { return extract64(tcr->raw_tcr, 20, 1); } else { return extract64(tcr->raw_tcr, 37, 1); } } /* Returns TBI1 value for current regime el */ uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) { TCR *tcr; uint32_t el; /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert * a stage 1+2 mmu index into the appropriate stage 1 mmu index. */ mmu_idx = stage_1_mmu_idx(mmu_idx); tcr = regime_tcr(env, mmu_idx); el = regime_el(env, mmu_idx); if (el > 1) { return 0; } else { return extract64(tcr->raw_tcr, 38, 1); } } /* Return the TTBR associated with this translation regime */ static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn) { if (mmu_idx == ARMMMUIdx_S2NS) { return env->cp15.vttbr_el2; } if (ttbrn == 0) { return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; } else { return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; } } /* Return true if the translation regime is using LPAE format page tables */ static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { int el = regime_el(env, mmu_idx); if (el == 2 || arm_el_is_aa64(env, el)) { return true; } if (arm_feature(env, ARM_FEATURE_LPAE) && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { return true; } return false; } /* Returns true if the stage 1 translation regime is using LPAE format page * tables. Used when raising alignment exceptions, whose FSR changes depending * on whether the long or short descriptor format is in use. */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) { mmu_idx = stage_1_mmu_idx(mmu_idx); return regime_using_lpae_format(env, mmu_idx); } static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) { switch (mmu_idx) { case ARMMMUIdx_S1SE0: case ARMMMUIdx_S1NSE0: case ARMMMUIdx_MUser: case ARMMMUIdx_MSUser: case ARMMMUIdx_MUserNegPri: case ARMMMUIdx_MSUserNegPri: return true; default: return false; case ARMMMUIdx_S12NSE0: case ARMMMUIdx_S12NSE1: g_assert_not_reached(); } } /* Translate section/page access permissions to page * R/W protection flags * * @env: CPUARMState * @mmu_idx: MMU index indicating required translation regime * @ap: The 3-bit access permissions (AP[2:0]) * @domain_prot: The 2-bit domain access permissions */ static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap, int domain_prot) { bool is_user = regime_is_user(env, mmu_idx); if (domain_prot == 3) { return PAGE_READ | PAGE_WRITE; } switch (ap) { case 0: if (arm_feature(env, ARM_FEATURE_V7)) { return 0; } switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { case SCTLR_S: return is_user ? 0 : PAGE_READ; case SCTLR_R: return PAGE_READ; default: return 0; } case 1: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 2: if (is_user) { return PAGE_READ; } else { return PAGE_READ | PAGE_WRITE; } case 3: return PAGE_READ | PAGE_WRITE; case 4: /* Reserved. */ return 0; case 5: return is_user ? 0 : PAGE_READ; case 6: return PAGE_READ; case 7: if (!arm_feature(env, ARM_FEATURE_V6K)) { return 0; } return PAGE_READ; default: g_assert_not_reached(); } } /* Translate section/page access permissions to page * R/W protection flags. * * @ap: The 2-bit simple AP (AP[2:1]) * @is_user: TRUE if accessing from PL0 */ static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) { switch (ap) { case 0: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 1: return PAGE_READ | PAGE_WRITE; case 2: return is_user ? 0 : PAGE_READ; case 3: return PAGE_READ; default: g_assert_not_reached(); } } static inline int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) { return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); } /* Translate S2 section/page access permissions to protection flags * * @env: CPUARMState * @s2ap: The 2-bit stage2 access permissions (S2AP) * @xn: XN (execute-never) bit */ static int get_S2prot(CPUARMState *env, int s2ap, int xn) { int prot = 0; if (s2ap & 1) { prot |= PAGE_READ; } if (s2ap & 2) { prot |= PAGE_WRITE; } if (!xn) { if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { prot |= PAGE_EXEC; } } return prot; } /* Translate section/page access permissions to protection flags * * @env: CPUARMState * @mmu_idx: MMU index indicating required translation regime * @is_aa64: TRUE if AArch64 * @ap: The 2-bit simple AP (AP[2:1]) * @ns: NS (non-secure) bit * @xn: XN (execute-never) bit * @pxn: PXN (privileged execute-never) bit */ static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, int ap, int ns, int xn, int pxn) { bool is_user = regime_is_user(env, mmu_idx); int prot_rw, user_rw; bool have_wxn; int wxn = 0; assert(mmu_idx != ARMMMUIdx_S2NS); user_rw = simple_ap_to_rw_prot_is_user(ap, true); if (is_user) { prot_rw = user_rw; } else { prot_rw = simple_ap_to_rw_prot_is_user(ap, false); } if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { return prot_rw; } /* TODO have_wxn should be replaced with * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE * compatible processors have EL2, which is required for [U]WXN. */ have_wxn = arm_feature(env, ARM_FEATURE_LPAE); if (have_wxn) { wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; } if (is_aa64) { switch (regime_el(env, mmu_idx)) { case 1: if (!is_user) { xn = pxn || (user_rw & PAGE_WRITE); } break; case 2: case 3: break; } } else if (arm_feature(env, ARM_FEATURE_V7)) { switch (regime_el(env, mmu_idx)) { case 1: case 3: if (is_user) { xn = xn || !(user_rw & PAGE_READ); } else { int uwxn = 0; if (have_wxn) { uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; } xn = xn || !(prot_rw & PAGE_READ) || pxn || (uwxn && (user_rw & PAGE_WRITE)); } break; case 2: break; } } else { xn = wxn = 0; } if (xn || (wxn && (prot_rw & PAGE_WRITE))) { return prot_rw; } return prot_rw | PAGE_EXEC; } static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, uint32_t *table, uint32_t address) { /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ TCR *tcr = regime_tcr(env, mmu_idx); if (address & tcr->mask) { if (tcr->raw_tcr & TTBCR_PD1) { /* Translation table walk disabled for TTBR1 */ return false; } *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; } else { if (tcr->raw_tcr & TTBCR_PD0) { /* Translation table walk disabled for TTBR0 */ return false; } *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; } *table |= (address >> 18) & 0x3ffc; return true; } /* Translate a S1 pagetable walk through S2 if needed. */ static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, hwaddr addr, MemTxAttrs txattrs, ARMMMUFaultInfo *fi) { if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { target_ulong s2size; hwaddr s2pa; int s2prot; int ret; ARMCacheAttrs cacheattrs = {}; ARMCacheAttrs *pcacheattrs = NULL; if (env->cp15.hcr_el2 & HCR_PTW) { /* * PTW means we must fault if this S1 walk touches S2 Device * memory; otherwise we don't care about the attributes and can * save the S2 translation the effort of computing them. */ pcacheattrs = &cacheattrs; } ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, &txattrs, &s2prot, &s2size, fi, pcacheattrs); if (ret) { assert(fi->type != ARMFault_None); fi->s2addr = addr; fi->stage2 = true; fi->s1ptw = true; return ~0; } if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { /* Access was to Device memory: generate Permission fault */ fi->type = ARMFault_Permission; fi->s2addr = addr; fi->stage2 = true; fi->s1ptw = true; return ~0; } addr = s2pa; } return addr; } /* All loads done in the course of a page table walk go through here. */ static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; MemTxAttrs attrs = {}; MemTxResult result = MEMTX_OK; AddressSpace *as; uint32_t data; attrs.secure = is_secure; as = arm_addressspace(cs, attrs); addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); if (fi->s1ptw) { return 0; } if (regime_translation_big_endian(env, mmu_idx)) { data = address_space_ldl_be(as, addr, attrs, &result); } else { data = address_space_ldl_le(as, addr, attrs, &result); } if (result == MEMTX_OK) { return data; } fi->type = ARMFault_SyncExternalOnWalk; fi->ea = arm_extabort_type(result); return 0; } static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; MemTxAttrs attrs = {}; MemTxResult result = MEMTX_OK; AddressSpace *as; uint64_t data; attrs.secure = is_secure; as = arm_addressspace(cs, attrs); addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); if (fi->s1ptw) { return 0; } if (regime_translation_big_endian(env, mmu_idx)) { data = address_space_ldq_be(as, addr, attrs, &result); } else { data = address_space_ldq_le(as, addr, attrs, &result); } if (result == MEMTX_OK) { return data; } fi->type = ARMFault_SyncExternalOnWalk; fi->ea = arm_extabort_type(result); return 0; } static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { CPUState *cs = CPU(arm_env_get_cpu(env)); int level = 1; uint32_t table; uint32_t desc; int type; int ap; int domain = 0; int domain_prot; hwaddr phys_addr; uint32_t dacr; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (!get_level1_table_address(env, mmu_idx, &table, address)) { /* Section translation fault if page walk is disabled by PD0 or PD1 */ fi->type = ARMFault_Translation; goto do_fault; } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } type = (desc & 3); domain = (desc >> 5) & 0x0f; if (regime_el(env, mmu_idx) == 1) { dacr = env->cp15.dacr_ns; } else { dacr = env->cp15.dacr_s; } domain_prot = (dacr >> (domain * 2)) & 3; if (type == 0) { /* Section translation fault. */ fi->type = ARMFault_Translation; goto do_fault; } if (type != 2) { level = 2; } if (domain_prot == 0 || domain_prot == 2) { fi->type = ARMFault_Domain; goto do_fault; } if (type == 2) { /* 1Mb section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); ap = (desc >> 10) & 3; *page_size = 1024 * 1024; } else { /* Lookup l2 entry. */ if (type == 1) { /* Coarse pagetable. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); } else { /* Fine pagetable. */ table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } switch (desc & 3) { case 0: /* Page translation fault. */ fi->type = ARMFault_Translation; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); ap = (desc >> (4 + ((address >> 13) & 6))) & 3; *page_size = 0x10000; break; case 2: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); ap = (desc >> (4 + ((address >> 9) & 6))) & 3; *page_size = 0x1000; break; case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ if (type == 1) { /* ARMv6/XScale extended small page format */ if (arm_feature(env, ARM_FEATURE_XSCALE) || arm_feature(env, ARM_FEATURE_V6)) { phys_addr = (desc & 0xfffff000) | (address & 0xfff); *page_size = 0x1000; } else { /* UNPREDICTABLE in ARMv5; we choose to take a * page translation fault. */ fi->type = ARMFault_Translation; goto do_fault; } } else { phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); *page_size = 0x400; } ap = (desc >> 4) & 3; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } } *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); *prot |= *prot ? PAGE_EXEC : 0; if (!(*prot & (1 << access_type))) { /* Access permission fault. */ fi->type = ARMFault_Permission; goto do_fault; } *phys_ptr = phys_addr; return false; do_fault: fi->domain = domain; fi->level = level; return true; } static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { CPUState *cs = CPU(arm_env_get_cpu(env)); int level = 1; uint32_t table; uint32_t desc; uint32_t xn; uint32_t pxn = 0; int type; int ap; int domain = 0; int domain_prot; hwaddr phys_addr; uint32_t dacr; bool ns; /* Pagetable walk. */ /* Lookup l1 descriptor. */ if (!get_level1_table_address(env, mmu_idx, &table, address)) { /* Section translation fault if page walk is disabled by PD0 or PD1 */ fi->type = ARMFault_Translation; goto do_fault; } desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } type = (desc & 3); if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { /* Section translation fault, or attempt to use the encoding * which is Reserved on implementations without PXN. */ fi->type = ARMFault_Translation; goto do_fault; } if ((type == 1) || !(desc & (1 << 18))) { /* Page or Section. */ domain = (desc >> 5) & 0x0f; } if (regime_el(env, mmu_idx) == 1) { dacr = env->cp15.dacr_ns; } else { dacr = env->cp15.dacr_s; } if (type == 1) { level = 2; } domain_prot = (dacr >> (domain * 2)) & 3; if (domain_prot == 0 || domain_prot == 2) { /* Section or Page domain fault */ fi->type = ARMFault_Domain; goto do_fault; } if (type != 1) { if (desc & (1 << 18)) { /* Supersection. */ phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; *page_size = 0x1000000; } else { /* Section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); *page_size = 0x100000; } ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); xn = desc & (1 << 4); pxn = desc & 1; ns = extract32(desc, 19, 1); } else { if (arm_feature(env, ARM_FEATURE_PXN)) { pxn = (desc >> 2) & 1; } ns = extract32(desc, 3, 1); /* Lookup l2 entry. