/* * S/390 helpers * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2011 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include "cpu.h" #include "gdbstub.h" #include "qemu-common.h" #include "qemu-timer.h" #ifndef CONFIG_USER_ONLY #include "sysemu.h" #endif //#define DEBUG_S390 //#define DEBUG_S390_PTE //#define DEBUG_S390_STDOUT #ifdef DEBUG_S390 #ifdef DEBUG_S390_STDOUT #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); \ qemu_log(fmt, ##__VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { qemu_log(fmt, ## __VA_ARGS__); } while (0) #endif #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #ifdef DEBUG_S390_PTE #define PTE_DPRINTF DPRINTF #else #define PTE_DPRINTF(fmt, ...) \ do { } while (0) #endif #ifndef CONFIG_USER_ONLY static void s390x_tod_timer(void *opaque) { CPUState *env = opaque; env->pending_int |= INTERRUPT_TOD; cpu_interrupt(env, CPU_INTERRUPT_HARD); } static void s390x_cpu_timer(void *opaque) { CPUState *env = opaque; env->pending_int |= INTERRUPT_CPUTIMER; cpu_interrupt(env, CPU_INTERRUPT_HARD); } #endif CPUS390XState *cpu_s390x_init(const char *cpu_model) { CPUS390XState *env; #if !defined (CONFIG_USER_ONLY) struct tm tm; #endif static int inited = 0; static int cpu_num = 0; env = g_malloc0(sizeof(CPUS390XState)); cpu_exec_init(env); if (tcg_enabled() && !inited) { inited = 1; s390x_translate_init(); } #if !defined(CONFIG_USER_ONLY) qemu_get_timedate(&tm, 0); env->tod_offset = TOD_UNIX_EPOCH + (time2tod(mktimegm(&tm)) * 1000000000ULL); env->tod_basetime = 0; env->tod_timer = qemu_new_timer_ns(vm_clock, s390x_tod_timer, env); env->cpu_timer = qemu_new_timer_ns(vm_clock, s390x_cpu_timer, env); #endif env->cpu_model_str = cpu_model; env->cpu_num = cpu_num++; env->ext_index = -1; cpu_reset(env); qemu_init_vcpu(env); return env; } #if defined(CONFIG_USER_ONLY) void do_interrupt (CPUState *env) { env->exception_index = -1; } int cpu_s390x_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx) { /* fprintf(stderr,"%s: address 0x%lx rw %d mmu_idx %d\n", __FUNCTION__, address, rw, mmu_idx); */ env->exception_index = EXCP_ADDR; env->__excp_addr = address; /* FIXME: find out how this works on a real machine */ return 1; } #endif /* CONFIG_USER_ONLY */ void cpu_reset(CPUS390XState *env) { if (qemu_loglevel_mask(CPU_LOG_RESET)) { qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); log_cpu_state(env, 0); } memset(env, 0, offsetof(CPUS390XState, breakpoints)); /* FIXME: reset vector? */ tlb_flush(env, 1); s390_add_running_cpu(env); } #ifndef CONFIG_USER_ONLY /* Ensure to exit the TB after this call! */ static void trigger_pgm_exception(CPUState *env, uint32_t code, uint32_t ilc) { env->exception_index = EXCP_PGM; env->int_pgm_code = code; env->int_pgm_ilc = ilc; } static int trans_bits(CPUState *env, uint64_t mode) { int bits = 0; switch (mode) { case PSW_ASC_PRIMARY: bits = 1; break; case PSW_ASC_SECONDARY: bits = 2; break; case PSW_ASC_HOME: bits = 3; break; default: cpu_abort(env, "unknown asc mode\n"); break; } return bits; } static void trigger_prot_fault(CPUState *env, target_ulong vaddr, uint64_t mode) { int ilc = ILC_LATER_INC_2; int bits = trans_bits(env, mode) | 4; DPRINTF("%s: vaddr=%016" PRIx64 " bits=%d\n", __FUNCTION__, vaddr, bits); stq_phys(env->psa + offsetof(LowCore, trans_exc_code), vaddr | bits); trigger_pgm_exception(env, PGM_PROTECTION, ilc); } static void trigger_page_fault(CPUState *env, target_ulong vaddr, uint32_t type, uint64_t asc, int rw) { int ilc = ILC_LATER; int bits = trans_bits(env, asc); if (rw == 2) { /* code has is