/* * MIPS emulation micro-operations for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * Copyright (c) 2006 Marius Groeger (FPU operations) * Copyright (c) 2007 Thiemo Seufer (64-bit FPU support) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include "exec.h" #include "host-utils.h" #ifndef CALL_FROM_TB0 #define CALL_FROM_TB0(func) func() #endif #ifndef CALL_FROM_TB1 #define CALL_FROM_TB1(func, arg0) func(arg0) #endif #ifndef CALL_FROM_TB1_CONST16 #define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0) #endif #ifndef CALL_FROM_TB2 #define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1) #endif #ifndef CALL_FROM_TB2_CONST16 #define CALL_FROM_TB2_CONST16(func, arg0, arg1) \ CALL_FROM_TB2(func, arg0, arg1) #endif #ifndef CALL_FROM_TB3 #define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2) #endif #ifndef CALL_FROM_TB4 #define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \ func(arg0, arg1, arg2, arg3) #endif #define REG 1 #include "op_template.c" #undef REG #define REG 2 #include "op_template.c" #undef REG #define REG 3 #include "op_template.c" #undef REG #define REG 4 #include "op_template.c" #undef REG #define REG 5 #include "op_template.c" #undef REG #define REG 6 #include "op_template.c" #undef REG #define REG 7 #include "op_template.c" #undef REG #define REG 8 #include "op_template.c" #undef REG #define REG 9 #include "op_template.c" #undef REG #define REG 10 #include "op_template.c" #undef REG #define REG 11 #include "op_template.c" #undef REG #define REG 12 #include "op_template.c" #undef REG #define REG 13 #include "op_template.c" #undef REG #define REG 14 #include "op_template.c" #undef REG #define REG 15 #include "op_template.c" #undef REG #define REG 16 #include "op_template.c" #undef REG #define REG 17 #include "op_template.c" #undef REG #define REG 18 #include "op_template.c" #undef REG #define REG 19 #include "op_template.c" #undef REG #define REG 20 #include "op_template.c" #undef REG #define REG 21 #include "op_template.c" #undef REG #define REG 22 #include "op_template.c" #undef REG #define REG 23 #include "op_template.c" #undef REG #define REG 24 #include "op_template.c" #undef REG #define REG 25 #include "op_template.c" #undef REG #define REG 26 #include "op_template.c" #undef REG #define REG 27 #include "op_template.c" #undef REG #define REG 28 #include "op_template.c" #undef REG #define REG 29 #include "op_template.c" #undef REG #define REG 30 #include "op_template.c" #undef REG #define REG 31 #include "op_template.c" #undef REG #define TN #include "op_template.c" #undef TN #define FREG 0 #include "fop_template.c" #undef FREG #define FREG 1 #include "fop_template.c" #undef FREG #define FREG 2 #include "fop_template.c" #undef FREG #define FREG 3 #include "fop_template.c" #undef FREG #define FREG 4 #include "fop_template.c" #undef FREG #define FREG 5 #include "fop_template.c" #undef FREG #define FREG 6 #include "fop_template.c" #undef FREG #define FREG 7 #include "fop_template.c" #undef FREG #define FREG 8 #include "fop_template.c" #undef FREG #define FREG 9 #include "fop_template.c" #undef FREG #define FREG 10 #include "fop_template.c" #undef FREG #define FREG 11 #include "fop_template.c" #undef FREG #define FREG 12 #include "fop_template.c" #undef FREG #define FREG 13 #include "fop_template.c" #undef FREG #define FREG 14 #include "fop_template.c" #undef FREG #define FREG 15 #include "fop_template.c" #undef FREG #define FREG 16 #include "fop_template.c" #undef FREG #define FREG 17 #include "fop_template.c" #undef FREG #define FREG 18 #include "fop_template.c" #undef FREG #define FREG 19 #include "fop_template.c" #undef FREG #define FREG 20 #include "fop_template.c" #undef FREG #define FREG 21 #include "fop_template.c" #undef FREG #define FREG 22 #include "fop_template.c" #undef FREG #define FREG 23 #include "fop_template.c" #undef FREG #define FREG 24 #include "fop_template.c" #undef FREG #define FREG 25 #include "fop_template.c" #undef FREG #define FREG 26 #include "fop_template.c" #undef FREG #define FREG 27 #include "fop_template.c" #undef FREG #define FREG 28 #include "fop_template.c" #undef FREG #define FREG 29 #include "fop_template.c" #undef FREG #define FREG 30 #include "fop_template.c" #undef FREG #define FREG 31 #include "fop_template.c" #undef FREG #define FTN #include "fop_template.c" #undef FTN void op_dup_T0 (void) { T2 = T0; RETURN(); } void op_load_HI (void) { T0 = env->HI[PARAM1][env->current_tc]; RETURN(); } void op_store_HI (void) { env->HI[PARAM1][env->current_tc] = T0; RETURN(); } void op_load_LO (void) { T0 = env->LO[PARAM1][env->current_tc]; RETURN(); } void op_store_LO (void) { env->LO[PARAM1][env->current_tc] = T0; RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.c" #undef MEMSUFFIX #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _kernel #include "op_mem.c" #undef MEMSUFFIX #endif /* Addresses computation */ void op_addr_add (void) { /* For compatibility with 32-bit code, data reference in user mode with Status_UX = 0 should be casted to 32-bit and sign extended. See the MIPS64 PRA manual, section 4.10. */ #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) if ((env->hflags & MIPS_HFLAG_UM) && !(env->CP0_Status & (1 << CP0St_UX))) T0 = (int64_t)(int32_t)(T0 + T1); else #endif T0 += T1; RETURN(); } /* Arithmetic */ void op_add (void) { T0 = (int32_t)((int32_t)T0 + (int32_t)T1); RETURN(); } void op_addo (void) { target_ulong tmp; tmp = (int32_t)T0; T0 = (int32_t)T0 + (int32_t)T1; if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 31) { /* operands of same sign, result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } T0 = (int32_t)T0; RETURN(); } void op_sub (void) { T0 = (int32_t)((int32_t)T0 - (int32_t)T1); RETURN(); } void op_subo (void) { target_ulong tmp; tmp = (int32_t)T0; T0 = (int32_t)T0 - (int32_t)T1; if (((tmp ^ T1) & (tmp ^ T0)) >> 31) { /* operands of different sign, first operand and result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } T0 = (int32_t)T0; RETURN(); } void op_mul (void) { T0 = (int32_t)((int32_t)T0 * (int32_t)T1); RETURN(); } #if HOST_LONG_BITS < 64 void op_div (void) { CALL_FROM_TB0(do_div); RETURN(); } #else void op_div (void) { if (T1 != 0) { env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1); env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1); } RETURN(); } #endif void op_divu (void) { if (T1 != 0) { env->LO[0][env->current_tc] = (int32_t)((uint32_t)T0 / (uint32_t)T1); env->HI[0][env->current_tc] = (int32_t)((uint32_t)T0 % (uint32_t)T1); } RETURN(); } #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) /* Arithmetic */ void op_dadd (void) { T0 += T1; RETURN(); } void op_daddo (void) { target_long tmp; tmp = T0; T0 += T1; if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 63) { /* operands of same sign, result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } RETURN(); } void op_dsub (void) { T0 -= T1; RETURN(); } void op_dsubo (void) { target_long tmp; tmp = T0; T0 = (int64_t)T0 - (int64_t)T1; if (((tmp ^ T1) & (tmp ^ T0)) >> 63) { /* operands of different sign, first operand and result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } RETURN(); } void op_dmul (void) { T0 = (int64_t)T0 * (int64_t)T1; RETURN(); } /* Those might call libgcc functions. */ void op_ddiv (void) { do_ddiv(); RETURN(); } #if TARGET_LONG_BITS > HOST_LONG_BITS void op_ddivu (void) { do_ddivu(); RETURN(); } #else void op_ddivu (void) { if (T1 != 0) { env->LO[0][env->current_tc] = T0 / T1; env->HI[0][env->current_tc] = T0 % T1; } RETURN(); } #endif #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */ /* Logical */ void op_and (void) { T0 &= T1; RETURN(); } void op_nor (void) { T0 = ~(T0 | T1); RETURN(); } void op_or (void) { T0 |= T1; RETURN(); } void op_xor (void) { T0 ^= T1; RETURN(); } void op_sll (void) { T0 = (int32_t)((uint32_t)T0 << T1); RETURN(); } void op_sra (void) { T0 = (int32_t)((int32_t)T0 >> T1); RETURN(); } void op_srl (void) { T0 = (int32_t)((uint32_t)T0 >> T1); RETURN(); } void op_rotr (void) { target_ulong tmp; if (T1) { tmp = (int32_t)((uint32_t)T0 << (0x20 - T1)); T0 = (int32_t)((uint32_t)T0 >> T1) | tmp; } RETURN(); } void op_sllv (void) { T0 = (int32_t)((uint32_t)T1 << ((uint32_t)T0 & 0x1F)); RETURN(); } void op_srav (void) { T0 = (int32_t)((int32_t)T1 >> (T0 & 0x1F)); RETURN(); } void op_srlv (void) { T0 = (int32_t)((uint32_t)T1 >> (T0 & 0x1F)); RETURN(); } void op_rotrv (void) { target_ulong tmp; T0 &= 0x1F; if (T0) { tmp = (int32_t)((uint32_t)T1 << (0x20 - T0)); T0 = (int32_t)((uint32_t)T1 >> T0) | tmp; } else T0 = T1; RETURN(); } void op_clo (void) { T0 = clo32(T0); RETURN(); } void op_clz (void) { T0 = clz32(T0); RETURN(); } #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) #if TARGET_LONG_BITS > HOST_LONG_BITS /* Those might call libgcc functions. */ void op_dsll (void) { CALL_FROM_TB0(do_dsll); RETURN(); } void