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); switch (desc & 3) { case 0: /* Page translation fault. */ fi->type = ARMFault_Translation; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); xn = desc & (1 << 15); *page_size = 0x10000; break; case 2: case 3: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); xn = desc & 1; *page_size = 0x1000; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } } if (domain_prot == 3) { *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; } else { if (pxn && !regime_is_user(env, mmu_idx)) { xn = 1; } if (xn && access_type == MMU_INST_FETCH) { fi->type = ARMFault_Permission; goto do_fault; } if (arm_feature(env, ARM_FEATURE_V6K) && (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { /* The simplified model uses AP[0] as an access control bit. */ if ((ap & 1) == 0) { /* Access flag fault. */ fi->type = ARMFault_AccessFlag; goto do_fault; } *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); } else { *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); } if (*prot && !xn) { *prot |= PAGE_EXEC; } if (!(*prot & (1 << access_type))) { /* Access permission fault. */ fi->type = ARMFault_Permission; goto do_fault; } } if (ns) { /* The NS bit will (as required by the architecture) have no effect if * the CPU doesn't support TZ or this is a non-secure translation * regime, because the attribute will already be non-secure. */ attrs->secure = false; } *phys_ptr = phys_addr; return false; do_fault: fi->domain = domain; fi->level = level; return true; } /* * check_s2_mmu_setup * @cpu: ARMCPU * @is_aa64: True if the translation regime is in AArch64 state * @startlevel: Suggested starting level * @inputsize: Bitsize of IPAs * @stride: Page-table stride (See the ARM ARM) * * Returns true if the suggested S2 translation parameters are OK and * false otherwise. */ static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, int inputsize, int stride) { const int grainsize = stride + 3; int startsizecheck; /* Negative levels are never allowed. */ if (level < 0) { return false; } startsizecheck = inputsize - ((3 - level) * stride + grainsize); if (startsizecheck < 1 || startsizecheck > stride + 4) { return false; } if (is_aa64) { CPUARMState *env = &cpu->env; unsigned int pamax = arm_pamax(cpu); switch (stride) { case 13: /* 64KB Pages. */ if (level == 0 || (level == 1 && pamax <= 42)) { return false; } break; case 11: /* 16KB Pages. */ if (level == 0 || (level == 1 && pamax <= 40)) { return false; } break; case 9: /* 4KB Pages. */ if (level == 0 && pamax <= 42) { return false; } break; default: g_assert_not_reached(); } /* Inputsize checks. */ if (inputsize > pamax && (arm_el_is_aa64(env, 1) || inputsize > 40)) { /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ return false; } } else { /* AArch32 only supports 4KB pages. Assert on that. */ assert(stride == 9); if (level == 0) { return false; } } return true; } /* Translate from the 4-bit stage 2 representation of * memory attributes (without cache-allocation hints) to * the 8-bit representation of the stage 1 MAIR registers * (which includes allocation hints). * * ref: shared/translation/attrs/S2AttrDecode() * .../S2ConvertAttrsHints() */ static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) { uint8_t hiattr = extract32(s2attrs, 2, 2); uint8_t loattr = extract32(s2attrs, 0, 2); uint8_t hihint = 0, lohint = 0; if (hiattr != 0) { /* normal memory */ if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ hiattr = loattr = 1; /* non-cacheable */ } else { if (hiattr != 1) { /* Write-through or write-back */ hihint = 3; /* RW allocate */ } if (loattr != 1) { /* Write-through or write-back */ lohint = 3; /* RW allocate */ } } } return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; } static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size_ptr, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) { ARMCPU *cpu = arm_env_get_cpu(env); CPUState *cs = CPU(cpu); /* Read an LPAE long-descriptor translation table. */ ARMFaultType fault_type = ARMFault_Translation; uint32_t level; uint32_t epd = 0; int32_t t0sz, t1sz; uint32_t tg; uint64_t ttbr; int ttbr_select; hwaddr descaddr, indexmask, indexmask_grainsize; uint32_t tableattrs; target_ulong page_size; uint32_t attrs; int32_t stride = 9; int32_t addrsize; int inputsize; int32_t tbi = 0; TCR *tcr = regime_tcr(env, mmu_idx); int ap, ns, xn, pxn; uint32_t el = regime_el(env, mmu_idx); bool ttbr1_valid = true; uint64_t descaddrmask; bool aarch64 = arm_el_is_aa64(env, el); bool hpd = false; /* TODO: * This code does not handle the different format TCR for VTCR_EL2. * This code also does not support shareability levels. * Attribute and permission bit handling should also be checked when adding * support for those page table walks. */ if (aarch64) { level = 0; addrsize = 64; if (el > 1) { if (mmu_idx != ARMMMUIdx_S2NS) { tbi = extract64(tcr->raw_tcr, 20, 1); } } else { if (extract64(address, 55, 1)) { tbi = extract64(tcr->raw_tcr, 38, 1); } else { tbi = extract64(tcr->raw_tcr, 37, 1); } } tbi *= 8; /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it * invalid. */ if (el > 1) { ttbr1_valid = false; } } else { level = 1; addrsize = 32; /* There is no TTBR1 for EL2 */ if (el == 2) { ttbr1_valid = false; } } /* Determine whether this address is in the region controlled by * TTBR0 or TTBR1 (or if it is in neither region and should fault). * This is a Non-secure PL0/1 stage 1 translation, so controlled by * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: */ if (aarch64) { /* AArch64 translation. */ t0sz = extract32(tcr->raw_tcr, 0, 6); t0sz = MIN(t0sz, 39); t0sz = MAX(t0sz, 16); } else if (mmu_idx != ARMMMUIdx_S2NS) { /* AArch32 stage 1 translation. */ t0sz = extract32(tcr->raw_tcr, 0, 3); } else { /* AArch32 stage 2 translation. */ bool sext = extract32(tcr->raw_tcr, 4, 1); bool sign = extract32(tcr->raw_tcr, 3, 1); /* Address size is 40-bit for a stage 2 translation, * and t0sz can be negative (from -8 to 7), * so we need to adjust it to use the TTBR selecting logic below. */ addrsize = 40; t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; /* If the sign-extend bit is not the same as t0sz[3], the result * is unpredictable. Flag this as a guest error. */ if (sign != sext) { qemu_log_mask(LOG_GUEST_ERROR, "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); } } t1sz = extract32(tcr->raw_tcr, 16, 6); if (aarch64) { t1sz = MIN(t1sz, 39); t1sz = MAX(t1sz, 16); } if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { /* there is a ttbr0 region and we are in it (high bits all zero) */ ttbr_select = 0; } else if (ttbr1_valid && t1sz && !extract64(~address, addrsize - t1sz, t1sz - tbi)) { /* there is a ttbr1 region and we are in it (high bits all one) */ ttbr_select = 1; } else if (!t0sz) { /* ttbr0 region is "everything not in the ttbr1 region" */ ttbr_select = 0; } else if (!t1sz && ttbr1_valid) { /* ttbr1 region is "everything not in the ttbr0 region" */ ttbr_select = 1; } else { /* in the gap between the two regions, this is a Translation fault */ fault_type = ARMFault_Translation; goto do_fault; } /* Note that QEMU ignores shareability and cacheability attributes, * so we don't need to do anything with the SH, ORGN, IRGN fields * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently * implement any ASID-like capability so we can ignore it (instead * we will always flush the TLB any time the ASID is changed). */ if (ttbr_select == 0) { ttbr = regime_ttbr(env, mmu_idx, 0); if (el < 2) { epd = extract32(tcr->raw_tcr, 7, 1); } inputsize = addrsize - t0sz; tg = extract32(tcr->raw_tcr, 14, 2); if (tg == 1) { /* 64KB pages */ stride = 13; } if (tg == 2) { /* 16KB pages */ stride = 11; } if (aarch64 && el > 1) { hpd = extract64(tcr->raw_tcr, 24, 1); } else { hpd = extract64(tcr->raw_tcr, 41, 1); } if (!aarch64) { /* For aarch32, hpd0 is not enabled without t2e as well. */ hpd &= extract64(tcr->raw_tcr, 6, 1); } } else { /* We should only be here if TTBR1 is valid */ assert(ttbr1_valid); ttbr = regime_ttbr(env, mmu_idx, 1); epd = extract32(tcr->raw_tcr, 23, 1); inputsize = addrsize - t1sz; tg = extract32(tcr->raw_tcr, 30, 2); if (tg == 3) { /* 64KB pages */ stride = 13; } if (tg == 1) { /* 16KB pages */ stride = 11; } hpd = extract64(tcr->raw_tcr, 42, 1); if (!aarch64) { /* For aarch32, hpd1 is not enabled without t2e as well. */ hpd &= extract64(tcr->raw_tcr, 6, 1); } } /* Here we should have set up all the parameters for the translation: * inputsize, ttbr, epd, stride, tbi */ if (epd) { /* Translation table walk disabled => Translation fault on TLB miss * Note: This is always 0 on 64-bit EL2 and EL3. */ goto do_fault; } if (mmu_idx != ARMMMUIdx_S2NS) { /* The starting level depends on the virtual address size (which can * be up to 48 bits) and the translation granule size. It indicates * the number of strides (stride bits at a time) needed to * consume the bits of the input address. In the pseudocode this is: * level = 4 - RoundUp((inputsize - grainsize) / stride) * where their 'inputsize' is our 'inputsize', 'grainsize' is * our 'stride + 3' and 'stride' is our 'stride'. * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: * = 4 - (inputsize - stride - 3 + stride - 1) / stride * = 4 - (inputsize - 4) / stride; */ level = 4 - (inputsize - 4) / stride; } else { /* For stage 2 translations the starting level is specified by the * VTCR_EL2.SL0 field (whose interpretation depends on the page size) */ uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); uint32_t startlevel; bool ok; if (!aarch64 || stride == 9) { /* AArch32 or 4KB pages */ startlevel = 2 - sl0; } else { /* 16KB or 64KB pages */ startlevel = 3 - sl0; } /* Check that the starting level is valid. */ ok = check_s2_mmu_setup(cpu, aarch64, startlevel, inputsize, stride); if (!ok) { fault_type = ARMFault_Translation; goto do_fault; } level = startlevel; } indexmask_grainsize = (1ULL << (stride + 3)) - 1; indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; /* Now we can extract the actual base address from the TTBR */ descaddr = extract64(ttbr, 0, 48); descaddr &= ~indexmask; /* The address field in the descriptor goes up to bit 39 for ARMv7 * but up to bit 47 for ARMv8, but we use the descaddrmask * up to bit 39 for AArch32, because we don't need other bits in that case * to construct next descriptor address (anyway they should be all zeroes). */ descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & ~indexmask_grainsize; /* Secure accesses start with the page table in secure memory and * can be downgraded to non-secure at any step. Non-secure accesses * remain non-secure. We implement this by just ORing in the NSTable/NS * bits at each step. */ tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); for (;;) { uint64_t descriptor; bool nstable; descaddr |= (address >> (stride * (4 - level))) & indexmask; descaddr &= ~7ULL; nstable = extract32(tableattrs, 4, 1); descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); if (fi->type != ARMFault_None) { goto do_fault; } if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { /* Invalid, or the Reserved level 3 encoding */ goto do_fault; } descaddr = descriptor & descaddrmask; if ((descriptor & 2) && (level < 3)) { /* Table entry. The top five bits are attributes which may * propagate down through lower levels of the table (and * which are all arranged so that 0 means "no effect", so * we can gather them up by ORing in the bits at each level). */ tableattrs |= extract64(descriptor, 59, 5); level++; indexmask = indexmask_grainsize; continue; } /* Block entry at level 1 or 2, or page entry at level 3. * These are basically the same thing, although the number * of bits we pull in from the vaddr varies. */ page_size = (1ULL << ((stride * (4 - level)) + 3)); descaddr |= (address & (page_size - 1)); /* Extract attributes from the descriptor */ attrs = extract64(descriptor, 2, 10) | (extract64(descriptor, 52, 12) << 10); if (mmu_idx == ARMMMUIdx_S2NS) { /* Stage 2 table descriptors do not include any attribute fields */ break; } /* Merge in attributes from table descriptors */ attrs |= nstable << 3; /* NS */ if (hpd) { /* HPD disables all the table attributes except NSTable. */ break; } attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 * means "force PL1 access only", which means forcing AP[1] to 0. */ attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ break; } /* Here descaddr is the final physical address, and attributes * are all in attrs. */ fault_type = ARMFault_AccessFlag; if ((attrs & (1 << 8)) == 0) { /* Access flag */ goto do_fault; } ap = extract32(attrs, 4, 2); xn = extract32(attrs, 12, 1); if (mmu_idx == ARMMMUIdx_S2NS) { ns = true; *prot = get_S2prot(env, ap, xn); } else { ns = extract32(attrs, 3, 1); pxn = extract32(attrs, 11, 1); *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); } fault_type = ARMFault_Permission; if (!