undefined ilc */ ilc = 2; } DPRINTF("%s: vaddr=%016" PRIx64 " bits=%d\n", __FUNCTION__, vaddr, bits); stq_phys(env->psa + offsetof(LowCore, trans_exc_code), vaddr | bits); trigger_pgm_exception(env, type, ilc); } static int mmu_translate_asce(CPUState *env, target_ulong vaddr, uint64_t asc, uint64_t asce, int level, target_ulong *raddr, int *flags, int rw) { uint64_t offs = 0; uint64_t origin; uint64_t new_asce; PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __FUNCTION__, asce); if (((level != _ASCE_TYPE_SEGMENT) && (asce & _REGION_ENTRY_INV)) || ((level == _ASCE_TYPE_SEGMENT) && (asce & _SEGMENT_ENTRY_INV))) { /* XXX different regions have different faults */ DPRINTF("%s: invalid region\n", __FUNCTION__); trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw); return -1; } if ((level <= _ASCE_TYPE_MASK) && ((asce & _ASCE_TYPE_MASK) != level)) { trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw); return -1; } if (asce & _ASCE_REAL_SPACE) { /* direct mapping */ *raddr = vaddr; return 0; } origin = asce & _ASCE_ORIGIN; switch (level) { case _ASCE_TYPE_REGION1 + 4: offs = (vaddr >> 50) & 0x3ff8; break; case _ASCE_TYPE_REGION1: offs = (vaddr >> 39) & 0x3ff8; break; case _ASCE_TYPE_REGION2: offs = (vaddr >> 28) & 0x3ff8; break; case _ASCE_TYPE_REGION3: offs = (vaddr >> 17) & 0x3ff8; break; case _ASCE_TYPE_SEGMENT: offs = (vaddr >> 9) & 0x07f8; origin = asce & _SEGMENT_ENTRY_ORIGIN; break; } /* XXX region protection flags */ /* *flags &= ~PAGE_WRITE */ new_asce = ldq_phys(origin + offs); PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n", __FUNCTION__, origin, offs, new_asce); if (level != _ASCE_TYPE_SEGMENT) { /* yet another region */ return mmu_translate_asce(env, vaddr, asc, new_asce, level - 4, raddr, flags, rw); } /* PTE */ if (new_asce & _PAGE_INVALID) { DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __FUNCTION__, new_asce); trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw); return -1; } if (new_asce & _PAGE_RO) { *flags &= ~PAGE_WRITE; } *raddr = new_asce & _ASCE_ORIGIN; PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __FUNCTION__, new_asce); return 0; } static int mmu_translate_asc(CPUState *env, target_ulong vaddr, uint64_t asc, target_ulong *raddr, int *flags, int rw) { uint64_t asce = 0; int level, new_level; int r; switch (asc) { case PSW_ASC_PRIMARY: PTE_DPRINTF("%s: asc=primary\n", __FUNCTION__); asce = env->cregs[1]; break; case PSW_ASC_SECONDARY: PTE_DPRINTF("%s: asc=secondary\n", __FUNCTION__); asce = env->cregs[7]; break; case PSW_ASC_HOME: PTE_DPRINTF("%s: asc=home\n", __FUNCTION__); asce = env->cregs[13]; break; } switch (asce & _ASCE_TYPE_MASK) { case _ASCE_TYPE_REGION1: break; case _ASCE_TYPE_REGION2: if (vaddr & 0xffe0000000000000ULL) { DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 " 0xffe0000000000000ULL\n", __FUNCTION__, vaddr); trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw); return -1; } break; case _ASCE_TYPE_REGION3: if (vaddr & 0xfffffc0000000000ULL) { DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 " 0xfffffc0000000000ULL\n", __FUNCTION__, vaddr); trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw); return -1; } break; case _ASCE_TYPE_SEGMENT: if (vaddr & 0xffffffff80000000ULL) { DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 " 0xffffffff80000000ULL\n", __FUNCTION__, vaddr); trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw); return -1; } break; } /* fake level above current */ level = asce & _ASCE_TYPE_MASK; new_level = level + 4; asce = (asce & ~_ASCE_TYPE_MASK) | (new_level & _ASCE_TYPE_MASK); r = mmu_translate_asce(env, vaddr, asc, asce, new_level, raddr, flags, rw); if ((rw == 1) && !