/* * Alpha emulation cpu helpers for qemu. * * Copyright (c) 2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "cpu.h" #include "exec/exec-all.h" #include "fpu/softfloat-types.h" #include "exec/helper-proto.h" #include "qemu/qemu-print.h" #define CONVERT_BIT(X, SRC, DST) \ (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC)) uint64_t cpu_alpha_load_fpcr(CPUAlphaState *env) { return (uint64_t)env->fpcr << 32; } void cpu_alpha_store_fpcr(CPUAlphaState *env, uint64_t val) { static const uint8_t rm_map[] = { [FPCR_DYN_NORMAL >> FPCR_DYN_SHIFT] = float_round_nearest_even, [FPCR_DYN_CHOPPED >> FPCR_DYN_SHIFT] = float_round_to_zero, [FPCR_DYN_MINUS >> FPCR_DYN_SHIFT] = float_round_down, [FPCR_DYN_PLUS >> FPCR_DYN_SHIFT] = float_round_up, }; uint32_t fpcr = val >> 32; uint32_t t = 0; /* Record the raw value before adjusting for linux-user. */ env->fpcr = fpcr; #ifdef CONFIG_USER_ONLY /* * Override some of these bits with the contents of ENV->SWCR. * In system mode, some of these would trap to the kernel, at * which point the kernel's handler would emulate and apply * the software exception mask. */ uint32_t soft_fpcr = alpha_ieee_swcr_to_fpcr(env->swcr) >> 32; fpcr |= soft_fpcr & (FPCR_STATUS_MASK | FPCR_DNZ); /* * The IOV exception is disabled by the kernel with SWCR_TRAP_ENABLE_INV, * which got mapped by alpha_ieee_swcr_to_fpcr to FPCR_INVD. * Add FPCR_IOV to fpcr_exc_enable so that it is handled identically. */ t |= CONVERT_BIT(soft_fpcr, FPCR_INVD, FPCR_IOV); #endif t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE); t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF); t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF); t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE); t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV); env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK; env->fpcr_dyn_round = rm_map[(fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT]; env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0; t = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ); #ifdef CONFIG_USER_ONLY t |= (env->swcr & SWCR_MAP_UMZ) != 0; #endif env->fpcr_flush_to_zero = t; } uint64_t helper_load_fpcr(CPUAlphaState *env) { return cpu_alpha_load_fpcr(env); } void helper_store_fpcr(CPUAlphaState *env, uint64_t val) { cpu_alpha_store_fpcr(env, val); } static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg) { #ifndef CONFIG_USER_ONLY if (env->flags & ENV_FLAG_PAL_MODE) { if (reg >= 8 && reg <= 14) { return &env->shadow[reg - 8]; } else if (reg == 25) { return &env->shadow[7]; } } #endif return &env->ir[reg]; } uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg) { return *cpu_alpha_addr_gr(env, reg); } void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val) { *cpu_alpha_addr_gr(env, reg) = val; } #if defined(CONFIG_USER_ONLY) void alpha_cpu_record_sigsegv(CPUState *cs, vaddr address, MMUAccessType access_type, bool maperr, uintptr_t retaddr) { AlphaCPU *cpu = ALPHA_CPU(cs); target_ulong mmcsr, cause; /* Assuming !maperr, infer the missing protection. */ switch (access_type) { case MMU_DATA_LOAD: mmcsr = MM_K_FOR; cause = 0; break; case MMU_DATA_STORE: mmcsr = MM_K_FOW; cause = 1; break; case MMU_INST_FETCH: mmcsr = MM_K_FOE; cause = -1; break; default: g_assert_not_reached(); } if (maperr) { if (address < BIT_ULL(TARGET_VIRT_ADDR_SPACE_BITS - 1)) { /* Userspace address, therefore page not mapped. */ mmcsr = MM_K_TNV; } else { /* Kernel or invalid address. */ mmcsr = MM_K_ACV; } } /* Record the arguments that PALcode would give to the kernel. */ cpu->env.trap_arg0 = address; cpu->env.trap_arg1 = mmcsr; cpu->env.trap_arg2 = cause; } #else /* Returns the OSF/1 entMM failure indication, or -1 on success. */ static int get_physical_address(CPUAlphaState *env, target_ulong addr, int prot_need, int mmu_idx, target_ulong *pphys, int *pprot) { CPUState *cs = env_cpu(env); target_long saddr = addr; target_ulong phys = 0; target_ulong L1pte, L2pte, L3pte; target_ulong pt, index; int prot = 0; int ret = MM_K_ACV; /* Handle physical accesses. */ if (mmu_idx == MMU_PHYS_IDX) { phys = addr; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; ret = -1; goto exit; } /* Ensure that the virtual address is properly sign-extended from the last implemented virtual address bit. */ if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) { goto exit; } /* Translate the superpage. */ /* ??? When we do more than emulate Unix PALcode, we'll need to determine which KSEG is actually active. */ if (saddr < 0 && ((saddr >> 41) & 3) == 2) { /* User-space cannot access KSEG addresses. */ if (mmu_idx != MMU_KERNEL_IDX) { goto exit; } /* For the benefit of the Typhoon chipset, move bit 40 to bit 43. We would not do this if the 48-bit KSEG is enabled. */ phys = saddr & ((1ull << 40) - 1); phys |= (saddr & (1ull << 40)) << 3; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; ret = -1; goto exit; } /* Interpret the page table exactly like PALcode does. */ pt = env->ptbr; /* TODO: rather than using ldq_phys() to read the page table we should * use address_space_ldq() so that we can handle the case when * the page table read gives a bus fault, rather than ignoring it. * For the existing code the zero data that ldq_phys will return for * an access to invalid memory will result in our treating the page * table as invalid, which may even be the right behaviour. */ /* L1 page table read. */ index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff; L1pte = ldq_phys(cs->as, pt + index*8); if (unlikely((L1pte & PTE_VALID) == 0)) { ret = MM_K_TNV; goto exit; } if (unlikely((L1pte & PTE_KRE) == 0)) { goto exit; } pt = L1pte >> 32 << TARGET_PAGE_BITS; /* L2 page table read. */ index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff; L2pte = ldq_phys(cs->as, pt + index*8); if (unlikely((L2pte & PTE_VALID) == 0)) { ret = MM_K_TNV; goto exit; } if (unlikely((L2pte & PTE_KRE) == 0)) { goto exit; } pt = L2pte >> 32 << TARGET_PAGE_BITS; /* L3 page table read. */ index = (addr >> TARGET_PAGE_BITS) & 0x3ff; L3pte = ldq_phys(cs->as, pt + index*8); phys = L3pte >> 32 << TARGET_PAGE_BITS; if (unlikely((L3pte & PTE_VALID) == 0)) { ret = MM_K_TNV; goto exit; } #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4 # error page bits out of date #endif /* Check access violations. */ if (L3pte & (PTE_KRE << mmu_idx)) { prot |= PAGE_READ | PAGE_EXEC; } if (L3pte & (PTE_KWE << mmu_idx)) { prot |= PAGE_WRITE; } if (unlikely((prot & prot_need) == 0 && prot_need)) { goto exit; } /* Check fault-on-operation violations. */ prot &= ~(L3pte >> 1); ret = -1; if (unlikely((prot & prot_need) == 0)) { ret = (prot_need & PAGE_EXEC ? MM_K_FOE : prot_need & PAGE_WRITE ? MM_K_FOW : prot_need & PAGE_READ ? MM_K_FOR : -1); } exit: *pphys = phys; *pprot = prot; return ret; } hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { AlphaCPU *cpu = ALPHA_CPU(cs); target_ulong phys; int prot, fail; fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot); return (fail >= 0 ? -1 : phys); } bool alpha_cpu_tlb_fill(CPUState *cs, vaddr addr, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr) { AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; target_ulong phys; int prot, fail; fail = get_physical_address(env, addr, 1 << access_type, mmu_idx, &phys, &prot); if (unlikely(fail >= 0)) { if (probe) { return false; } cs->exception_index = EXCP_MMFAULT; env->trap_arg0 = addr; env->trap_arg1 = fail; env->trap_arg2 = (access_type == MMU_DATA_LOAD ? 0ull : access_type == MMU_DATA_STORE ? 1ull : /* access_type == MMU_INST_FETCH */ -1ull); cpu_loop_exit_restore(cs, retaddr); } tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return true; } void alpha_cpu_do_interrupt(CPUState *cs) { AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; int i = cs->exception_index; if (qemu_loglevel_mask(CPU_LOG_INT)) { static int count; const char *name = "<unknown>"; switch (i) { case EXCP_RESET: name = "reset"; break; case EXCP_MCHK: name = "mchk"; break; case EXCP_SMP_INTERRUPT: name = "smp_interrupt"; break; case EXCP_CLK_INTERRUPT: name = "clk_interrupt"; break; case EXCP_DEV_INTERRUPT: name = "dev_interrupt"; break; case EXCP_MMFAULT: name = "mmfault"; break; case