(*prot & (1 << access_type))) { goto do_fault; } if (ns) { /* The NS bit will (as required by the architecture) have no effect if * the CPU doesn't support TZ or this is a non-secure translation * regime, because the attribute will already be non-secure. */ txattrs->secure = false; } if (cacheattrs != NULL) { if (mmu_idx == ARMMMUIdx_S2NS) { cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); } else { /* Index into MAIR registers for cache attributes */ uint8_t attrindx = extract32(attrs, 0, 3); uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; assert(attrindx <= 7); cacheattrs->attrs = extract64(mair, attrindx * 8, 8); } cacheattrs->shareability = extract32(attrs, 6, 2); } *phys_ptr = descaddr; *page_size_ptr = page_size; return false; do_fault: fi->type = fault_type; fi->level = level; /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); return true; } static inline void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx, int32_t address, int *prot) { if (!arm_feature(env, ARM_FEATURE_M)) { *prot = PAGE_READ | PAGE_WRITE; switch (address) { case 0xF0000000 ... 0xFFFFFFFF: if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ *prot |= PAGE_EXEC; } break; case 0x00000000 ... 0x7FFFFFFF: *prot |= PAGE_EXEC; break; } } else { /* Default system address map for M profile cores. * The architecture specifies which regions are execute-never; * at the MPU level no other checks are defined. */ switch (address) { case 0x00000000 ... 0x1fffffff: /* ROM */ case 0x20000000 ... 0x3fffffff: /* SRAM */ case 0x60000000 ... 0x7fffffff: /* RAM */ case 0x80000000 ... 0x9fffffff: /* RAM */ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; break; case 0x40000000 ... 0x5fffffff: /* Peripheral */ case 0xa0000000 ... 0xbfffffff: /* Device */ case 0xc0000000 ... 0xdfffffff: /* Device */ case 0xe0000000 ... 0xffffffff: /* System */ *prot = PAGE_READ | PAGE_WRITE; break; default: g_assert_not_reached(); } } } static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx, bool is_user) { /* Return true if we should use the default memory map as a * "background" region if there are no hits against any MPU regions. */ CPUARMState *env = &cpu->env; if (is_user) { return false; } if (arm_feature(env, ARM_FEATURE_M)) { return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; } else { return regime_sctlr(env, mmu_idx) & SCTLR_BR; } } static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) { /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ return arm_feature(env, ARM_FEATURE_M) && extract32(address, 20, 12) == 0xe00; } static inline bool m_is_system_region(CPUARMState *env, uint32_t address) { /* True if address is in the M profile system region * 0xe0000000 - 0xffffffff */ return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; } static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { ARMCPU *cpu = arm_env_get_cpu(env); int n; bool is_user = regime_is_user(env, mmu_idx); *phys_ptr = address; *page_size = TARGET_PAGE_SIZE; *prot = 0; if (regime_translation_disabled(env, mmu_idx) || m_is_ppb_region(env, address)) { /* MPU disabled or M profile PPB access: use default memory map. * The other case which uses the default memory map in the * v7M ARM ARM pseudocode is exception vector reads from the vector * table. In QEMU those accesses are done in arm_v7m_load_vector(), * which always does a direct read using address_space_ldl(), rather * than going via this function, so we don't need to check that here. */ get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); } else { /* MPU enabled */ for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { /* region search */ uint32_t base = env->pmsav7.drbar[n]; uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); uint32_t rmask; bool srdis = false; if (!(env->pmsav7.drsr[n] & 0x1)) { continue; } if (!rsize) { qemu_log_mask(LOG_GUEST_ERROR, "DRSR[%d]: Rsize field cannot be 0\n", n); continue; } rsize++; rmask = (1ull << rsize) - 1; if (base & rmask) { qemu_log_mask(LOG_GUEST_ERROR, "DRBAR[%d]: 0x%" PRIx32 " misaligned " "to DRSR region size, mask = 0x%" PRIx32 "\n", n, base, rmask); continue; } if (address < base || address > base + rmask) { /* * Address not in this region. We must check whether the * region covers addresses in the same page as our address. * In that case we must not report a size that covers the * whole page for a subsequent hit against a different MPU * region or the background region, because it would result in * incorrect TLB hits for subsequent accesses to addresses that * are in this MPU region. */ if (ranges_overlap(base, rmask, address & TARGET_PAGE_MASK, TARGET_PAGE_SIZE)) { *page_size = 1; } continue; } /* Region matched */ if (rsize >= 8) { /* no subregions for regions < 256 bytes */ int i, snd; uint32_t srdis_mask; rsize -= 3; /* sub region size (power of 2) */ snd = ((address - base) >> rsize) & 0x7; srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); srdis_mask = srdis ? 0x3 : 0x0; for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { /* This will check in groups of 2, 4 and then 8, whether * the subregion bits are consistent. rsize is incremented * back up to give the region size, considering consistent * adjacent subregions as one region. Stop testing if rsize * is already big enough for an entire QEMU page. */ int snd_rounded = snd & ~(i - 1); uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], snd_rounded + 8, i); if (srdis_mask ^ srdis_multi) { break; } srdis_mask = (srdis_mask << i) | srdis_mask; rsize++; } } if (srdis) { continue; } if (rsize < TARGET_PAGE_BITS) { *page_size = 1 << rsize; } break; } if (n == -1) { /* no hits */ if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { /* background fault */ fi->type = ARMFault_Background; return true; } get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); } else { /* a MPU hit! */ uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); if (m_is_system_region(env, address)) { /* System space is always execute never */ xn = 1; } if (is_user) { /* User mode AP bit decoding */ switch (ap) { case 0: case 1: case 5: break; /* no access */ case 3: *prot |= PAGE_WRITE; /* fall through */ case 2: case 6: *prot |= PAGE_READ | PAGE_EXEC; break; case 7: /* for v7M, same as 6; for R profile a reserved value */ if (arm_feature(env, ARM_FEATURE_M)) { *prot |= PAGE_READ | PAGE_EXEC; break; } /* fall through */ default: qemu_log_mask(LOG_GUEST_ERROR, "DRACR[%d]: Bad value for AP bits: 0x%" PRIx32 "\n", n, ap); } } else { /* Priv. mode AP bits decoding */ switch (ap) { case 0: break; /* no access */ case 1: case 2: case 3: *prot |= PAGE_WRITE; /* fall through */ case 5: case 6: *prot |= PAGE_READ | PAGE_EXEC; break; case 7: /* for v7M, same as 6; for R profile a reserved value */ if (arm_feature(env, ARM_FEATURE_M)) { *prot |= PAGE_READ | PAGE_EXEC; break; } /* fall through */ default: qemu_log_mask(LOG_GUEST_ERROR, "DRACR[%d]: Bad value for AP bits: 0x%" PRIx32 "\n", n, ap); } } /* execute never */ if (xn) { *prot &= ~PAGE_EXEC; } } } fi->type = ARMFault_Permission; fi->level = 1; return !(*prot & (1 << access_type)); } static bool v8m_is_sau_exempt(CPUARMState *env, uint32_t address, MMUAccessType access_type) { /* The architecture specifies that certain address ranges are * exempt from v8M SAU/IDAU checks. */ return (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || (address >= 0xe0000000 && address <= 0xe0002fff) || (address >= 0xe000e000 && address <= 0xe000efff) || (address >= 0xe002e000 && address <= 0xe002efff) || (address >= 0xe0040000 && address <= 0xe0041fff) || (address >= 0xe00ff000 && address <= 0xe00fffff); } static void v8m_security_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, V8M_SAttributes *sattrs) { /* Look up the security attributes for this address. Compare the * pseudocode SecurityCheck() function. * We assume the caller has zero-initialized *sattrs. */ ARMCPU *cpu = arm_env_get_cpu(env); int r; bool idau_exempt = false, idau_ns = true, idau_nsc = true; int idau_region = IREGION_NOTVALID; uint32_t addr_page_base = address & TARGET_PAGE_MASK; uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); if (cpu->idau) { IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, &idau_nsc); } if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { /* 0xf0000000..0xffffffff is always S for insn fetches */ return; } if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { sattrs->ns = !regime_is_secure(env, mmu_idx); return; } if (idau_region != IREGION_NOTVALID) { sattrs->irvalid = true; sattrs->iregion = idau_region; } switch (env->sau.ctrl & 3) { case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ break; case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ sattrs->ns = true; break; default: /* SAU.ENABLE == 1 */ for (r = 0; r < cpu->sau_sregion; r++) { if (env->sau.rlar[r] & 1) { uint32_t base = env->sau.rbar[r] & ~0x1f; uint32_t limit = env->sau.rlar[r] | 0x1f; if (base <= address && limit >= address) { if (base > addr_page_base || limit < addr_page_limit) { sattrs->subpage = true; } if (sattrs->srvalid) { /* If we hit in more than one region then we must report * as Secure, not NS-Callable, with no valid region * number info. */ sattrs->ns = false; sattrs->nsc = false; sattrs->sregion = 0; sattrs->srvalid = false; break; } else { if (env->sau.rlar[r] & 2) { sattrs->nsc = true; } else { sattrs->ns = true; } sattrs->srvalid = true; sattrs->sregion = r; } } else { /* * Address not in this region. We must check whether the * region covers addresses in the same page as our address. * In that case we must not report a size that covers the * whole page for a subsequent hit against a different MPU * region or the background region, because it would result * in incorrect TLB hits for subsequent accesses to * addresses that are in this MPU region. */ if (limit >= base && ranges_overlap(base, limit - base + 1, addr_page_base, TARGET_PAGE_SIZE)) { sattrs->subpage = true; } } } } /* The IDAU will override the SAU lookup results if it specifies * higher security than the SAU does. */ if (!idau_ns) { if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { sattrs->ns = false; sattrs->nsc = idau_nsc; } } break; } } static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, bool *is_subpage, ARMMMUFaultInfo *fi, uint32_t *mregion) { /* Perform a PMSAv8 MPU lookup (without also doing the SAU check * that a full phys-to-virt translation does). * mregion is (if not NULL) set to the region number which matched, * or -1 if no region number is returned (MPU off, address did not * hit a region, address hit in multiple regions). * We set is_subpage to true if the region hit doesn't cover the * entire TARGET_PAGE the address is within. */ ARMCPU *cpu = arm_env_get_cpu(env); bool is_user = regime_is_user(env, mmu_idx); uint32_t secure = regime_is_secure(env, mmu_idx); int n; int matchregion = -1; bool hit = false; uint32_t addr_page_base = address & TARGET_PAGE_MASK; uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); *is_subpage = false; *phys_ptr = address; *prot = 0; if (mregion) { *mregion = -1; } /* Unlike the ARM ARM pseudocode, we don't need to check whether this * was an exception vector read from the vector table (which is always * done using the default system address map), because those accesses * are done in arm_v7m_load_vector(), which always does a direct * read using address_space_ldl(), rather than going via this function. */ if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ hit = true; } else if (m_is_ppb_region(env, address)) { hit = true; } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { hit = true; } else { for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { /* region search */ /* Note that the base address is bits [31:5] from the register * with bits [4:0] all zeroes, but the limit address is bits * [31:5] from the register with bits [4:0] all ones. */ uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; if (!