/* * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Open Source and Linux Lab nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu.h" #include "dyngen-exec.h" #include "helpers.h" #include "host-utils.h" static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr); #define ALIGNED_ONLY #define MMUSUFFIX _mmu #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" static void do_restore_state(void *pc_ptr) { TranslationBlock *tb; uint32_t pc = (uint32_t)(intptr_t)pc_ptr; tb = tb_find_pc(pc); if (tb) { cpu_restore_state(tb, env, pc); } } static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) && !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) { do_restore_state(retaddr); HELPER(exception_cause_vaddr)( env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr); } } void tlb_fill(CPUState *env1, target_ulong vaddr, int is_write, int mmu_idx, void *retaddr) { CPUState *saved_env = env; env = env1; { uint32_t paddr; uint32_t page_size; unsigned access; int ret = xtensa_get_physical_addr(env, vaddr, is_write, mmu_idx, &paddr, &page_size, &access); qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__, vaddr, is_write, mmu_idx, paddr, ret); if (ret == 0) { tlb_set_page(env, vaddr & TARGET_PAGE_MASK, paddr & TARGET_PAGE_MASK, access, mmu_idx, page_size); } else { do_restore_state(retaddr); HELPER(exception_cause_vaddr)(env->pc, ret, vaddr); } } env = saved_env; } void HELPER(exception)(uint32_t excp) { env->exception_index = excp; cpu_loop_exit(env); } void HELPER(exception_cause)(uint32_t pc, uint32_t cause) { uint32_t vector; env->pc = pc; if (env->sregs[PS] & PS_EXCM) { if (env->config->ndepc) { env->sregs[DEPC] = pc; } else { env->sregs[EPC1] = pc; } vector = EXC_DOUBLE; } else { env->sregs[EPC1] = pc; vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL; } env->sregs[EXCCAUSE] = cause; env->sregs[PS] |= PS_EXCM; HELPER(exception)(vector); } void HELPER(exception_cause_vaddr)(uint32_t pc, uint32_t cause, uint32_t vaddr) { env->sregs[EXCVADDR] = vaddr; HELPER(exception_cause)(pc, cause); } void debug_exception_env(CPUState *new_env, uint32_t cause) { if (xtensa_get_cintlevel(new_env) < new_env->config->debug_level) { env = new_env; HELPER(debug_exception)(env->pc, cause); } } void HELPER(debug_exception)(uint32_t pc, uint32_t cause) { unsigned level = env->config->debug_level; env->pc = pc; env->sregs[DEBUGCAUSE] = cause; env->sregs[EPC1 + level - 1] = pc; env->sregs[EPS2 + level - 2] = env->sregs[PS]; env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM | (level << PS_INTLEVEL_SHIFT); HELPER(exception)(EXC_DEBUG); } uint32_t HELPER(nsa)(uint32_t v) { if (v & 0x80000000) { v = ~v; } return v ? clz32(v) - 1 : 31; } uint32_t HELPER(nsau)(uint32_t v) { return v ? clz32(v) : 32; } static void copy_window_from_phys(CPUState *env, uint32_t window, uint32_t phys, uint32_t n) { assert(phys < env->config->nareg); if (phys + n <= env->config->nareg) { memcpy(env->regs + window, env->phys_regs + phys, n * sizeof(uint32_t)); } else { uint32_t n1 = env->config->nareg - phys; memcpy(env->regs + window, env->phys_regs + phys, n1 * sizeof(uint32_t)); memcpy(env->regs + window + n1, env->phys_regs, (n - n1) * sizeof(uint32_t)); } } static void copy_phys_from_window(CPUState *env, uint32_t phys, uint32_t window, uint32_t n) { assert(phys < env->config->nareg); if (phys + n <= env->config->nareg) { memcpy(env->phys_regs + phys, env->regs + window, n * sizeof(uint32_t)); } else { uint32_t n1 = env->config->nareg - phys; memcpy(env->phys_regs + phys, env->regs + window, n1 * sizeof(uint32_t)); memcpy(env->phys_regs, env->regs + window + n1, (n - n1) * sizeof(uint32_t)); } } static inline unsigned windowbase_bound(unsigned a, const CPUState *env) { return a & (env->config->nareg / 4 - 1); } static inline unsigned windowstart_bit(unsigned a, const CPUState *env) { return 1 << windowbase_bound(a, env); } void xtensa_sync_window_from_phys(CPUState *env) { copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16); } void xtensa_sync_phys_from_window(CPUState *env) { copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16); } static void rotate_window_abs(uint32_t position) { xtensa_sync_phys_from_window(env); env->sregs[WINDOW_BASE] = windowbase_bound(position, env); xtensa_sync_window_from_phys(env); } static void rotate_window(uint32_t delta) { rotate_window_abs(env->sregs[WINDOW_BASE] + delta); } void HELPER(wsr_windowbase)(uint32_t v) { rotate_window_abs(v); } void HELPER(entry)(uint32_t pc, uint32_t s, uint32_t imm) { int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT; if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n", pc, env->sregs[PS]); HELPER(exception_cause)(pc, ILLEGAL_INSTRUCTION_CAUSE); } else { env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3); rotate_window(callinc); env->sregs[WINDOW_START] |= windowstart_bit(env->sregs[WINDOW_BASE], env); } } void HELPER(window_check)(uint32_t pc, uint32_t w) { uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); uint32_t windowstart = env->sregs[WINDOW_START]; uint32_t m, n; if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) { return; } for (n = 1; ; ++n) { if (n > w) { return; } if (windowstart & windowstart_bit(windowbase + n, env)) { break; } } m = windowbase_bound(windowbase + n, env); rotate_window(n); env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | (windowbase << PS_OWB_SHIFT) | PS_EXCM; env->sregs[EPC1] = env->pc = pc; if (windowstart & windowstart_bit(m + 1, env)) { HELPER(exception)(EXC_WINDOW_OVERFLOW4); } else if (windowstart & windowstart_bit(m + 2, env)) { HELPER(exception)(EXC_WINDOW_OVERFLOW8); } else { HELPER(exception)(EXC_WINDOW_OVERFLOW12); } } uint32_t HELPER(retw)(uint32_t pc) { int n = (env->regs[0] >> 30) & 0x3; int m = 0; uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env); uint32_t windowstart = env->sregs[WINDOW_START]; uint32_t ret_pc = 0; if (windowstart & windowstart_bit(windowbase - 1, env)) { m = 1; } else if (windowstart & windowstart_bit(windowbase - 2, env)) { m = 2; } else if (windowstart & windowstart_bit(windowbase - 3, env)) { m = 3; } if (n == 0 || (m != 0 && m != n) || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) { qemu_log("Illegal retw instruction(pc = %08x), " "PS = %08x, m = %d, n = %d\n", pc, env->sregs[PS], m, n); HELPER(exception_cause)(pc, ILLEGAL_INSTRUCTION_CAUSE); } else { int owb = windowbase; ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff); rotate_window(-n); if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) { env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env); } else { /* window underflow */ env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) | (windowbase << PS_OWB_SHIFT) | PS_EXCM; env->sregs[EPC1] = env->pc = pc; if (n == 1) { HELPER(exception)(EXC_WINDOW_UNDERFLOW4); } else if (n == 2) { HELPER(exception)(EXC_WINDOW_UNDERFLOW8); } else if (n == 3) { HELPER(exception)(EXC_WINDOW_UNDERFLOW12); } } } return ret_pc; } void HELPER(rotw)(uint32_t imm4) { rotate_window(imm4); } void HELPER(restore_owb)(void) { rotate_window_abs((env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT); } void HELPER(movsp)(uint32_t pc) { if ((env->sregs[WINDOW_START] & (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) | windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) | windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) { HELPER(exception_cause)(pc, ALLOCA_CAUSE); } } void HELPER(wsr_lbeg)(uint32_t v) { if (env->sregs[LBEG] != v) { tb_invalidate_phys_page_range( env->sregs[LEND] - 1, env->sregs[LEND], 0); env->sregs[LBEG] = v; } } void HELPER(wsr_lend)(uint32_t v) { if (env->sregs[LEND] != v) { tb_invalidate_phys_page_range( env->sregs[LEND] - 1, env->sregs[LEND], 0); env->sregs[LEND] = v; tb_invalidate_phys_page_range( env->sregs[LEND] - 1, env->sregs[LEND], 0); } } void HELPER(dump_state)(void) { cpu_dump_state(env, stderr, fprintf, 0); } void HELPER(waiti)(uint32_t pc, uint32_t intlevel) { env->pc = pc; env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | (intlevel << PS_INTLEVEL_SHIFT); check_interrupts(env); if (env->pending_irq_level) { cpu_loop_exit(env); return; } env->halt_clock = qemu_get_clock_ns(vm_clock); env->halted = 1; if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) { xtensa_rearm_ccompare_timer(env); } HELPER(exception)(EXCP_HLT); } void HELPER(timer_irq)(uint32_t id, uint32_t active) { xtensa_timer_irq(env, id, active); } void HELPER(advance_ccount)(uint32_t d) { xtensa_advance_ccount(env, d); } void HELPER(check_interrupts)(CPUState *env) { check_interrupts(env); } void HELPER(wsr_rasid)(uint32_t v) { v = (v & 0xffffff00) | 0x1; if (v != env->sregs[RASID]) { env->sregs[RASID] = v; tlb_flush(env, 1); } } static uint32_t get_page_size(const CPUState *env, bool dtlb, uint32_t way) { uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG]; switch (way) { case 4: return (tlbcfg >> 16) & 0x3; case 5: return (tlbcfg >> 20) & 0x1; case 6: return (tlbcfg >> 24) & 0x1; default: return 0; } } /*! * Get bit mask for the virtual address bits translated by the TLB way */ uint32_t xtensa_tlb_get_addr_mask(const CPUState *env, bool dtlb, uint32_t way) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { bool varway56 = dtlb ? env->config->dtlb.varway56 : env->config->itlb.varway56; switch (way) { case 4: return 0xfff00000 << get_page_size(env, dtlb, way) * 2; case 5: if (varway56) { return 0xf8000000 << get_page_size(env, dtlb, way); } else { return 0xf8000000; } case 6: if (varway56) { return 0xf0000000 << (1 - get_page_size(env, dtlb, way)); } else { return 0xf0000000; } default: return 0xfffff000; } } else { return REGION_PAGE_MASK; } } /*! * Get bit mask for the 'VPN without index' field. * See ISA, 4.6.5.6, data format for RxTLB0 */ static uint32_t get_vpn_mask(const CPUState *env, bool dtlb, uint32_t way) { if (way < 4) { bool is32 = (dtlb ? env->config->dtlb.nrefillentries : env->config->itlb.nrefillentries) == 32; return is32 ? 0xffff8000 : 0xffffc000; } else if (way == 4) { return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2; } else if (way <= 6) { uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way); bool varway56 = dtlb ? env->config->dtlb.varway56 : env->config->itlb.varway56; if (varway56) { return mask << (way == 5 ? 2 : 3); } else { return mask << 1; } } else { return 0xfffff000; } } /*! * Split virtual address into VPN (with index) and entry index * for the given TLB way */ void split_tlb_entry_spec_way(const CPUState *env, uint32_t v, bool dtlb, uint32_t *vpn, uint32_t wi, uint32_t *ei) { bool varway56 = dtlb ? env->config->dtlb.varway56 : env->config->itlb.varway56; if (!dtlb) { wi &= 7; } if (wi < 4) { bool is32 = (dtlb ? env->config->dtlb.nrefillentries : env->config->itlb.nrefillentries) == 32; *ei = (v >> 12) & (is32 ? 0x7 : 0x3); } else { switch (wi) { case 4: { uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2; *ei = (v >> eibase) & 0x3; } break; case 5: if (varway56) { uint32_t eibase = 27 + get_page_size(env, dtlb, wi); *ei = (v >> eibase) & 0x3; } else { *ei = (v >> 27) & 0x1; } break; case 6: if (varway56) { uint32_t eibase = 29 - get_page_size(env, dtlb, wi); *ei = (v >> eibase) & 0x7; } else { *ei = (v >> 28) & 0x1; } break; default: *ei = 0; break; } } *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi); } /*! * Split TLB address into TLB way, entry index and VPN (with index). * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format */ static void split_tlb_entry_spec(uint32_t v, bool dtlb, uint32_t *vpn, uint32_t *wi, uint32_t *ei) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { *wi = v & (dtlb ? 