op_dsll32 (void) { CALL_FROM_TB0(do_dsll32); RETURN(); } void op_dsra (void) { CALL_FROM_TB0(do_dsra); RETURN(); } void op_dsra32 (void) { CALL_FROM_TB0(do_dsra32); RETURN(); } void op_dsrl (void) { CALL_FROM_TB0(do_dsrl); RETURN(); } void op_dsrl32 (void) { CALL_FROM_TB0(do_dsrl32); RETURN(); } void op_drotr (void) { CALL_FROM_TB0(do_drotr); RETURN(); } void op_drotr32 (void) { CALL_FROM_TB0(do_drotr32); RETURN(); } void op_dsllv (void) { CALL_FROM_TB0(do_dsllv); RETURN(); } void op_dsrav (void) { CALL_FROM_TB0(do_dsrav); RETURN(); } void op_dsrlv (void) { CALL_FROM_TB0(do_dsrlv); RETURN(); } void op_drotrv (void) { CALL_FROM_TB0(do_drotrv); RETURN(); } void op_dclo (void) { CALL_FROM_TB0(do_dclo); RETURN(); } void op_dclz (void) { CALL_FROM_TB0(do_dclz); RETURN(); } #else /* TARGET_LONG_BITS > HOST_LONG_BITS */ void op_dsll (void) { T0 = T0 << T1; RETURN(); } void op_dsll32 (void) { T0 = T0 << (T1 + 32); RETURN(); } void op_dsra (void) { T0 = (int64_t)T0 >> T1; RETURN(); } void op_dsra32 (void) { T0 = (int64_t)T0 >> (T1 + 32); RETURN(); } void op_dsrl (void) { T0 = T0 >> T1; RETURN(); } void op_dsrl32 (void) { T0 = T0 >> (T1 + 32); RETURN(); } void op_drotr (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - T1); T0 = (T0 >> T1) | tmp; } RETURN(); } void op_drotr32 (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - (32 + T1)); T0 = (T0 >> (32 + T1)) | tmp; } RETURN(); } void op_dsllv (void) { T0 = T1 << (T0 & 0x3F); RETURN(); } void op_dsrav (void) { T0 = (int64_t)T1 >> (T0 & 0x3F); RETURN(); } void op_dsrlv (void) { T0 = T1 >> (T0 & 0x3F); RETURN(); } void op_drotrv (void) { target_ulong tmp; T0 &= 0x3F; if (T0) { tmp = T1 << (0x40 - T0); T0 = (T1 >> T0) | tmp; } else T0 = T1; RETURN(); } void op_dclo (void) { T0 = clo64(T0); RETURN(); } void op_dclz (void) { T0 = clz64(T0); RETURN(); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */ /* 64 bits arithmetic */ #if TARGET_LONG_BITS > HOST_LONG_BITS void op_mult (void) { CALL_FROM_TB0(do_mult); RETURN(); } void op_multu (void) { CALL_FROM_TB0(do_multu); RETURN(); } void op_madd (void) { CALL_FROM_TB0(do_madd); RETURN(); } void op_maddu (void) { CALL_FROM_TB0(do_maddu); RETURN(); } void op_msub (void) { CALL_FROM_TB0(do_msub); RETURN(); } void op_msubu (void) { CALL_FROM_TB0(do_msubu); RETURN(); } #else /* TARGET_LONG_BITS > HOST_LONG_BITS */ static always_inline uint64_t get_HILO (void) { return ((uint64_t)env->HI[0][env->current_tc] << 32) | ((uint64_t)(uint32_t)env->LO[0][env->current_tc]); } static always_inline void set_HILO (uint64_t HILO) { env->LO[0][env->current_tc] = (int32_t)(HILO & 0xFFFFFFFF); env->HI[0][env->current_tc] = (int32_t)(HILO >> 32); } void op_mult (void) { set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); RETURN(); } void op_multu (void) { set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); RETURN(); } void op_madd (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() + tmp); RETURN(); } void op_maddu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() + tmp); RETURN(); } void op_msub (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() - tmp); RETURN(); } void op_msubu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() - tmp); RETURN(); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) void op_dmult (void) { CALL_FROM_TB4(muls64, &(env->LO[0][env->current_tc]), &(env->HI[0][env->current_tc]), T0, T1); RETURN(); } void op_dmultu (void) { CALL_FROM_TB4(mulu64, &(env->LO[0][env->current_tc]), &(env->HI[0][env->current_tc]), T0, T1); RETURN(); } #endif /* Conditional moves */ void op_movn (void) { if (T1 != 0) env->gpr[PARAM1][env->current_tc] = T0; RETURN(); } void op_movz (void) { if (T1 == 0) env->gpr[PARAM1][env->current_tc] = T0; RETURN(); } void op_movf (void) { if (!