(env->pmsav8.rlar[secure][n] & 0x1)) { /* Region disabled */ continue; } if (address < base || address > limit) { /* * Address not in this region. We must check whether the * region covers addresses in the same page as our address. * In that case we must not report a size that covers the * whole page for a subsequent hit against a different MPU * region or the background region, because it would result in * incorrect TLB hits for subsequent accesses to addresses that * are in this MPU region. */ if (limit >= base && ranges_overlap(base, limit - base + 1, addr_page_base, TARGET_PAGE_SIZE)) { *is_subpage = true; } continue; } if (base > addr_page_base || limit < addr_page_limit) { *is_subpage = true; } if (hit) { /* Multiple regions match -- always a failure (unlike * PMSAv7 where highest-numbered-region wins) */ fi->type = ARMFault_Permission; fi->level = 1; return true; } matchregion = n; hit = true; } } if (!hit) { /* background fault */ fi->type = ARMFault_Background; return true; } if (matchregion == -1) { /* hit using the background region */ get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); } else { uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); if (m_is_system_region(env, address)) { /* System space is always execute never */ xn = 1; } *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); if (*prot && !xn) { *prot |= PAGE_EXEC; } /* We don't need to look the attribute up in the MAIR0/MAIR1 * registers because that only tells us about cacheability. */ if (mregion) { *mregion = matchregion; } } fi->type = ARMFault_Permission; fi->level = 1; return !(*prot & (1 << access_type)); } static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi) { uint32_t secure = regime_is_secure(env, mmu_idx); V8M_SAttributes sattrs = {}; bool ret; bool mpu_is_subpage; if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); if (access_type == MMU_INST_FETCH) { /* Instruction fetches always use the MMU bank and the * transaction attribute determined by the fetch address, * regardless of CPU state. This is painful for QEMU * to handle, because it would mean we need to encode * into the mmu_idx not just the (user, negpri) information * for the current security state but also that for the * other security state, which would balloon the number * of mmu_idx values needed alarmingly. * Fortunately we can avoid this because it's not actually * possible to arbitrarily execute code from memory with * the wrong security attribute: it will always generate * an exception of some kind or another, apart from the * special case of an NS CPU executing an SG instruction * in S&NSC memory. So we always just fail the translation * here and sort things out in the exception handler * (including possibly emulating an SG instruction). */ if (sattrs.ns != !secure) { if (sattrs.nsc) { fi->type = ARMFault_QEMU_NSCExec; } else { fi->type = ARMFault_QEMU_SFault; } *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; *phys_ptr = address; *prot = 0; return true; } } else { /* For data accesses we always use the MMU bank indicated * by the current CPU state, but the security attributes * might downgrade a secure access to nonsecure. */ if (sattrs.ns) { txattrs->secure = false; } else if (!secure) { /* NS access to S memory must fault. * Architecturally we should first check whether the * MPU information for this address indicates that we * are doing an unaligned access to Device memory, which * should generate a UsageFault instead. QEMU does not * currently check for that kind of unaligned access though. * If we added it we would need to do so as a special case * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). */ fi->type = ARMFault_QEMU_SFault; *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; *phys_ptr = address; *prot = 0; return true; } } } ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, txattrs, prot, &mpu_is_subpage, fi, NULL); *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; return ret; } static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, int *prot, ARMMMUFaultInfo *fi) { int n; uint32_t mask; uint32_t base; bool is_user = regime_is_user(env, mmu_idx); if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return false; } *phys_ptr = address; for (n = 7; n >= 0; n--) { base = env->cp15.c6_region[n]; if ((base & 1) == 0) { continue; } mask = 1 << ((base >> 1) & 0x1f); /* Keep this shift separate from the above to avoid an (undefined) << 32. */ mask = (mask << 1) - 1; if (((base ^ address) & ~mask) == 0) { break; } } if (n < 0) { fi->type = ARMFault_Background; return true; } if (access_type == MMU_INST_FETCH) { mask = env->cp15.pmsav5_insn_ap; } else { mask = env->cp15.pmsav5_data_ap; } mask = (mask >> (n * 4)) & 0xf; switch (mask) { case 0: fi->type = ARMFault_Permission; fi->level = 1; return true; case 1: if (is_user) { fi->type = ARMFault_Permission; fi->level = 1; return true; } *prot = PAGE_READ | PAGE_WRITE; break; case 2: *prot = PAGE_READ; if (!is_user) { *prot |= PAGE_WRITE; } break; case 3: *prot = PAGE_READ | PAGE_WRITE; break; case 5: if (is_user) { fi->type = ARMFault_Permission; fi->level = 1; return true; } *prot = PAGE_READ; break; case 6: *prot = PAGE_READ; break; default: /* Bad permission. */ fi->type = ARMFault_Permission; fi->level = 1; return true; } *prot |= PAGE_EXEC; return false; } /* Combine either inner or outer cacheability attributes for normal * memory, according to table D4-42 and pseudocode procedure * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). * * NB: only stage 1 includes allocation hints (RW bits), leading to * some asymmetry. */ static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) { if (s1 == 4 || s2 == 4) { /* non-cacheable has precedence */ return 4; } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { /* stage 1 write-through takes precedence */ return s1; } else if (extract32(s2, 2, 2) == 2) { /* stage 2 write-through takes precedence, but the allocation hint * is still taken from stage 1 */ return (2 << 2) | extract32(s1, 0, 2); } else { /* write-back */ return s1; } } /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 * and CombineS1S2Desc() * * @s1: Attributes from stage 1 walk * @s2: Attributes from stage 2 walk */ static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) { uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); ARMCacheAttrs ret; /* Combine shareability attributes (table D4-43) */ if (s1.shareability == 2 || s2.shareability == 2) { /* if either are outer-shareable, the result is outer-shareable */ ret.shareability = 2; } else if (s1.shareability == 3 || s2.shareability == 3) { /* if either are inner-shareable, the result is inner-shareable */ ret.shareability = 3; } else { /* both non-shareable */ ret.shareability = 0; } /* Combine memory type and cacheability attributes */ if (s1hi == 0 || s2hi == 0) { /* Device has precedence over normal */ if (s1lo == 0 || s2lo == 0) { /* nGnRnE has precedence over anything */ ret.attrs = 0; } else if (s1lo == 4 || s2lo == 4) { /* non-Reordering has precedence over Reordering */ ret.attrs = 4; /* nGnRE */ } else if (s1lo == 8 || s2lo == 8) { /* non-Gathering has precedence over Gathering */ ret.attrs = 8; /* nGRE */ } else { ret.attrs = 0xc; /* GRE */ } /* Any location for which the resultant memory type is any * type of Device memory is always treated as Outer Shareable. */ ret.shareability = 2; } else { /* Normal memory */ /* Outer/inner cacheability combine independently */ ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 | combine_cacheattr_nibble(s1lo, s2lo); if (ret.attrs == 0x44) { /* Any location for which the resultant memory type is Normal * Inner Non-cacheable, Outer Non-cacheable is always treated * as Outer Shareable. */ ret.shareability = 2; } } return ret; } /* get_phys_addr - get the physical address for this virtual address * * Find the physical address corresponding to the given virtual address, * by doing a translation table walk on MMU based systems or using the * MPU state on MPU based systems. * * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, * prot and page_size may not be filled in, and the populated fsr value provides * information on why the translation aborted, in the format of a * DFSR/IFSR fault register, with the following caveats: * * we honour the short vs long DFSR format differences. * * the WnR bit is never set (the caller must do this). * * for PSMAv5 based systems we don't bother to return a full FSR format * value. * * @env: CPUARMState * @address: virtual address to get physical address for * @access_type: 0 for read, 1 for write, 2 for execute * @mmu_idx: MMU index indicating required translation regime * @phys_ptr: set to the physical address corresponding to the virtual address * @attrs: set to the memory transaction attributes to use * @prot: set to the permissions for the page containing phys_ptr * @page_size: set to the size of the page containing phys_ptr * @fi: set to fault info if the translation fails * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes */ static bool get_phys_addr(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, target_ulong *page_size, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { /* Call ourselves recursively to do the stage 1 and then stage 2 * translations. */ if (arm_feature(env, ARM_FEATURE_EL2)) { hwaddr ipa; int s2_prot; int ret; ARMCacheAttrs cacheattrs2 = {}; ret = get_phys_addr(env, address, access_type, stage_1_mmu_idx(mmu_idx), &ipa, attrs, prot, page_size, fi, cacheattrs); /* If S1 fails or S2 is disabled, return early. */ if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { *phys_ptr = ipa; return ret; } /* S1 is done. Now do S2 translation. */ ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, phys_ptr, attrs, &s2_prot, page_size, fi, cacheattrs != NULL ? &cacheattrs2 : NULL); fi->s2addr = ipa; /* Combine the S1 and S2 perms. */ *prot &= s2_prot; /* Combine the S1 and S2 cache attributes, if needed */ if (!ret && cacheattrs != NULL) { if (env->cp15.hcr_el2 & HCR_DC) { /* * HCR.DC forces the first stage attributes to * Normal Non-Shareable, * Inner Write-Back Read-Allocate Write-Allocate, * Outer Write-Back Read-Allocate Write-Allocate. */ cacheattrs->attrs = 0xff; cacheattrs->shareability = 0; } *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); } return ret; } else { /* * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. */ mmu_idx = stage_1_mmu_idx(mmu_idx); } } /* The page table entries may downgrade secure to non-secure, but * cannot upgrade an non-secure translation regime's attributes * to secure. */ attrs->secure = regime_is_secure(env, mmu_idx); attrs->user = regime_is_user(env, mmu_idx); /* Fast Context Switch Extension. This doesn't exist at all in v8. * In v7 and earlier it affects all stage 1 translations. */ if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS && !arm_feature(env, ARM_FEATURE_V8)) { if (regime_el(env, mmu_idx) == 3) { address += env->cp15.fcseidr_s; } else { address += env->cp15.fcseidr_ns; } } if (arm_feature(env, ARM_FEATURE_PMSA)) { bool ret; *page_size = TARGET_PAGE_SIZE; if (arm_feature(env, ARM_FEATURE_V8)) { /* PMSAv8 */ ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size, fi); } else if (arm_feature(env, ARM_FEATURE_V7)) { /* PMSAv7 */ ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, phys_ptr, prot, page_size, fi); } else { /* Pre-v7 MPU */ ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, phys_ptr, prot, fi); } qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 " mmu_idx %u -> %s (prot %c%c%c)\n", access_type == MMU_DATA_LOAD ? "reading" : (access_type == MMU_DATA_STORE ? "writing" : "execute"), (uint32_t)address, mmu_idx, ret ? "Miss" : "Hit", *prot & PAGE_READ ? 'r' : '-', *prot & PAGE_WRITE ? 'w' : '-', *prot & PAGE_EXEC ? 'x' : '-'); return ret; } /* Definitely a real MMU, not an MPU */ if (regime_translation_disabled(env, mmu_idx)) { /* MMU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; *page_size = TARGET_PAGE_SIZE; return 0; } if (regime_using_lpae_format(env, mmu_idx)) { return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size, fi, cacheattrs); } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, attrs, prot, page_size, fi); } else { return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, prot, page_size, fi); } } /* Walk the page table and (if the mapping exists) add the page * to the TLB. Return false on success, or true on failure. Populate * fsr with ARM DFSR/IFSR fault register format value on failure. */ bool arm_tlb_fill(CPUState *cs, vaddr address, MMUAccessType access_type, int mmu_idx, ARMMMUFaultInfo *fi) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; hwaddr phys_addr; target_ulong page_size; int prot; int ret; MemTxAttrs attrs = {}; ret = get_phys_addr(env, address, access_type, core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, &attrs, &prot, &page_size, fi, NULL); if (!ret) { /* * Map a single [sub]page. Regions smaller than our declared * target page size are handled specially, so for those we * pass in the exact addresses. */ if (page_size >= TARGET_PAGE_SIZE) { phys_addr &= TARGET_PAGE_MASK; address &= TARGET_PAGE_MASK; } tlb_set_page_with_attrs(cs, address, phys_addr, attrs, prot, mmu_idx, page_size); return 0; } return ret; } hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, MemTxAttrs *attrs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; hwaddr phys_addr; target_ulong page_size; int prot; bool ret; ARMMMUFaultInfo fi = {}; ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); *attrs = (MemTxAttrs) {}; ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, attrs, &prot, &page_size, &fi, NULL); if (ret) { return -1; } return phys_addr; } uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { uint32_t mask; unsigned el = arm_current_el(env); /* First handle registers which unprivileged can read */ switch (reg) { case 0 ... 