0xf : 0x7); split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei); } else { *vpn = v & REGION_PAGE_MASK; *wi = 0; *ei = (v >> 29) & 0x7; } } static xtensa_tlb_entry *get_tlb_entry(uint32_t v, bool dtlb, uint32_t *pwi) { uint32_t vpn; uint32_t wi; uint32_t ei; split_tlb_entry_spec(v, dtlb, &vpn, &wi, &ei); if (pwi) { *pwi = wi; } return xtensa_tlb_get_entry(env, dtlb, wi, ei); } uint32_t HELPER(rtlb0)(uint32_t v, uint32_t dtlb) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { uint32_t wi; const xtensa_tlb_entry *entry = get_tlb_entry(v, dtlb, &wi); return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid; } else { return v & REGION_PAGE_MASK; } } uint32_t HELPER(rtlb1)(uint32_t v, uint32_t dtlb) { const xtensa_tlb_entry *entry = get_tlb_entry(v, dtlb, NULL); return entry->paddr | entry->attr; } void HELPER(itlb)(uint32_t v, uint32_t dtlb) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { uint32_t wi; xtensa_tlb_entry *entry = get_tlb_entry(v, dtlb, &wi); if (entry->variable && entry->asid) { tlb_flush_page(env, entry->vaddr); entry->asid = 0; } } } uint32_t HELPER(ptlb)(uint32_t v, uint32_t dtlb) { if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { uint32_t wi; uint32_t ei; uint8_t ring; int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring); switch (res) { case 0: if (ring >= xtensa_get_ring(env)) { return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8); } break; case INST_TLB_MULTI_HIT_CAUSE: case LOAD_STORE_TLB_MULTI_HIT_CAUSE: HELPER(exception_cause_vaddr)(env->pc, res, v); break; } return 0; } else { return (v & REGION_PAGE_MASK) | 0x1; } } void xtensa_tlb_set_entry(CPUState *env, bool dtlb, unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte) { xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei); if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) { if (entry->variable) { if (entry->asid) { tlb_flush_page(env, entry->vaddr); } entry->vaddr = vpn; entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi); entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff; entry->attr = pte & 0xf; } else { qemu_log("%s %d, %d, %d trying to set immutable entry\n", __func__, dtlb, wi, ei); } } else { tlb_flush_page(env, entry->vaddr); if (xtensa_option_enabled(env->config, XTENSA_OPTION_REGION_TRANSLATION)) { entry->paddr = pte & REGION_PAGE_MASK; } entry->attr = pte & 0xf; } } void HELPER(wtlb)(uint32_t p, uint32_t v, uint32_t dtlb) { uint32_t vpn; uint32_t wi; uint32_t ei; split_tlb_entry_spec(v, dtlb, &vpn, &wi, &ei); xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p); } void HELPER(wsr_ibreakenable)(uint32_t v) { uint32_t change = v ^ env->sregs[IBREAKENABLE]; unsigned i; for (i = 0; i < env->config->nibreak; ++i) { if (change & (1 << i)) { tb_invalidate_phys_page_range( env->sregs[IBREAKA + i], env->sregs[IBREAKA + i] + 1, 0); } } env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1); } void HELPER(wsr_ibreaka)(uint32_t i, uint32_t v) { if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) { tb_invalidate_phys_page_range( env->sregs[IBREAKA + i], env->sregs[IBREAKA + i] + 1, 0); tb_invalidate_phys_page_range(v, v + 1, 0); } env->sregs[IBREAKA + i] = v; } static void set_dbreak(unsigned i, uint32_t dbreaka, uint32_t dbreakc) { int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; uint32_t mask = dbreakc | ~DBREAKC_MASK; if (env->cpu_watchpoint[i]) { cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]); } if (dbreakc & DBREAKC_SB) { flags |= BP_MEM_WRITE; } if (dbreakc & DBREAKC_LB) { flags |= BP_MEM_READ; } /* contiguous mask after inversion is one less than some power of 2 */ if ((~mask + 1) & ~mask) { qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc); /* cut mask after the first zero bit */ mask = 0xffffffff << (32 - clo32(mask)); } if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1, flags, &env->cpu_watchpoint[i])) { env->cpu_watchpoint[i] = NULL; qemu_log("Failed to set data breakpoint at 0x%08x/%d\n", dbreaka & mask, ~mask + 1); } } void HELPER(wsr_dbreaka)(uint32_t i, uint32_t v) { uint32_t dbreakc = env->sregs[DBREAKC + i]; if ((dbreakc & DBREAKC_SB_LB) && env->sregs[DBREAKA + i] != v) { set_dbreak(i, v, dbreakc); } env->sregs[DBREAKA + i] = v; } void HELPER(wsr_dbreakc)(uint32_t i, uint32_t v) { if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) { if (v & DBREAKC_SB_LB) { set_dbreak(i, env->sregs[DBREAKA + i], v); } else { if (env->cpu_watchpoint[i]) { cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]); env->cpu_watchpoint[i] = NULL; } } } env->sregs[DBREAKC + i] = v; }