(*flags & PAGE_WRITE)) { trigger_prot_fault(env, vaddr, asc); return -1; } return r; } int mmu_translate(CPUState *env, target_ulong vaddr, int rw, uint64_t asc, target_ulong *raddr, int *flags) { int r = -1; uint8_t *sk; *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; vaddr &= TARGET_PAGE_MASK; if (!(env->psw.mask & PSW_MASK_DAT)) { *raddr = vaddr; r = 0; goto out; } switch (asc) { case PSW_ASC_PRIMARY: case PSW_ASC_HOME: r = mmu_translate_asc(env, vaddr, asc, raddr, flags, rw); break; case PSW_ASC_SECONDARY: /* * Instruction: Primary * Data: Secondary */ if (rw == 2) { r = mmu_translate_asc(env, vaddr, PSW_ASC_PRIMARY, raddr, flags, rw); *flags &= ~(PAGE_READ | PAGE_WRITE); } else { r = mmu_translate_asc(env, vaddr, PSW_ASC_SECONDARY, raddr, flags, rw); *flags &= ~(PAGE_EXEC); } break; case PSW_ASC_ACCREG: default: hw_error("guest switched to unknown asc mode\n"); break; } out: /* Convert real address -> absolute address */ if (*raddr < 0x2000) { *raddr = *raddr + env->psa; } if (*raddr <= ram_size) { sk = &env->storage_keys[*raddr / TARGET_PAGE_SIZE]; if (*flags & PAGE_READ) { *sk |= SK_R; } if (*flags & PAGE_WRITE) { *sk |= SK_C; } } return r; } int cpu_s390x_handle_mmu_fault (CPUState *env, target_ulong _vaddr, int rw, int mmu_idx) { uint64_t asc = env->psw.mask & PSW_MASK_ASC; target_ulong vaddr, raddr; int prot; DPRINTF("%s: address 0x%" PRIx64 " rw %d mmu_idx %d\n", __FUNCTION__, _vaddr, rw, mmu_idx); _vaddr &= TARGET_PAGE_MASK; vaddr = _vaddr; /* 31-Bit mode */ if (!(env->psw.mask & PSW_MASK_64)) { vaddr &= 0x7fffffff; } if (mmu_translate(env, vaddr, rw, asc, &raddr, &prot)) { /* Translation ended in exception */ return 1; } /* check out of RAM access */ if (raddr > (ram_size + virtio_size)) { DPRINTF("%s: aaddr %" PRIx64 " > ram_size %" PRIx64 "\n", __FUNCTION__, (uint64_t)aaddr, (uint64_t)ram_size); trigger_pgm_exception(env, PGM_ADDRESSING, ILC_LATER); return 1; } DPRINTF("%s: set tlb %" PRIx64 " -> %" PRIx64 " (%x)\n", __FUNCTION__, (uint64_t)vaddr, (uint64_t)raddr, prot); tlb_set_page(env, _vaddr, raddr, prot, mmu_idx, TARGET_PAGE_SIZE); return 0; } target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong vaddr) { target_ulong raddr; int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; int old_exc = env->exception_index; uint64_t asc = env->psw.mask & PSW_MASK_ASC; /* 31-Bit mode */ if (!(env->psw.mask & PSW_MASK_64)) { vaddr &= 0x7fffffff; } mmu_translate(env, vaddr, 2, asc, &raddr, &prot); env->exception_index = old_exc; return raddr; } void load_psw(CPUState *env, uint64_t mask, uint64_t addr) { if (mask & PSW_MASK_WAIT) { if (!(mask & (PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK))) { if (s390_del_running_cpu(env) == 0) { #ifndef CONFIG_USER_ONLY qemu_system_shutdown_request(); #endif } } env->halted = 1; env->exception_index = EXCP_HLT; } env->psw.addr = addr; env->psw.mask = mask; env->cc_op = (mask >> 13) & 3; } static uint64_t get_psw_mask(CPUState *env) { uint64_t r = env->psw.mask; env->cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr); r &= ~(3ULL << 13); assert(!