7: /* xPSR sub-fields */ mask = 0; if ((reg & 1) && el) { mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ } if (!(reg & 4)) { mask |= XPSR_NZCV | XPSR_Q; /* APSR */ } /* EPSR reads as zero */ return xpsr_read(env) & mask; break; case 20: /* CONTROL */ return env->v7m.control[env->v7m.secure]; case 0x94: /* CONTROL_NS */ /* We have to handle this here because unprivileged Secure code * can read the NS CONTROL register. */ if (!env->v7m.secure) { return 0; } return env->v7m.control[M_REG_NS]; } if (el == 0) { return 0; /* unprivileged reads others as zero */ } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { switch (reg) { case 0x88: /* MSP_NS */ if (!env->v7m.secure) { return 0; } return env->v7m.other_ss_msp; case 0x89: /* PSP_NS */ if (!env->v7m.secure) { return 0; } return env->v7m.other_ss_psp; case 0x8a: /* MSPLIM_NS */ if (!env->v7m.secure) { return 0; } return env->v7m.msplim[M_REG_NS]; case 0x8b: /* PSPLIM_NS */ if (!env->v7m.secure) { return 0; } return env->v7m.psplim[M_REG_NS]; case 0x90: /* PRIMASK_NS */ if (!env->v7m.secure) { return 0; } return env->v7m.primask[M_REG_NS]; case 0x91: /* BASEPRI_NS */ if (!env->v7m.secure) { return 0; } return env->v7m.basepri[M_REG_NS]; case 0x93: /* FAULTMASK_NS */ if (!env->v7m.secure) { return 0; } return env->v7m.faultmask[M_REG_NS]; case 0x98: /* SP_NS */ { /* This gives the non-secure SP selected based on whether we're * currently in handler mode or not, using the NS CONTROL.SPSEL. */ bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; if (!env->v7m.secure) { return 0; } if (!arm_v7m_is_handler_mode(env) && spsel) { return env->v7m.other_ss_psp; } else { return env->v7m.other_ss_msp; } } default: break; } } switch (reg) { case 8: /* MSP */ return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; case 9: /* PSP */ return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; case 10: /* MSPLIM */ if (!arm_feature(env, ARM_FEATURE_V8)) { goto bad_reg; } return env->v7m.msplim[env->v7m.secure]; case 11: /* PSPLIM */ if (!arm_feature(env, ARM_FEATURE_V8)) { goto bad_reg; } return env->v7m.psplim[env->v7m.secure]; case 16: /* PRIMASK */ return env->v7m.primask[env->v7m.secure]; case 17: /* BASEPRI */ case 18: /* BASEPRI_MAX */ return env->v7m.basepri[env->v7m.secure]; case 19: /* FAULTMASK */ return env->v7m.faultmask[env->v7m.secure]; default: bad_reg: qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" " register %d\n", reg); return 0; } } void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) { /* We're passed bits [11..0] of the instruction; extract * SYSm and the mask bits. * Invalid combinations of SYSm and mask are UNPREDICTABLE; * we choose to treat them as if the mask bits were valid. * NB that the pseudocode 'mask' variable is bits [11..10], * whereas ours is [11..8]. */ uint32_t mask = extract32(maskreg, 8, 4); uint32_t reg = extract32(maskreg, 0, 8); if (arm_current_el(env) == 0 && reg > 7) { /* only xPSR sub-fields may be written by unprivileged */ return; } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { switch (reg) { case 0x88: /* MSP_NS */ if (!env->v7m.secure) { return; } env->v7m.other_ss_msp = val; return; case 0x89: /* PSP_NS */ if (!env->v7m.secure) { return; } env->v7m.other_ss_psp = val; return; case 0x8a: /* MSPLIM_NS */ if (!env->v7m.secure) { return; } env->v7m.msplim[M_REG_NS] = val & ~7; return; case 0x8b: /* PSPLIM_NS */ if (!env->v7m.secure) { return; } env->v7m.psplim[M_REG_NS] = val & ~7; return; case 0x90: /* PRIMASK_NS */ if (!env->v7m.secure) { return; } env->v7m.primask[M_REG_NS] = val & 1; return; case 0x91: /* BASEPRI_NS */ if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { return; } env->v7m.basepri[M_REG_NS] = val & 0xff; return; case 0x93: /* FAULTMASK_NS */ if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { return; } env->v7m.faultmask[M_REG_NS] = val & 1; return; case 0x94: /* CONTROL_NS */ if (!env->v7m.secure) { return; } write_v7m_control_spsel_for_secstate(env, val & R_V7M_CONTROL_SPSEL_MASK, M_REG_NS); if (arm_feature(env, ARM_FEATURE_M_MAIN)) { env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; } return; case 0x98: /* SP_NS */ { /* This gives the non-secure SP selected based on whether we're * currently in handler mode or not, using the NS CONTROL.SPSEL. */ bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; uint32_t limit; if (!env->v7m.secure) { return; } limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; if (val < limit) { CPUState *cs = CPU(arm_env_get_cpu(env)); cpu_restore_state(cs, GETPC(), true); raise_exception(env, EXCP_STKOF, 0, 1); } if (is_psp) { env->v7m.other_ss_psp = val; } else { env->v7m.other_ss_msp = val; } return; } default: break; } } switch (reg) { case 0 ... 7: /* xPSR sub-fields */ /* only APSR is actually writable */ if (!(reg & 4)) { uint32_t apsrmask = 0; if (mask & 8) { apsrmask |= XPSR_NZCV | XPSR_Q; } if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { apsrmask |= XPSR_GE; } xpsr_write(env, val, apsrmask); } break; case 8: /* MSP */ if (v7m_using_psp(env)) { env->v7m.other_sp = val; } else { env->regs[13] = val; } break; case 9: /* PSP */ if (v7m_using_psp(env)) { env->regs[13] = val; } else { env->v7m.other_sp = val; } break; case 10: /* MSPLIM */ if (!arm_feature(env, ARM_FEATURE_V8)) { goto bad_reg; } env->v7m.msplim[env->v7m.secure] = val & ~7; break; case 11: /* PSPLIM */ if (!arm_feature(env, ARM_FEATURE_V8)) { goto bad_reg; } env->v7m.psplim[env->v7m.secure] = val & ~7; break; case 16: /* PRIMASK */ env->v7m.primask[env->v7m.secure] = val & 1; break; case 17: /* BASEPRI */ if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { goto bad_reg; } env->v7m.basepri[env->v7m.secure] = val & 0xff; break; case 18: /* BASEPRI_MAX */ if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { goto bad_reg; } val &= 0xff; if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] || env->v7m.basepri[env->v7m.secure] == 0)) { env->v7m.basepri[env->v7m.secure] = val; } break; case 19: /* FAULTMASK */ if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { goto bad_reg; } env->v7m.faultmask[env->v7m.secure] = val & 1; break; case 20: /* CONTROL */ /* Writing to the SPSEL bit only has an effect if we are in * thread mode; other bits can be updated by any privileged code. * write_v7m_control_spsel() deals with updating the SPSEL bit in * env->v7m.control, so we only need update the others. * For v7M, we must just ignore explicit writes to SPSEL in handler * mode; for v8M the write is permitted but will have no effect. */ if (arm_feature(env, ARM_FEATURE_V8) || !arm_v7m_is_handler_mode(env)) { write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); } if (arm_feature(env, ARM_FEATURE_M_MAIN)) { env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; } break; default: bad_reg: qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" " register %d\n", reg); return; } } uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) { /* Implement the TT instruction. op is bits [7:6] of the insn. */ bool forceunpriv = op & 1; bool alt = op & 2; V8M_SAttributes sattrs = {}; uint32_t tt_resp; bool r, rw, nsr, nsrw, mrvalid; int prot; ARMMMUFaultInfo fi = {}; MemTxAttrs attrs = {}; hwaddr phys_addr; ARMMMUIdx mmu_idx; uint32_t mregion; bool targetpriv; bool targetsec = env->v7m.secure; bool is_subpage; /* Work out what the security state and privilege level we're * interested in is... */ if (alt) { targetsec = !targetsec; } if (forceunpriv) { targetpriv = false; } else { targetpriv = arm_v7m_is_handler_mode(env) || !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); } /* ...and then figure out which MMU index this is */ mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); /* We know that the MPU and SAU don't care about the access type * for our purposes beyond that we don't want to claim to be * an insn fetch, so we arbitrarily call this a read. */ /* MPU region info only available for privileged or if * inspecting the other MPU state. */ if (arm_current_el(env) != 0 || alt) { /* We can ignore the return value as prot is always set */ pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, &attrs, &prot, &is_subpage, &fi, &mregion); if (mregion == -1) { mrvalid = false; mregion = 0; } else { mrvalid = true; } r = prot & PAGE_READ; rw = prot & PAGE_WRITE; } else { r = false; rw = false; mrvalid = false; mregion = 0; } if (env->v7m.secure) { v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); nsr = sattrs.ns && r; nsrw = sattrs.ns && rw; } else { sattrs.ns = true; nsr = false; nsrw = false; } tt_resp = (sattrs.iregion << 24) | (sattrs.irvalid << 23) | ((!sattrs.ns) << 22) | (nsrw << 21) | (nsr << 20) | (rw << 19) | (r << 18) | (sattrs.srvalid << 17) | (mrvalid << 16) | (sattrs.sregion << 8) | mregion; return tt_resp; } #endif void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) { /* Implement DC ZVA, which zeroes a fixed-length block of memory. * Note that we do not implement the (architecturally mandated) * alignment fault for attempts to use this on Device memory * (which matches the usual QEMU behaviour of not implementing either * alignment faults or any memory attribute handling). */ ARMCPU *cpu = arm_env_get_cpu(env); uint64_t blocklen = 4 << cpu->dcz_blocksize; uint64_t vaddr = vaddr_in & ~(blocklen - 1); #ifndef CONFIG_USER_ONLY { /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than * the block size so we might have to do more than one TLB lookup. * We know that in fact for any v8 CPU the page size is at least 4K * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only * 1K as an artefact of legacy v5 subpage support being present in the * same QEMU executable. */ int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); void *hostaddr[maxidx]; int try, i; unsigned mmu_idx = cpu_mmu_index(env, false); TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); for (try = 0; try < 2; try++) { for (i = 0; i < maxidx; i++) { hostaddr[i] = tlb_vaddr_to_host(env, vaddr + TARGET_PAGE_SIZE * i, 1, mmu_idx); if (!hostaddr[i]) { break; } } if (i == maxidx) { /* If it's all in the TLB it's fair game for just writing to; * we know we don't need to update dirty status, etc. */ for (i = 0; i < maxidx - 1; i++) { memset(hostaddr[i], 0, TARGET_PAGE_SIZE); } memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); return; } /* OK, try a store and see if we can populate the tlb. This * might cause an exception if the memory isn't writable, * in which case we will longjmp out of here. We must for * this purpose use the actual register value passed to us * so that we get the fault address right. */ helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); /* Now we can populate the other TLB entries, if any */ for (i = 0; i < maxidx; i++) { uint64_t va = vaddr + TARGET_PAGE_SIZE * i; if (va != (vaddr_in & TARGET_PAGE_MASK)) { helper_ret_stb_mmu(env, va, 0, oi, GETPC()); } } } /* Slow path (probably attempt to do this to an I/O device or * similar, or clearing of a block of code we have translations * cached for). Just do a series of byte writes as the architecture * demands. It's not worth trying to use a cpu_physical_memory_map(), * memset(), unmap() sequence here because: * + we'd need to account for the blocksize being larger than a page * + the direct-RAM access case is almost always going to be dealt * with in the fastpath code above, so there's no speed benefit * + we would have to deal with the map returning NULL because the * bounce buffer was in use */ for (i = 0; i < blocklen; i++) { helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); } } #else