(env->fpu->fcr31 & PARAM1)) T0 = T1; RETURN(); } void op_movt (void) { if (env->fpu->fcr31 & PARAM1) T0 = T1; RETURN(); } /* Tests */ #define OP_COND(name, cond) \ void glue(op_, name) (void) \ { \ if (cond) { \ T0 = 1; \ } else { \ T0 = 0; \ } \ RETURN(); \ } OP_COND(eq, T0 == T1); OP_COND(ne, T0 != T1); OP_COND(ge, (target_long)T0 >= (target_long)T1); OP_COND(geu, T0 >= T1); OP_COND(lt, (target_long)T0 < (target_long)T1); OP_COND(ltu, T0 < T1); OP_COND(gez, (target_long)T0 >= 0); OP_COND(gtz, (target_long)T0 > 0); OP_COND(lez, (target_long)T0 <= 0); OP_COND(ltz, (target_long)T0 < 0); /* Branches */ void OPPROTO op_goto_tb0(void) { GOTO_TB(op_goto_tb0, PARAM1, 0); RETURN(); } void OPPROTO op_goto_tb1(void) { GOTO_TB(op_goto_tb1, PARAM1, 1); RETURN(); } /* Branch to register */ void op_save_breg_target (void) { env->btarget = T2; RETURN(); } void op_restore_breg_target (void) { T2 = env->btarget; RETURN(); } void op_breg (void) { env->PC[env->current_tc] = T2; RETURN(); } void op_save_btarget (void) { env->btarget = PARAM1; RETURN(); } #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) void op_save_btarget64 (void) { env->btarget = ((uint64_t)PARAM1 << 32) | (uint32_t)PARAM2; RETURN(); } #endif /* Conditional branch */ void op_set_bcond (void) { T2 = T0; RETURN(); } void op_save_bcond (void) { env->bcond = T2; RETURN(); } void op_restore_bcond (void) { T2 = env->bcond; RETURN(); } void op_jnz_T2 (void) { if (T2) GOTO_LABEL_PARAM(1); RETURN(); } /* CP0 functions */ void op_mfc0_index (void) { T0 = env->CP0_Index; RETURN(); } void op_mfc0_mvpcontrol (void) { T0 = env->mvp->CP0_MVPControl; RETURN(); } void op_mfc0_mvpconf0 (void) { T0 = env->mvp->CP0_MVPConf0; RETURN(); } void op_mfc0_mvpconf1 (void) { T0 = env->mvp->CP0_MVPConf1; RETURN(); } void op_mfc0_random (void) { CALL_FROM_TB0(do_mfc0_random); RETURN(); } void op_mfc0_vpecontrol (void) { T0 = env->CP0_VPEControl; RETURN(); } void op_mfc0_vpeconf0 (void) { T0 = env->CP0_VPEConf0; RETURN(); } void op_mfc0_vpeconf1 (void) { T0 = env->CP0_VPEConf1; RETURN(); } void op_mfc0_yqmask (void) { T0 = env->CP0_YQMask; RETURN(); } void op_mfc0_vpeschedule (void) { T0 = env->CP0_VPESchedule; RETURN(); } void op_mfc0_vpeschefback (void) { T0 = env->CP0_VPEScheFBack; RETURN(); } void op_mfc0_vpeopt (void) { T0 = env->CP0_VPEOpt; RETURN(); } void op_mfc0_entrylo0 (void) { T0 = (int32_t)env->CP0_EntryLo0; RETURN(); } void op_mfc0_tcstatus (void) { T0 = env->CP0_TCStatus[env->current_tc]; RETURN(); } void op_mftc0_tcstatus(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCStatus[other_tc]; RETURN(); } void op_mfc0_tcbind (void) { T0 = env->CP0_TCBind[env->current_tc]; RETURN(); } void op_mftc0_tcbind(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCBind[other_tc]; RETURN(); } void op_mfc0_tcrestart (void) { T0 = env->PC[env->current_tc]; RETURN(); } void op_mftc0_tcrestart(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->PC[other_tc]; RETURN(); } void op_mfc0_tchalt (void) { T0 = env->CP0_TCHalt[env->current_tc]; RETURN(); } void op_mftc0_tchalt(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCHalt[other_tc]; RETURN(); } void op_mfc0_tccontext (void) { T0 = env->CP0_TCContext[env->current_tc]; RETURN(); } void op_mftc0_tccontext(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCContext[other_tc]; RETURN(); } void op_mfc0_tcschedule (void) { T0 = env->CP0_TCSchedule[env->current_tc]; RETURN(); } void op_mftc0_tcschedule(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCSchedule[other_tc]; RETURN(); } void op_mfc0_tcschefback (void) { T0 = env->CP0_TCScheFBack[env->current_tc]; RETURN(); } void op_mftc0_tcschefback(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->CP0_TCScheFBack[other_tc]; RETURN(); } void op_mfc0_entrylo1 (void) { T0 = (int32_t)env->CP0_EntryLo1; RETURN(); } void op_mfc0_context (void) { T0 = (int32_t)env->CP0_Context; RETURN(); } void op_mfc0_pagemask (void) { T0 = env->CP0_PageMask; RETURN(); } void op_mfc0_pagegrain (void) { T0 = env->CP0_PageGrain; RETURN(); } void op_mfc0_wired (void) { T0 = env->CP0_Wired; RETURN(); } void op_mfc0_srsconf0 (void) { T0 = env->CP0_SRSConf0; RETURN(); } void op_mfc0_srsconf1 (void) { T0 = env->CP0_SRSConf1; RETURN(); } void op_mfc0_srsconf2 (void) { T0 = env->CP0_SRSConf2; RETURN(); } void op_mfc0_srsconf3 (void) { T0 = env->CP0_SRSConf3; RETURN(); } void op_mfc0_srsconf4 (void) { T0 = env->CP0_SRSConf4; RETURN(); } void op_mfc0_hwrena (void) { T0 = env->CP0_HWREna; RETURN(); } void op_mfc0_badvaddr (void) { T0 = (int32_t)env->CP0_BadVAddr; RETURN(); } void op_mfc0_count (void) { CALL_FROM_TB0(do_mfc0_count); RETURN(); } void op_mfc0_entryhi (void) { T0 = (int32_t)env->CP0_EntryHi; RETURN(); } void op_mftc0_entryhi(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = (env->CP0_EntryHi & ~0xff) | (env->CP0_TCStatus[other_tc] & 0xff); RETURN(); } void op_mfc0_compare (void) { T0 = env->CP0_Compare; RETURN(); } void op_mfc0_status (void) { T0 = env->CP0_Status; RETURN(); } void op_mftc0_status(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t tcstatus = env->CP0_TCStatus[other_tc]; T0 = env->CP0_Status & ~0xf1000018; T0 |= tcstatus & (0xf << CP0TCSt_TCU0); T0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX); T0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_R0); RETURN(); } void op_mfc0_intctl (void) { T0 = env->CP0_IntCtl; RETURN(); } void op_mfc0_srsctl (void) { T0 = env->CP0_SRSCtl; RETURN(); } void op_mfc0_srsmap (void) { T0 = env->CP0_SRSMap; RETURN(); } void op_mfc0_cause (void) { T0 = env->CP0_Cause; RETURN(); } void op_mfc0_epc (void) { T0 = (int32_t)env->CP0_EPC; RETURN(); } void op_mfc0_prid (void) { T0 = env->CP0_PRid; RETURN(); } void op_mfc0_ebase (void) { T0 = env->CP0_EBase; RETURN(); } void op_mfc0_config0 (void) { T0 = env->CP0_Config0; RETURN(); } void op_mfc0_config1 (void) { T0 = env->CP0_Config1; RETURN(); } void op_mfc0_config2 (void) { T0 = env->CP0_Config2; RETURN(); } void op_mfc0_config3 (void) { T0 = env->CP0_Config3; RETURN(); } void op_mfc0_config6 (void) { T0 = env->CP0_Config6; RETURN(); } void op_mfc0_config7 (void) { T0 = env->CP0_Config7; RETURN(); } void op_mfc0_lladdr (void) { T0 = (int32_t)env->CP0_LLAddr >> 4; RETURN(); } void op_mfc0_watchlo (void) { T0 = (int32_t)env->CP0_WatchLo[PARAM1]; RETURN(); } void op_mfc0_watchhi (void) { T0 = env->CP0_WatchHi[PARAM1]; RETURN(); } void op_mfc0_xcontext (void) { T0 = (int32_t)env->CP0_XContext; RETURN(); } void op_mfc0_framemask (void) { T0 = env->CP0_Framemask; RETURN(); } void op_mfc0_debug (void) { T0 = env->CP0_Debug; if (env->hflags & MIPS_HFLAG_DM) T0 |= 1 << CP0DB_DM; RETURN(); } void op_mftc0_debug(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); /* XXX: Might be wrong, check with EJTAG spec. */ T0 = (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (env->CP0_Debug_tcstatus[other_tc] & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); RETURN(); } void op_mfc0_depc (void) { T0 = (int32_t)env->CP0_DEPC; RETURN(); } void op_mfc0_performance0 (void) { T0 = env->CP0_Performance0; RETURN(); } void op_mfc0_taglo (void) { T0 = env->CP0_TagLo; RETURN(); } void op_mfc0_datalo (void) { T0 = env->CP0_DataLo; RETURN(); } void op_mfc0_taghi (void) { T0 = env->CP0_TagHi; RETURN(); } void op_mfc0_datahi (void) { T0 = env->CP0_DataHi; RETURN(); } void op_mfc0_errorepc (void) { T0 = (int32_t)env->CP0_ErrorEPC; RETURN(); } void op_mfc0_desave (void) { T0 = env->CP0_DESAVE; RETURN(); } void op_mtc0_index (void) { int num = 1; unsigned int tmp = env->tlb->nb_tlb; do { tmp >>= 1; num <<= 1; } while (tmp); env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 & (num - 1)); RETURN(); } void op_mtc0_mvpcontrol (void) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | (1 << CP0MVPCo_EVP); if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0MVPCo_STLB); newval = (env->mvp->CP0_MVPControl & ~mask) | (T0 & mask); // TODO: Enable/disable shared TLB, enable/disable VPEs. env->mvp->CP0_MVPControl = newval; RETURN(); } void op_mtc0_vpecontrol (void) { uint32_t mask; uint32_t newval; mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); newval = (env->CP0_VPEControl & ~mask) | (T0 & mask); /* Yield scheduler intercept not implemented. */ /* Gating storage scheduler intercept not implemented. */ // TODO: Enable/disable TCs. env->CP0_VPEControl = newval; RETURN(); } void op_mtc0_vpeconf0 (void) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) mask |= (0xff << CP0VPEC0_XTC); mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); } newval = (env->CP0_VPEConf0 & ~mask) | (T0 & mask); // TODO: TC exclusive handling due to ERL/EXL. env->CP0_VPEConf0 = newval; RETURN(); } void op_mtc0_vpeconf1 (void) { uint32_t mask = 0; uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | (0xff << CP0VPEC1_NCP1); newval = (env->CP0_VPEConf1 & ~mask) | (T0 & mask); /* UDI not implemented. */ /* CP2 not implemented. */ // TODO: Handle FPU (CP1) binding. env->CP0_VPEConf1 = newval; RETURN(); } void op_mtc0_yqmask (void) { /* Yield qualifier inputs not implemented. */ env->CP0_YQMask = 0x00000000; RETURN(); } void op_mtc0_vpeschedule (void) { env->CP0_VPESchedule = T0; RETURN(); } void op_mtc0_vpeschefback (void) { env->CP0_VPEScheFBack = T0; RETURN(); } void op_mtc0_vpeopt (void) { env->CP0_VPEOpt = T0 & 0x0000ffff; RETURN(); } void op_mtc0_entrylo0 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo0 = T0 & 0x3FFFFFFF; RETURN(); } void op_mtc0_tcstatus (void) { uint32_t mask = env->CP0_TCStatus_rw_bitmask; uint32_t