(env->cc_op & ~3)); r |= env->cc_op << 13; return r; } static void do_svc_interrupt(CPUState *env) { uint64_t mask, addr; LowCore *lowcore; target_phys_addr_t len = TARGET_PAGE_SIZE; lowcore = cpu_physical_memory_map(env->psa, &len, 1); lowcore->svc_code = cpu_to_be16(env->int_svc_code); lowcore->svc_ilc = cpu_to_be16(env->int_svc_ilc); lowcore->svc_old_psw.mask = cpu_to_be64(get_psw_mask(env)); lowcore->svc_old_psw.addr = cpu_to_be64(env->psw.addr + (env->int_svc_ilc)); mask = be64_to_cpu(lowcore->svc_new_psw.mask); addr = be64_to_cpu(lowcore->svc_new_psw.addr); cpu_physical_memory_unmap(lowcore, len, 1, len); load_psw(env, mask, addr); } static void do_program_interrupt(CPUState *env) { uint64_t mask, addr; LowCore *lowcore; target_phys_addr_t len = TARGET_PAGE_SIZE; int ilc = env->int_pgm_ilc; switch (ilc) { case ILC_LATER: ilc = get_ilc(ldub_code(env->psw.addr)); break; case ILC_LATER_INC: ilc = get_ilc(ldub_code(env->psw.addr)); env->psw.addr += ilc * 2; break; case ILC_LATER_INC_2: ilc = get_ilc(ldub_code(env->psw.addr)) * 2; env->psw.addr += ilc; break; } qemu_log("%s: code=0x%x ilc=%d\n", __FUNCTION__, env->int_pgm_code, ilc); lowcore = cpu_physical_memory_map(env->psa, &len, 1); lowcore->pgm_ilc = cpu_to_be16(ilc); lowcore->pgm_code = cpu_to_be16(env->int_pgm_code); lowcore->program_old_psw.mask = cpu_to_be64(get_psw_mask(env)); lowcore->program_old_psw.addr = cpu_to_be64(env->psw.addr); mask = be64_to_cpu(lowcore->program_new_psw.mask); addr = be64_to_cpu(lowcore->program_new_psw.addr); cpu_physical_memory_unmap(lowcore, len, 1, len); DPRINTF("%s: %x %x %" PRIx64 " %" PRIx64 "\n", __FUNCTION__, env->int_pgm_code, ilc, env->psw.mask, env->psw.addr); load_psw(env, mask, addr); } #define VIRTIO_SUBCODE_64 0x0D00 static void do_ext_interrupt(CPUState *env) { uint64_t mask, addr; LowCore *lowcore; target_phys_addr_t len = TARGET_PAGE_SIZE; ExtQueue *q; if (!(env->psw.mask & PSW_MASK_EXT)) { cpu_abort(env, "Ext int w/o ext mask\n"); } if (env->ext_index < 0 || env->ext_index > MAX_EXT_QUEUE) { cpu_abort(env, "Ext queue overrun: %d\n", env->ext_index); } q = &env->ext_queue[env->ext_index]; lowcore = cpu_physical_memory_map(env->psa, &len, 1); lowcore->ext_int_code = cpu_to_be16(q->code); lowcore->ext_params = cpu_to_be32(q->param); lowcore->ext_params2 = cpu_to_be64(q->param64); lowcore->external_old_psw.mask = cpu_to_be64(get_psw_mask(env)); lowcore->external_old_psw.addr = cpu_to_be64(env->psw.addr); lowcore->cpu_addr = cpu_to_be16(env->cpu_num | VIRTIO_SUBCODE_64); mask = be64_to_cpu(lowcore->external_new_psw.mask); addr = be64_to_cpu(lowcore->external_new_psw.addr); cpu_physical_memory_unmap(lowcore, len, 1, len); env->ext_index--; if (env->ext_index == -1) { env->pending_int &= ~INTERRUPT_EXT; } DPRINTF("%s: %" PRIx64 " %" PRIx64 "\n", __FUNCTION__, env->psw.mask, env->psw.addr); load_psw(env, mask, addr); } void do_interrupt (CPUState *env) { qemu_log("%s: %d at pc=%" PRIx64 "\n", __FUNCTION__, env->exception_index, env->psw.addr); s390_add_running_cpu(env); /* handle external interrupts */ if ((env->psw.mask & PSW_MASK_EXT) && env->exception_index == -1) { if (env->pending_int & INTERRUPT_EXT) { /* code is already in env */ env->exception_index = EXCP_EXT; } else if (env->pending_int & INTERRUPT_TOD) { cpu_inject_ext(env, 0x1004, 0, 0); env->exception_index = EXCP_EXT; env->pending_int &= ~INTERRUPT_EXT; env->pending_int &= ~INTERRUPT_TOD; } else if (env->pending_int & INTERRUPT_CPUTIMER) { cpu_inject_ext(env, 0x1005, 0, 0); env->exception_index = EXCP_EXT; env->pending_int &= ~INTERRUPT_EXT; env->pending_int &= ~INTERRUPT_TOD; } } switch (env->exception_index) { case EXCP_PGM: do_program_interrupt(env); break; case EXCP_SVC: do_svc_interrupt(env); break; case EXCP_EXT: do_ext_interrupt(env); break; } env->exception_index = -1; if (!env->pending_int) { env->interrupt_request &= ~CPU_INTERRUPT_HARD; } } #endif /* CONFIG_USER_ONLY */