memset(g2h(vaddr), 0, blocklen); #endif } /* Note that signed overflow is undefined in C. The following routines are careful to use unsigned types where modulo arithmetic is required. Failure to do so _will_ break on newer gcc. */ /* Signed saturating arithmetic. */ /* Perform 16-bit signed saturating addition. */ static inline uint16_t add16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating addition. */ static inline uint8_t add8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } /* Perform 16-bit signed saturating subtraction. */ static inline uint16_t sub16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a - b; if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating subtraction. */ static inline uint8_t sub8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a - b; if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); #define PFX q #include "op_addsub.h" /* Unsigned saturating arithmetic. */ static inline uint16_t add16_usat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (res < a) res = 0xffff; return res; } static inline uint16_t sub16_usat(uint16_t a, uint16_t b) { if (a > b) return a - b; else return 0; } static inline uint8_t add8_usat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (res < a) res = 0xff; return res; } static inline uint8_t sub8_usat(uint8_t a, uint8_t b) { if (a > b) return a - b; else return 0; } #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); #define PFX uq #include "op_addsub.h" /* Signed modulo arithmetic. */ #define SARITH16(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ RESULT(sum, n, 16); \ if (sum >= 0) \ ge |= 3 << (n * 2); \ } while(0) #define SARITH8(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ RESULT(sum, n, 8); \ if (sum >= 0) \ ge |= 1 << n; \ } while(0) #define ADD16(a, b, n) SARITH16(a, b, n, +) #define SUB16(a, b, n) SARITH16(a, b, n, -) #define ADD8(a, b, n) SARITH8(a, b, n, +) #define SUB8(a, b, n) SARITH8(a, b, n, -) #define PFX s #define ARITH_GE #include "op_addsub.h" /* Unsigned modulo arithmetic. */ #define ADD16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 1) \ ge |= 3 << (n * 2); \ } while(0) #define ADD8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 1) \ ge |= 1 << n; \ } while(0) #define SUB16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define SUB8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 0) \ ge |= 1 << n; \ } while(0) #define PFX u #define ARITH_GE #include "op_addsub.h" /* Halved signed arithmetic. */ #define ADD16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) #define PFX sh #include "op_addsub.h" /* Halved unsigned arithmetic. */ #define ADD16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define PFX uh #include "op_addsub.h" static inline uint8_t do_usad(uint8_t a, uint8_t b) { if (a > b) return a - b; else return b - a; } /* Unsigned sum of absolute byte differences. */ uint32_t HELPER(usad8)(uint32_t a, uint32_t b) { uint32_t sum; sum = do_usad(a, b); sum += do_usad(a >> 8, b >> 8); sum += do_usad(a >> 16, b >>16); sum += do_usad(a >> 24, b >> 24); return sum; } /* For ARMv6 SEL instruction. */ uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) { uint32_t mask; mask = 0; if (flags & 1) mask |= 0xff; if (flags & 2) mask |= 0xff00; if (flags & 4) mask |= 0xff0000; if (flags & 8) mask |= 0xff000000; return (a & mask) | (b & ~mask); } /* VFP support. We follow the convention used for VFP instructions: Single precision routines have a "s" suffix, double precision a "d" suffix. */ /* Convert host exception flags to vfp form. */ static inline int vfp_exceptbits_from_host(int host_bits) { int target_bits = 0; if (host_bits & float_flag_invalid) target_bits |= 1; if (host_bits & float_flag_divbyzero) target_bits |= 2; if (host_bits & float_flag_overflow) target_bits |= 4; if (host_bits & (float_flag_underflow | float_flag_output_denormal)) target_bits |= 8; if (host_bits & float_flag_inexact) target_bits |= 0x10; if (host_bits & float_flag_input_denormal) target_bits |= 0x80; return target_bits; } uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) { int i; uint32_t fpscr; fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | (env->vfp.vec_len << 16) | (env->vfp.vec_stride << 20); i = get_float_exception_flags(&env->vfp.fp_status); i |= get_float_exception_flags(&env->vfp.standard_fp_status); /* FZ16 does not generate an input denormal exception. */ i |= (get_float_exception_flags(&env->vfp.fp_status_f16) & ~float_flag_input_denormal); fpscr |= vfp_exceptbits_from_host(i); return fpscr; } uint32_t vfp_get_fpscr(CPUARMState *env) { return HELPER(vfp_get_fpscr)(env); } /* Convert vfp exception flags to target form. */ static inline int vfp_exceptbits_to_host(int target_bits) { int host_bits = 0; if (target_bits & 1) host_bits |= float_flag_invalid; if (target_bits & 2) host_bits |= float_flag_divbyzero; if (target_bits & 4) host_bits |= float_flag_overflow; if (target_bits & 8) host_bits |= float_flag_underflow; if (target_bits & 0x10) host_bits |= float_flag_inexact; if (target_bits & 0x80) host_bits |= float_flag_input_denormal; return host_bits; } void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) { int i; uint32_t changed; /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) { val &= ~FPCR_FZ16; } changed = env->vfp.xregs[ARM_VFP_FPSCR]; env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); env->vfp.vec_len = (val >> 16) & 7; env->vfp.vec_stride = (val >> 20) & 3; changed ^= val; if (changed & (3 << 22)) { i = (val >> 22) & 3; switch (i) { case FPROUNDING_TIEEVEN: i = float_round_nearest_even; break; case FPROUNDING_POSINF: i = float_round_up; break; case FPROUNDING_NEGINF: i = float_round_down; break; case FPROUNDING_ZERO: i = float_round_to_zero; break; } set_float_rounding_mode(i, &env->vfp.fp_status); set_float_rounding_mode(i, &env->vfp.fp_status_f16); } if (changed & FPCR_FZ16) { bool ftz_enabled = val & FPCR_FZ16; set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); } if (changed & FPCR_FZ) { bool ftz_enabled = val & FPCR_FZ; set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); } if (changed & FPCR_DN) { bool dnan_enabled = val & FPCR_DN; set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); } /* The exception flags are ORed together when we read fpscr so we * only need to preserve the current state in one of our * float_status values. */ i = vfp_exceptbits_to_host(val); set_float_exception_flags(i, &env->vfp.fp_status); set_float_exception_flags(0, &env->vfp.fp_status_f16); set_float_exception_flags(0, &env->vfp.standard_fp_status); } void vfp_set_fpscr(CPUARMState *env, uint32_t val) { HELPER(vfp_set_fpscr)(env, val); } #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) #define VFP_BINOP(name) \ float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ { \ float_status *fpst = fpstp; \ return float32_ ## name(a, b, fpst); \ } \ float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ { \ float_status *fpst = fpstp; \ return float64_ ## name(a, b, fpst); \ } VFP_BINOP(add) VFP_BINOP(sub) VFP_BINOP(mul) VFP_BINOP(div) VFP_BINOP(min) VFP_BINOP(max) VFP_BINOP(minnum) VFP_BINOP(maxnum) #undef VFP_BINOP float32 VFP_HELPER(neg, s)(float32 a) { return float32_chs(a); } float64 VFP_HELPER(neg, d)(float64 a) { return float64_chs(a); } float32 VFP_HELPER(abs, s)(float32 a) { return float32_abs(a); } float64 VFP_HELPER(abs, d)(float64 a) { return float64_abs(a); } float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) { return float32_sqrt(a, &env->vfp.fp_status); } float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) { return float64_sqrt(a, &env->vfp.fp_status); } /* XXX: check quiet/signaling case */ #define DO_VFP_cmp(p, type) \ void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ { \ uint32_t flags; \ switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ case 0: flags = 0x6; break; \ case -1: flags = 0x8; break; \ case 1: flags = 0x2; break; \ default: case 2: flags = 0x3; break; \ } \ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ } \ void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ { \ uint32_t flags; \ switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ case 0: flags = 0x6; break; \ case -1: flags = 0x8; break; \ case 1: flags = 0x2; break; \ default: case 2: flags = 0x3; break; \ } \ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ } DO_VFP_cmp(s, float32) DO_VFP_cmp(d, float64) #undef DO_VFP_cmp /* Integer to float and float to integer conversions */ #define CONV_ITOF(name, ftype, fsz, sign) \ ftype HELPER(name)(uint32_t x, void *fpstp) \ { \ float_status *fpst = fpstp; \ return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ } #define CONV_FTOI(name, ftype, fsz, sign, round) \ sign##int32_t HELPER(name)(ftype x, void *fpstp) \ { \ float_status *fpst = fpstp; \ if (float##fsz##_is_any_nan(x)) { \ float_raise(float_flag_invalid, fpst); \ return 0; \ } \ return float##fsz##_to_##sign##int32##round(x, fpst); \ } #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) FLOAT_CONVS(si, h, uint32_t, 16, ) FLOAT_CONVS(si, s, float32, 32, ) FLOAT_CONVS(si, d, float64, 64, ) FLOAT_CONVS(ui, h, uint32_t, 16, u) FLOAT_CONVS(ui, s, float32, 32, u) FLOAT_CONVS(ui, d, float64, 64, u) #undef CONV_ITOF #undef CONV_FTOI #undef FLOAT_CONVS /* floating point conversion */ float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) { return float32_to_float64(x, &env->vfp.fp_status); } float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) { return float64_to_float32(x, &env->vfp.fp_status); } /* VFP3 fixed point conversion. */ #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ void *fpstp) \ { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \ uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \ void *fpst) \ { \ if (unlikely(float##fsz##_is_any_nan(x))) { \ float_raise(float_flag_invalid, fpst); \ return 0; \ } \ return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ } #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ float_round_to_zero, _round_to_zero) \ VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ get_float_rounding_mode(fpst), ) #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ get_float_rounding_mode(fpst), ) VFP_CONV_FIX(sh, d, 64, 64, int16) VFP_CONV_FIX(sl, d, 64, 64, int32) VFP_CONV_FIX_A64(sq, d, 64, 64, int64) VFP_CONV_FIX(uh, d, 64, 64, uint16) VFP_CONV_FIX(ul, d, 64, 64, uint32) VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) VFP_CONV_FIX(sh, s, 32, 32, int16) VFP_CONV_FIX(sl, s, 32, 32, int32) VFP_CONV_FIX_A64(sq, s, 32, 64, int64) VFP_CONV_FIX(uh, s, 32, 32, uint16) VFP_CONV_FIX(ul, s, 32, 32, uint32) VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) #undef VFP_CONV_FIX #undef VFP_CONV_FIX_FLOAT #undef VFP_CONV_FLOAT_FIX_ROUND #undef VFP_CONV_FIX_A64 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) { return int32_to_float16_scalbn(x, -shift, fpst); } uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) { return uint32_to_float16_scalbn(x, -shift, fpst); } uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) { return int64_to_float16_scalbn(x, -shift, fpst); } uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) { return uint64_to_float16_scalbn(x, -shift, fpst); } uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst) { if (unlikely(float16_is_any_nan(x))) { float_raise(float_flag_invalid, fpst); return 0; } return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst), shift, fpst); } uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst) { if (unlikely(float16_is_any_nan(x))) { float_raise(float_flag_invalid, fpst); return 0; } return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst), shift, fpst); } uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst) { if (unlikely(float16_is_any_nan(x))) { float_raise(float_flag_invalid, fpst); return 0; } return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst), shift, fpst); } uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst) { if (unlikely(float16_is_any_nan(x))) { float_raise(float_flag_invalid, fpst); return 0; } return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst), shift, fpst); } uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst) { if (unlikely(float16_is_any_nan(x))) { float_raise(float_flag_invalid, fpst); return 0; } return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst), shift, fpst); } uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst) { if (unlikely(float16_is_any_nan(x))) { float_raise(float_flag_invalid, fpst); return 0; } return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst), shift, fpst); } /* Set the current fp