newval; newval = (env->CP0_TCStatus[env->current_tc] & ~mask) | (T0 & mask); // TODO: Sync with CP0_Status. env->CP0_TCStatus[env->current_tc] = newval; RETURN(); } void op_mttc0_tcstatus (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); // TODO: Sync with CP0_Status. env->CP0_TCStatus[other_tc] = T0; RETURN(); } void op_mtc0_tcbind (void) { uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0TCBd_CurVPE); newval = (env->CP0_TCBind[env->current_tc] & ~mask) | (T0 & mask); env->CP0_TCBind[env->current_tc] = newval; RETURN(); } void op_mttc0_tcbind (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0TCBd_CurVPE); newval = (env->CP0_TCBind[other_tc] & ~mask) | (T0 & mask); env->CP0_TCBind[other_tc] = newval; RETURN(); } void op_mtc0_tcrestart (void) { env->PC[env->current_tc] = T0; env->CP0_TCStatus[env->current_tc] &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0ULL; /* MIPS16 not implemented. */ RETURN(); } void op_mttc0_tcrestart (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->PC[other_tc] = T0; env->CP0_TCStatus[other_tc] &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0ULL; /* MIPS16 not implemented. */ RETURN(); } void op_mtc0_tchalt (void) { env->CP0_TCHalt[env->current_tc] = T0 & 0x1; // TODO: Halt TC / Restart (if allocated+active) TC. RETURN(); } void op_mttc0_tchalt (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); // TODO: Halt TC / Restart (if allocated+active) TC. env->CP0_TCHalt[other_tc] = T0; RETURN(); } void op_mtc0_tccontext (void) { env->CP0_TCContext[env->current_tc] = T0; RETURN(); } void op_mttc0_tccontext (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_TCContext[other_tc] = T0; RETURN(); } void op_mtc0_tcschedule (void) { env->CP0_TCSchedule[env->current_tc] = T0; RETURN(); } void op_mttc0_tcschedule (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_TCSchedule[other_tc] = T0; RETURN(); } void op_mtc0_tcschefback (void) { env->CP0_TCScheFBack[env->current_tc] = T0; RETURN(); } void op_mttc0_tcschefback (void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_TCScheFBack[other_tc] = T0; RETURN(); } void op_mtc0_entrylo1 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo1 = T0 & 0x3FFFFFFF; RETURN(); } void op_mtc0_context (void) { env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (T0 & ~0x007FFFFF); RETURN(); } void op_mtc0_pagemask (void) { /* 1k pages not implemented */ env->CP0_PageMask = T0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); RETURN(); } void op_mtc0_pagegrain (void) { /* SmartMIPS not implemented */ /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_PageGrain = 0; RETURN(); } void op_mtc0_wired (void) { env->CP0_Wired = T0 % env->tlb->nb_tlb; RETURN(); } void op_mtc0_srsconf0 (void) { env->CP0_SRSConf0 |= T0 & env->CP0_SRSConf0_rw_bitmask; RETURN(); } void op_mtc0_srsconf1 (void) { env->CP0_SRSConf1 |= T0 & env->CP0_SRSConf1_rw_bitmask; RETURN(); } void op_mtc0_srsconf2 (void) { env->CP0_SRSConf2 |= T0 & env->CP0_SRSConf2_rw_bitmask; RETURN(); } void op_mtc0_srsconf3 (void) { env->CP0_SRSConf3 |= T0 & env->CP0_SRSConf3_rw_bitmask; RETURN(); } void op_mtc0_srsconf4 (void) { env->CP0_SRSConf4 |= T0 & env->CP0_SRSConf4_rw_bitmask; RETURN(); } void op_mtc0_hwrena (void) { env->CP0_HWREna = T0 & 0x0000000F; RETURN(); } void op_mtc0_count (void) { CALL_FROM_TB2(cpu_mips_store_count, env, T0); RETURN(); } void op_mtc0_entryhi (void) { target_ulong old, val; /* 1k pages not implemented */ val = T0 & ((TARGET_PAGE_MASK << 1) | 0xFF); #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) val &= env->SEGMask; #endif old = env->CP0_EntryHi; env->CP0_EntryHi = val; if (env->CP0_Config3 & (1 << CP0C3_MT)) { uint32_t tcst = env->CP0_TCStatus[env->current_tc] & ~0xff; env->CP0_TCStatus[env->current_tc] = tcst | (val & 0xff); } /* If the ASID changes, flush qemu's TLB. */ if ((old & 0xFF) != (val & 0xFF)) CALL_FROM_TB2(cpu_mips_tlb_flush, env, 1); RETURN(); } void op_mttc0_entryhi(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (T0 & ~0xff); env->CP0_TCStatus[other_tc] = (env->CP0_TCStatus[other_tc] & ~0xff) | (T0 & 0xff); RETURN(); } void op_mtc0_compare (void) { CALL_FROM_TB2(cpu_mips_store_compare, env, T0); RETURN(); } void op_mtc0_status (void) { uint32_t val, old; uint32_t mask = env->CP0_Status_rw_bitmask; val = T0 & mask; old = env->CP0_Status; env->CP0_Status = (env->CP0_Status & ~mask) | val; CALL_FROM_TB1(compute_hflags, env); if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB2(do_mtc0_status_debug, old, val); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_mttc0_status(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t tcstatus = env->CP0_TCStatus[other_tc]; env->CP0_Status = T0 & ~0xf1000018; tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (T0 & (0xf << CP0St_CU0)); tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((T0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX)); tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((T0 & (0x3 << CP0St_R0)) << (CP0TCSt_TKSU - CP0St_R0)); env->CP0_TCStatus[other_tc] = tcstatus; RETURN(); } void op_mtc0_intctl (void) { /* vectored interrupts not implemented, no performance counters. */ env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (T0 & 0x000002e0); RETURN(); } void op_mtc0_srsctl (void) { uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (T0 & mask); RETURN(); } void op_mtc0_srsmap (void) { env->CP0_SRSMap = T0; RETURN(); } void op_mtc0_cause (void) { uint32_t mask = 0x00C00300; uint32_t old = env->CP0_Cause; if (env->insn_flags & ISA_MIPS32R2) mask |= 1 << CP0Ca_DC; env->CP0_Cause = (env->CP0_Cause & ~mask) | (T0 & mask); if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) { if (env->CP0_Cause & (1 << CP0Ca_DC)) CALL_FROM_TB1(cpu_mips_stop_count, env); else CALL_FROM_TB1(cpu_mips_start_count, env); } /* Handle the software interrupt as an hardware one, as they are very similar */ if (T0 & CP0Ca_IP_mask) { CALL_FROM_TB1(cpu_mips_update_irq, env); } RETURN(); } void op_mtc0_epc (void) { env->CP0_EPC = T0; RETURN(); } void op_mtc0_ebase (void) { /* vectored interrupts not implemented */ /* Multi-CPU not implemented */ env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000); RETURN(); } void op_mtc0_config0 (void) { env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (T0 & 0x00000007); RETURN(); } void op_mtc0_config2 (void) { /* tertiary/secondary caches not implemented */ env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); RETURN(); } void op_mtc0_watchlo (void) { /* Watch exceptions for instructions, data loads, data stores not implemented. */ env->CP0_WatchLo[PARAM1] = (T0 & ~0x7); RETURN(); } void op_mtc0_watchhi (void) { env->CP0_WatchHi[PARAM1] = (T0 & 0x40FF0FF8); env->CP0_WatchHi[PARAM1] &= ~(env->CP0_WatchHi[PARAM1] & T0 & 0x7); RETURN(); } void op_mtc0_xcontext (void) { target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; env->CP0_XContext = (env->CP0_XContext & mask) | (T0 & ~mask); RETURN(); } void op_mtc0_framemask (void) { env->CP0_Framemask = T0; /* XXX */ RETURN(); } void op_mtc0_debug (void) { env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120); if (T0 & (1 << CP0DB_DM)) env->hflags |= MIPS_HFLAG_DM; else env->hflags &= ~MIPS_HFLAG_DM; RETURN(); } void op_mttc0_debug(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); /* XXX: Might be wrong, check with EJTAG spec. */ env->CP0_Debug_tcstatus[other_tc] = T0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (T0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); RETURN(); } void op_mtc0_depc (void) { env->CP0_DEPC = T0; RETURN(); } void op_mtc0_performance0 (void) { env->CP0_Performance0 = T0; /* XXX */ RETURN(); } void op_mtc0_taglo (void) { env->CP0_TagLo = T0 & 0xFFFFFCF6; RETURN(); } void op_mtc0_datalo (void) { env->CP0_DataLo = T0; /* XXX */ RETURN(); } void op_mtc0_taghi (void) { env->CP0_TagHi = T0; /* XXX */ RETURN(); } void op_mtc0_datahi (void) { env->CP0_DataHi = T0; /* XXX */ RETURN(); } void op_mtc0_errorepc (void) { env->CP0_ErrorEPC = T0; RETURN(); } void op_mtc0_desave (void) { env->CP0_DESAVE = T0; RETURN(); } #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) void op_dmfc0_yqmask (void) { T0 = env->CP0_YQMask; RETURN(); } void op_dmfc0_vpeschedule (void) { T0 = env->CP0_VPESchedule; RETURN(); } void op_dmfc0_vpeschefback (void) { T0 = env->CP0_VPEScheFBack; RETURN(); } void op_dmfc0_entrylo0 (void) { T0 = env->CP0_EntryLo0; RETURN(); } void op_dmfc0_tcrestart (void) { T0 = env->PC[env->current_tc]; RETURN(); } void op_dmfc0_tchalt (void) { T0 = env->CP0_TCHalt[env->current_tc]; RETURN(); } void op_dmfc0_tccontext (void) { T0 = env->CP0_TCContext[env->current_tc]; RETURN(); } void op_dmfc0_tcschedule (void) { T0 = env->CP0_TCSchedule[env->current_tc]; RETURN(); } void op_dmfc0_tcschefback (void) { T0 = env->CP0_TCScheFBack[env->current_tc]; RETURN(); } void