EXCP_UNALIGN: name = "unalign"; break; case EXCP_OPCDEC: name = "opcdec"; break; case EXCP_ARITH: name = "arith"; break; case EXCP_FEN: name = "fen"; break; case EXCP_CALL_PAL: name = "call_pal"; break; } qemu_log("INT %6d: %s(%#x) cpu=%d pc=%016" PRIx64 " sp=%016" PRIx64 "\n", ++count, name, env->error_code, cs->cpu_index, env->pc, env->ir[IR_SP]); } cs->exception_index = -1; switch (i) { case EXCP_RESET: i = 0x0000; break; case EXCP_MCHK: i = 0x0080; break; case EXCP_SMP_INTERRUPT: i = 0x0100; break; case EXCP_CLK_INTERRUPT: i = 0x0180; break; case EXCP_DEV_INTERRUPT: i = 0x0200; break; case EXCP_MMFAULT: i = 0x0280; break; case EXCP_UNALIGN: i = 0x0300; break; case EXCP_OPCDEC: i = 0x0380; break; case EXCP_ARITH: i = 0x0400; break; case EXCP_FEN: i = 0x0480; break; case EXCP_CALL_PAL: i = env->error_code; /* There are 64 entry points for both privileged and unprivileged, with bit 0x80 indicating unprivileged. Each entry point gets 64 bytes to do its job. */ if (i & 0x80) { i = 0x2000 + (i - 0x80) * 64; } else { i = 0x1000 + i * 64; } break; default: cpu_abort(cs, "Unhandled CPU exception"); } /* Remember where the exception happened. Emulate real hardware in that the low bit of the PC indicates PALmode. */ env->exc_addr = env->pc | (env->flags & ENV_FLAG_PAL_MODE); /* Continue execution at the PALcode entry point. */ env->pc = env->palbr + i; /* Switch to PALmode. */ env->flags |= ENV_FLAG_PAL_MODE; } bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; int idx = -1; /* We never take interrupts while in PALmode. */ if (env->flags & ENV_FLAG_PAL_MODE) { return false; } /* Fall through the switch, collecting the highest priority interrupt that isn't masked by the processor status IPL. */ /* ??? This hard-codes the OSF/1 interrupt levels. */ switch ((env->flags >> ENV_FLAG_PS_SHIFT) & PS_INT_MASK) { case 0 ... 3: if (interrupt_request & CPU_INTERRUPT_HARD) { idx = EXCP_DEV_INTERRUPT; } /* FALLTHRU */ case 4: if (interrupt_request & CPU_INTERRUPT_TIMER) { idx = EXCP_CLK_INTERRUPT; } /* FALLTHRU */ case 5: if (interrupt_request & CPU_INTERRUPT_SMP) { idx = EXCP_SMP_INTERRUPT; } /* FALLTHRU */ case 6: if (interrupt_request & CPU_INTERRUPT_MCHK) { idx = EXCP_MCHK; } } if (idx >= 0) { cs->exception_index = idx; env->error_code = 0; alpha_cpu_do_interrupt(cs); return true; } return false; } #endif /* !CONFIG_USER_ONLY */ void alpha_cpu_dump_state(CPUState *cs, FILE *f, int flags) { static const char linux_reg_names[31][4] = { "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", "t10", "t11", "ra", "t12", "at", "gp", "sp" }; AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; int i; qemu_fprintf(f, "PC " TARGET_FMT_lx " PS %02x\n", env->pc, extract32(env->flags, ENV_FLAG_PS_SHIFT, 8)); for (i = 0; i < 31; i++) { qemu_fprintf(f, "%-8s" TARGET_FMT_lx "%c", linux_reg_names[i], cpu_alpha_load_gr(env, i), (i % 3) == 2 ? '\n' : ' '); } qemu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n", env->lock_addr, env->lock_value); if (flags & CPU_DUMP_FPU) { for (i = 0; i < 31; i++) { qemu_fprintf(f, "f%-7d%016" PRIx64 "%c", i, env->fir[i], (i % 3) == 2 ? '\n' : ' '); } qemu_fprintf(f, "fpcr %016" PRIx64 "\n", cpu_alpha_load_fpcr(env)); } qemu_fprintf(f, "\n"); } /* This should only be called from translate, via gen_excp. We expect that ENV->PC has already been updated. */ void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error) { CPUState *cs = env_cpu(env); cs->exception_index = excp; env->error_code = error; cpu_loop_exit(cs); } /* This may be called from any of the helpers to set up EXCEPTION_INDEX. */ void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr, int excp, int error) { CPUState *cs = env_cpu(env); cs->exception_index = excp; env->error_code = error; if (retaddr) { cpu_restore_state(cs, retaddr, true); /* Floating-point exceptions (our only users) point to the next PC. */ env->pc += 4; } cpu_loop_exit(cs); } void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr, int exc, uint64_t mask) { env->trap_arg0 = exc; env->trap_arg1 = mask; dynamic_excp(env, retaddr, EXCP_ARITH, 0); }