rounding mode and return the old one. * The argument is a softfloat float_round_ value. */ uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) { float_status *fp_status = fpstp; uint32_t prev_rmode = get_float_rounding_mode(fp_status); set_float_rounding_mode(rmode, fp_status); return prev_rmode; } /* Set the current fp rounding mode in the standard fp status and return * the old one. This is for NEON instructions that need to change the * rounding mode but wish to use the standard FPSCR values for everything * else. Always set the rounding mode back to the correct value after * modifying it. * The argument is a softfloat float_round_ value. */ uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) { float_status *fp_status = &env->vfp.standard_fp_status; uint32_t prev_rmode = get_float_rounding_mode(fp_status); set_float_rounding_mode(rmode, fp_status); return prev_rmode; } /* Half precision conversions. */ float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) { /* Squash FZ16 to 0 for the duration of conversion. In this case, * it would affect flushing input denormals. */ float_status *fpst = fpstp; flag save = get_flush_inputs_to_zero(fpst); set_flush_inputs_to_zero(false, fpst); float32 r = float16_to_float32(a, !ahp_mode, fpst); set_flush_inputs_to_zero(save, fpst); return r; } uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) { /* Squash FZ16 to 0 for the duration of conversion. In this case, * it would affect flushing output denormals. */ float_status *fpst = fpstp; flag save = get_flush_to_zero(fpst); set_flush_to_zero(false, fpst); float16 r = float32_to_float16(a, !ahp_mode, fpst); set_flush_to_zero(save, fpst); return r; } float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) { /* Squash FZ16 to 0 for the duration of conversion. In this case, * it would affect flushing input denormals. */ float_status *fpst = fpstp; flag save = get_flush_inputs_to_zero(fpst); set_flush_inputs_to_zero(false, fpst); float64 r = float16_to_float64(a, !ahp_mode, fpst); set_flush_inputs_to_zero(save, fpst); return r; } uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) { /* Squash FZ16 to 0 for the duration of conversion. In this case, * it would affect flushing output denormals. */ float_status *fpst = fpstp; flag save = get_flush_to_zero(fpst); set_flush_to_zero(false, fpst); float16 r = float64_to_float16(a, !ahp_mode, fpst); set_flush_to_zero(save, fpst); return r; } #define float32_two make_float32(0x40000000) #define float32_three make_float32(0x40400000) #define float32_one_point_five make_float32(0x3fc00000) float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { if (!(float32_is_zero(a) || float32_is_zero(b))) { float_raise(float_flag_input_denormal, s); } return float32_two; } return float32_sub(float32_two, float32_mul(a, b, s), s); } float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; float32 product; if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { if (!(float32_is_zero(a) || float32_is_zero(b))) { float_raise(float_flag_input_denormal, s); } return float32_one_point_five; } product = float32_mul(a, b, s); return float32_div(float32_sub(float32_three, product, s), float32_two, s); } /* NEON helpers. */ /* Constants 256 and 512 are used in some helpers; we avoid relying on * int->float conversions at run-time. */ #define float64_256 make_float64(0x4070000000000000LL) #define float64_512 make_float64(0x4080000000000000LL) #define float16_maxnorm make_float16(0x7bff) #define float32_maxnorm make_float32(0x7f7fffff) #define float64_maxnorm make_float64(0x7fefffffffffffffLL) /* Reciprocal functions * * The algorithm that must be used to calculate the estimate * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate */ /* See RecipEstimate() * * input is a 9 bit fixed point number * input range 256 .. 511 for a number from 0.5 <= x < 1.0. * result range 256 .. 511 for a number from 1.0 to 511/256. */ static int recip_estimate(int input) { int a, b, r; assert(256 <= input && input < 512); a = (input * 2) + 1; b = (1 << 19) / a; r = (b + 1) >> 1; assert(256 <= r && r < 512); return r; } /* * Common wrapper to call recip_estimate * * The parameters are exponent and 64 bit fraction (without implicit * bit) where the binary point is nominally at bit 52. Returns a * float64 which can then be rounded to the appropriate size by the * callee. */ static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) { uint32_t scaled, estimate; uint64_t result_frac; int result_exp; /* Handle sub-normals */ if (*exp == 0) { if (extract64(frac, 51, 1) == 0) { *exp = -1; frac <<= 2; } else { frac <<= 1; } } /* scaled = UInt('1':fraction<51:44>) */ scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); estimate = recip_estimate(scaled); result_exp = exp_off - *exp; result_frac = deposit64(0, 44, 8, estimate); if (result_exp == 0) { result_frac = deposit64(result_frac >> 1, 51, 1, 1); } else if (result_exp == -1) { result_frac = deposit64(result_frac >> 2, 50, 2, 1); result_exp = 0; } *exp = result_exp; return result_frac; } static bool round_to_inf(float_status *fpst, bool sign_bit) { switch (fpst->float_rounding_mode) { case float_round_nearest_even: /* Round to Nearest */ return true; case float_round_up: /* Round to +Inf */ return !sign_bit; case float_round_down: /* Round to -Inf */ return sign_bit; case float_round_to_zero: /* Round to Zero */ return false; } g_assert_not_reached(); } uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) { float_status *fpst = fpstp; float16 f16 = float16_squash_input_denormal(input, fpst); uint32_t f16_val = float16_val(f16); uint32_t f16_sign = float16_is_neg(f16); int f16_exp = extract32(f16_val, 10, 5); uint32_t f16_frac = extract32(f16_val, 0, 10); uint64_t f64_frac; if (float16_is_any_nan(f16)) { float16 nan = f16; if (float16_is_signaling_nan(f16, fpst)) { float_raise(float_flag_invalid, fpst); nan = float16_silence_nan(f16, fpst); } if (fpst->default_nan_mode) { nan = float16_default_nan(fpst); } return nan; } else if (float16_is_infinity(f16)) { return float16_set_sign(float16_zero, float16_is_neg(f16)); } else if (float16_is_zero(f16)) { float_raise(float_flag_divbyzero, fpst); return float16_set_sign(float16_infinity, float16_is_neg(f16)); } else if (float16_abs(f16) < (1 << 8)) { /* Abs(value) < 2.0^-16 */ float_raise(float_flag_overflow | float_flag_inexact, fpst); if (round_to_inf(fpst, f16_sign)) { return float16_set_sign(float16_infinity, f16_sign); } else { return float16_set_sign(float16_maxnorm, f16_sign); } } else if (f16_exp >= 29 && fpst->flush_to_zero) { float_raise(float_flag_underflow, fpst); return float16_set_sign(float16_zero, float16_is_neg(f16)); } f64_frac = call_recip_estimate(&f16_exp, 29, ((uint64_t) f16_frac) << (52 - 10)); /* result = sign : result_exp<4:0> : fraction<51:42> */ f16_val = deposit32(0, 15, 1, f16_sign); f16_val = deposit32(f16_val, 10, 5, f16_exp); f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); return make_float16(f16_val); } float32 HELPER(recpe_f32)(float32 input, void *fpstp) { float_status *fpst = fpstp; float32 f32 = float32_squash_input_denormal(input, fpst); uint32_t f32_val = float32_val(f32); bool f32_sign = float32_is_neg(f32); int f32_exp = extract32(f32_val, 23, 8); uint32_t f32_frac = extract32(f32_val, 0, 23); uint64_t f64_frac; if (float32_is_any_nan(f32)) { float32 nan = f32; if (float32_is_signaling_nan(f32, fpst)) { float_raise(float_flag_invalid, fpst); nan = float32_silence_nan(f32, fpst); } if (fpst->default_nan_mode) { nan = float32_default_nan(fpst); } return nan; } else if (float32_is_infinity(f32)) { return float32_set_sign(float32_zero, float32_is_neg(f32)); } else if (float32_is_zero(f32)) { float_raise(float_flag_divbyzero, fpst); return float32_set_sign(float32_infinity, float32_is_neg(f32)); } else if (float32_abs(f32) < (1ULL << 21)) { /* Abs(value) < 2.0^-128 */ float_raise(float_flag_overflow | float_flag_inexact, fpst); if (round_to_inf(fpst, f32_sign)) { return float32_set_sign(float32_infinity, f32_sign); } else { return float32_set_sign(float32_maxnorm, f32_sign); } } else if (f32_exp >= 253 && fpst->flush_to_zero) { float_raise(float_flag_underflow, fpst); return float32_set_sign(float32_zero, float32_is_neg(f32)); } f64_frac = call_recip_estimate(&f32_exp, 253, ((uint64_t) f32_frac) << (52 - 23)); /* result = sign : result_exp<7:0> : fraction<51:29> */ f32_val = deposit32(0, 31, 1, f32_sign); f32_val = deposit32(f32_val, 23, 8, f32_exp); f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); return make_float32(f32_val); } float64 HELPER(recpe_f64)(float64 input, void *fpstp) { float_status *fpst = fpstp; float64 f64 = float64_squash_input_denormal(input, fpst); uint64_t f64_val = float64_val(f64); bool f64_sign = float64_is_neg(f64); int f64_exp = extract64(f64_val, 52, 11); uint64_t f64_frac = extract64(f64_val, 0, 52); /* Deal with any special cases */ if (float64_is_any_nan(f64)) { float64 nan = f64; if (float64_is_signaling_nan(f64, fpst)) { float_raise(float_flag_invalid, fpst); nan = float64_silence_nan(f64, fpst); } if (fpst->default_nan_mode) { nan = float64_default_nan(fpst); } return nan; } else if (float64_is_infinity(f64)) { return float64_set_sign(float64_zero, float64_is_neg(f64)); } else if (float64_is_zero(f64)) { float_raise(float_flag_divbyzero, fpst); return float64_set_sign(float64_infinity, float64_is_neg(f64)); } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { /* Abs(value) < 2.0^-1024 */ float_raise(float_flag_overflow | float_flag_inexact, fpst); if (round_to_inf(fpst, f64_sign)) { return float64_set_sign(float64_infinity, f64_sign); } else { return float64_set_sign(float64_maxnorm, f64_sign); } } else if (f64_exp >= 2045 && fpst->flush_to_zero) { float_raise(float_flag_underflow, fpst); return float64_set_sign(float64_zero, float64_is_neg(f64)); } f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); /* result = sign : result_exp<10:0> : fraction<51:0>; */ f64_val = deposit64(0, 63, 1, f64_sign); f64_val = deposit64(f64_val, 52, 11, f64_exp); f64_val = deposit64(f64_val, 0, 52, f64_frac); return make_float64(f64_val); } /* The algorithm that must be used to calculate the estimate * is specified by the ARM ARM. */ static int do_recip_sqrt_estimate(int a) { int b, estimate; assert(128 <= a && a < 512); if (a < 256) { a = a * 2 + 1; } else { a = (a >> 1) << 1; a = (a + 1) * 2; } b = 512; while (a * (b + 1) * (b + 1) < (1 << 28)) { b += 1; } estimate = (b + 1) / 2; assert(256 <= estimate && estimate < 512); return estimate; } static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) { int estimate; uint32_t scaled; if (*exp == 0) { while (extract64(frac, 51, 1) == 0) { frac = frac << 1; *exp -= 1; } frac = extract64(frac, 0, 51) << 1; } if (*exp & 1) { /* scaled = UInt('01':fraction<51:45>) */ scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); } else { /* scaled = UInt('1':fraction<51:44>) */ scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); } estimate = do_recip_sqrt_estimate(scaled); *exp = (exp_off - *exp) / 2; return extract64(estimate, 0, 8) << 44; } uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) { float_status *s = fpstp; float16 f16 = float16_squash_input_denormal(input, s); uint16_t val = float16_val(f16); bool f16_sign = float16_is_neg(f16); int f16_exp = extract32(val, 10, 5); uint16_t f16_frac = extract32(val, 0, 10); uint64_t f64_frac; if (float16_is_any_nan(f16)) { float16 nan = f16; if (float16_is_signaling_nan(f16, s)) { float_raise(float_flag_invalid, s); nan = float16_silence_nan(f16, s); } if (s->default_nan_mode) { nan = float16_default_nan(s); } return nan; } else if (float16_is_zero(f16)) { float_raise(float_flag_divbyzero, s); return float16_set_sign(float16_infinity, f16_sign); } else if (f16_sign) { float_raise(float_flag_invalid, s); return float16_default_nan(s); } else if (float16_is_infinity(f16)) { return float16_zero; } /* Scale and normalize to a double-precision value between 0.25 and 1.0, * preserving the parity of the exponent. */ f64_frac = ((uint64_t) f16_frac) << (52 - 10); f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ val = deposit32(0, 15, 1, f16_sign); val = deposit32(val, 10, 5, f16_exp); val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); return make_float16(val); } float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) { float_status *s = fpstp; float32 f32 = float32_squash_input_denormal(input, s); uint32_t val = float32_val(f32); uint32_t f32_sign = float32_is_neg(f32); int f32_exp = extract32(val, 23, 8); uint32_t f32_frac = extract32(val, 0, 23); uint64_t f64_frac; if (float32_is_any_nan(f32)) { float32 nan = f32; if (float32_is_signaling_nan(f32, s)) { float_raise(float_flag_invalid, s); nan = float32_silence_nan(f32, s); } if (s->default_nan_mode) { nan = float32_default_nan(s); } return nan; } else if (float32_is_zero(f32)) { float_raise(float_flag_divbyzero, s); return float32_set_sign(float32_infinity, float32_is_neg(f32)); } else if (float32_is_neg(f32)) { float_raise(float_flag_invalid, s); return float32_default_nan(s); } else if (float32_is_infinity(f32)) { return float32_zero; } /* Scale and normalize to a double-precision value between 0.25 and 1.0, * preserving the parity of the exponent. */ f64_frac = ((uint64_t) f32_frac) << 29; f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ val = deposit32(0, 31, 1, f32_sign); val = deposit32(val, 23, 8, f32_exp); val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); return make_float32(val); } float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) { float_status *s = fpstp; float64 f64 = float64_squash_input_denormal(input, s); uint64_t val = float64_val(f64); bool f64_sign = float64_is_neg(f64); int f64_exp = extract64(val, 52, 11); uint64_t f64_frac = extract64(val, 0, 52); if (float64_is_any_nan(f64)) { float64 nan = f64; if (float64_is_signaling_nan(f64, s)) { float_raise(float_flag_invalid, s); nan = float64_silence_nan(f64, s); } if (s->default_nan_mode) { nan = float64_default_nan(s); } return nan; } else if (float64_is_zero(f64)) { float_raise(float_flag_divbyzero, s); return float64_set_sign(float64_infinity, float64_is_neg(f64)); } else if (float64_is_neg(f64)) { float_raise(float_flag_invalid, s); return float64_default_nan(s); } else if (float64_is_infinity(f64)) { return float64_zero; } f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ val = deposit64(0, 61, 1, f64_sign); val = deposit64(val, 52, 11, f64_exp); val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); return make_float64(val); } uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) { /* float_status *s = fpstp; */ int input, estimate; if ((a & 0x80000000) == 0) { return 0xffffffff; } input = extract32(a, 23, 9); estimate = recip_estimate(input); return deposit32(0, (32 - 9), 9, estimate); } uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) { int estimate; if ((a & 0xc0000000) == 0) { return 0xffffffff; } estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); return deposit32(0, 23, 9, estimate); } /* VFPv4 fused multiply-accumulate */ float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) { float_status *fpst = fpstp; return float32_muladd(a, b, c, 0, fpst); } float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) { float_status *fpst = fpstp; return float64_muladd(a, b, c, 0, fpst); } /* ARMv8 round to integral */ float32 HELPER(rints_exact)(float32 x, void *fp_status) { return float32_round_to_int(x, fp_status); } float64 HELPER(rintd_exact)(float64 x, void *fp_status) { return float64_round_to_int(x, fp_status); } float32 HELPER(rints)(float32 x, void *fp_status) { int old_flags = get_float_exception_flags(fp_status), new_flags; float32 ret; ret = float32_round_to_int(x, fp_status); /* Suppress any inexact exceptions the conversion produced */ if (!(old_flags & float_flag_inexact)) { new_flags = get_float_exception_flags(fp_status); set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); } return ret; } float64 HELPER(rintd)(float64 x, void *fp_status) { int old_flags = get_float_exception_flags(fp_status), new_flags; float64 ret; ret = float64_round_to_int(x, fp_status); new_flags = get_float_exception_flags(fp_status); /* Suppress any inexact exceptions the conversion produced */ if (!(old_flags & float_flag_inexact)) { new_flags = get_float_exception_flags(fp_status); set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); } return ret; } /* Convert ARM rounding mode to softfloat */ int arm_rmode_to_sf(int rmode) { switch (rmode) { case FPROUNDING_TIEAWAY: rmode = float_round_ties_away; break; case FPROUNDING_ODD: /* FIXME: add support for TIEAWAY and ODD */ qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", rmode); /* fall through for now */ case FPROUNDING_TIEEVEN: default: rmode = float_round_nearest_even; break; case FPROUNDING_POSINF: rmode = float_round_up; break; case FPROUNDING_NEGINF: rmode = float_round_down; break; case FPROUNDING_ZERO: rmode = float_round_to_zero; break; } return rmode; } /* CRC helpers. * The upper bytes of val (above the number specified by 'bytes') must have * been zeroed out by the caller. */ uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) { uint8_t buf[4]; stl_le_p(buf, val); /* zlib crc32 converts the accumulator and output to one's complement. */ return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; } uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) { uint8_t buf[4]; stl_le_p(buf, val); /* Linux crc32c converts the output to one's complement. */ return crc32c(acc, buf, bytes) ^ 0xffffffff; } /* Return the exception level to which FP-disabled exceptions should * be taken, or 0 if FP is enabled. */ int fp_exception_el(CPUARMState *env, int cur_el) { #ifndef CONFIG_USER_ONLY int fpen; /* CPACR and the CPTR registers don't exist before v6, so FP is * always accessible */ if (!arm_feature(env, ARM_FEATURE_V6)) { return 0; } /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: * 0, 2 : trap EL0 and EL1/PL1 accesses * 1 : trap only EL0 accesses * 3 : trap no accesses */ fpen = extract32(env->cp15.cpacr_el1, 20, 2); switch (fpen) { case 0: case 2: if (cur_el == 0 || cur_el == 1) { /* Trap to PL1, which might be EL1 or EL3 */ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { return 3; } return 1; } if (cur_el == 3 && !is_a64(env)) { /* Secure PL1 running at EL3 */ return 3; } break; case 1: if (cur_el == 0) { return 1; } break; case 3: break; } /* For the CPTR registers we don't need to guard with an ARM_FEATURE * check because zero bits in the registers mean "don't trap". */ /* CPTR_EL2 : present in v7VE or v8 */ if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) && !arm_is_secure_below_el3(env)) { /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ return 2; } /* CPTR_EL3 : present in v8 */ if (extract32(env->cp15.cptr_el[3], 10, 1)) { /* Trap all FP ops to EL3 */ return 3; } #endif return 0; } ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, bool secstate, bool priv) { ARMMMUIdx mmu_idx = ARM_MMU_IDX_M; if (priv) { mmu_idx |= ARM_MMU_IDX_M_PRIV; } if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) { mmu_idx |= ARM_MMU_IDX_M_NEGPRI; } if (secstate) { mmu_idx |= ARM_MMU_IDX_M_S; } return mmu_idx; } /* Return the MMU index for a v7M CPU in the specified security state */ ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) { bool priv = arm_current_el(env) != 0; return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv); } int cpu_mmu_index(CPUARMState *env, bool ifetch) { int el = arm_current_el(env); if (arm_feature(env, ARM_FEATURE_M)) { ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); return arm_to_core_mmu_idx(mmu_idx); } if (el < 2 && arm_is_secure_below_el3(env)) { return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el); } return el; } void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, target_ulong *cs_base, uint32_t *pflags) { ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); int current_el = arm_current_el(env); int fp_el = fp_exception_el(env, current_el); uint32_t flags = 0; if (is_a64(env)) { ARMCPU *cpu = arm_env_get_cpu(env); *pc = env->pc; flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); /* Get control bits for tagged addresses */ flags = FIELD_DP32(flags, TBFLAG_A64, TBI0, arm_regime_tbi0(env, mmu_idx)); flags = FIELD_DP32(flags, TBFLAG_A64, TBI1, arm_regime_tbi1(env, mmu_idx)); if (cpu_isar_feature(aa64_sve, cpu)) { int sve_el = sve_exception_el(env, current_el); uint32_t zcr_len; /* If SVE is disabled, but FP is enabled, * then the effective len is 0. */ if (sve_el != 0 && fp_el == 0) { zcr_len = 0; } else { zcr_len = sve_zcr_len_for_el(env, current_el); } flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); } if (cpu_isar_feature(aa64_pauth, cpu)) { /* * In order to save space in flags, we record only whether * pauth is "inactive", meaning all insns are implemented as * a nop, or "active" when some action must be performed. * The decision of which action to take is left to a helper. */ uint64_t sctlr; if (current_el == 0) { /* FIXME: ARMv8.1-VHE S2 translation regime. */ sctlr = env->cp15.sctlr_el[1]; } else { sctlr = env->cp15.sctlr_el[current_el]; } if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); } } } else { *pc = env->regs[15]; flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) || arm_el_is_aa64(env, 1)) { flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); } flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar); } flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine * states defined in the ARM ARM for software singlestep: * SS_ACTIVE PSTATE.SS State * 0 x Inactive (the TB flag for SS is always 0) * 1 0 Active-pending * 1 1 Active-not-pending */ if (arm_singlestep_active(env)) { flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); if (is_a64(env)) { if (env->pstate & PSTATE_SS) { flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); } } else { if (env->uncached_cpsr & PSTATE_SS) { flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); } } } if (arm_cpu_data_is_big_endian(env)) { flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); } flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); if (arm_v7m_is_handler_mode(env)) { flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); } /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is * suppressing them because the requested execution priority is less than 0. */ if (arm_feature(env, ARM_FEATURE_V8) && arm_feature(env, ARM_FEATURE_M) && !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); } *pflags = flags; *cs_base = 0; } #ifdef TARGET_AARCH64 /* * The manual says that when SVE is enabled and VQ is widened the * implementation is allowed to zero the previously inaccessible * portion of the registers. The corollary to that is that when * SVE is enabled and VQ is narrowed we are also allowed to zero * the now inaccessible portion of the registers. * * The intent of this is that no predicate bit beyond VQ is ever set. * Which means that some operations on predicate registers themselves * may operate on full uint64_t or even unrolled across the maximum * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally * may well be cheaper than conditionals to restrict the operation * to the relevant portion of a uint16_t[16]. */ void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { int i, j; uint64_t pmask; assert(vq >= 1 && vq <= ARM_MAX_VQ); assert(vq <= arm_env_get_cpu(env)->sve_max_vq); /* Zap the high bits of the zregs. */ for (i = 0; i < 32; i++) { memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); } /* Zap the high bits of the pregs and ffr. */ pmask = 0; if (vq & 3) { pmask = ~(-1ULL << (16 * (vq & 3))); } for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { for (i = 0; i < 17; ++i) { env->vfp.pregs[i].p[j] &= pmask; } pmask = 0; } } /* * Notice a change in SVE vector size when changing EL. */ void aarch64_sve_change_el(CPUARMState *env, int old_el, int new_el, bool el0_a64) { ARMCPU *cpu = arm_env_get_cpu(env); int old_len, new_len; bool old_a64, new_a64; /* Nothing to do if no SVE. */ if (!cpu_isar_feature(aa64_sve, cpu)) { return; } /* Nothing to do if FP is disabled in either EL. */ if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { return; } /* * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped * at ELx, or not available because the EL is in AArch32 state, then * for all purposes other than a direct read, the ZCR_ELx.LEN field * has an effective value of 0". * * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). * If we ignore aa32 state, we would fail to see the vq4->vq0 transition * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that * we already have the correct register contents when encountering the * vq0->vq0 transition between EL0->EL1. */ old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; old_len = (old_a64 && !sve_exception_el(env, old_el) ? sve_zcr_len_for_el(env, old_el) : 0); new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; new_len = (new_a64 && !sve_exception_el(env, new_el) ? sve_zcr_len_for_el(env, new_el) : 0); /* When changing vector length, clear inaccessible state. */ if (new_len < old_len) { aarch64_sve_narrow_vq(env, new_len + 1); } } #endif