op_dmfc0_entrylo1 (void) { T0 = env->CP0_EntryLo1; RETURN(); } void op_dmfc0_context (void) { T0 = env->CP0_Context; RETURN(); } void op_dmfc0_badvaddr (void) { T0 = env->CP0_BadVAddr; RETURN(); } void op_dmfc0_entryhi (void) { T0 = env->CP0_EntryHi; RETURN(); } void op_dmfc0_epc (void) { T0 = env->CP0_EPC; RETURN(); } void op_dmfc0_lladdr (void) { T0 = env->CP0_LLAddr >> 4; RETURN(); } void op_dmfc0_watchlo (void) { T0 = env->CP0_WatchLo[PARAM1]; RETURN(); } void op_dmfc0_xcontext (void) { T0 = env->CP0_XContext; RETURN(); } void op_dmfc0_depc (void) { T0 = env->CP0_DEPC; RETURN(); } void op_dmfc0_errorepc (void) { T0 = env->CP0_ErrorEPC; RETURN(); } #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */ /* MIPS MT functions */ void op_mftgpr(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->gpr[PARAM1][other_tc]; RETURN(); } void op_mftlo(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->LO[PARAM1][other_tc]; RETURN(); } void op_mfthi(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->HI[PARAM1][other_tc]; RETURN(); } void op_mftacx(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->ACX[PARAM1][other_tc]; RETURN(); } void op_mftdsp(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->DSPControl[other_tc]; RETURN(); } void op_mttgpr(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->gpr[PARAM1][other_tc]; RETURN(); } void op_mttlo(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->LO[PARAM1][other_tc]; RETURN(); } void op_mtthi(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->HI[PARAM1][other_tc]; RETURN(); } void op_mttacx(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->ACX[PARAM1][other_tc]; RETURN(); } void op_mttdsp(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); T0 = env->DSPControl[other_tc]; RETURN(); } void op_dmt(void) { // TODO T0 = 0; // rt = T0 RETURN(); } void op_emt(void) { // TODO T0 = 0; // rt = T0 RETURN(); } void op_dvpe(void) { // TODO T0 = 0; // rt = T0 RETURN(); } void op_evpe(void) { // TODO T0 = 0; // rt = T0 RETURN(); } void op_fork(void) { // T0 = rt, T1 = rs T0 = 0; // TODO: store to TC register RETURN(); } void op_yield(void) { if (T0 < 0) { /* No scheduling policy implemented. */ if (T0 != -2) { if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && env->CP0_TCStatus[env->current_tc] & (1 << CP0TCSt_DT)) { env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; CALL_FROM_TB1(do_raise_exception, EXCP_THREAD); } } } else if (T0 == 0) { if (0 /* TODO: TC underflow */) { env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); CALL_FROM_TB1(do_raise_exception, EXCP_THREAD); } else { // TODO: Deallocate TC } } else if (T0 > 0) { /* Yield qualifier inputs not implemented. */ env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; CALL_FROM_TB1(do_raise_exception, EXCP_THREAD); } T0 = env->CP0_YQMask; RETURN(); } /* CP1 functions */ #if 0 # define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env) #else # define DEBUG_FPU_STATE() do { } while(0) #endif void op_cfc1 (void) { CALL_FROM_TB1(do_cfc1, PARAM1); DEBUG_FPU_STATE(); RETURN(); } void op_ctc1 (void) { CALL_FROM_TB1(do_ctc1, PARAM1); DEBUG_FPU_STATE(); RETURN(); } void op_mfc1 (void) { T0 = (int32_t)WT0; DEBUG_FPU_STATE(); RETURN(); } void op_mtc1 (void) { WT0 = T0; DEBUG_FPU_STATE(); RETURN(); } void op_dmfc1 (void) { T0 = DT0; DEBUG_FPU_STATE(); RETURN(); } void op_dmtc1 (void) { DT0 = T0; DEBUG_FPU_STATE(); RETURN(); } void op_mfhc1 (void) { T0 = (int32_t)WTH0; DEBUG_FPU_STATE(); RETURN(); } void op_mthc1 (void) { WTH0 = T0; DEBUG_FPU_STATE(); RETURN(); } /* Float support. Single precition routines have a "s" suffix, double precision a "d" suffix, 32bit integer "w", 64bit integer "l", paired singe "ps", paired single lowwer "pl", paired single upper "pu". */ #define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void) FLOAT_OP(cvtd, s) { CALL_FROM_TB0(do_float_cvtd_s); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtd, w) { CALL_FROM_TB0(do_float_cvtd_w); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtd, l) { CALL_FROM_TB0(do_float_cvtd_l); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtl, d) { CALL_FROM_TB0(do_float_cvtl_d); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtl, s) { CALL_FROM_TB0(do_float_cvtl_s); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtps, s) { WT2 = WT0; WTH2 = WT1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtps, pw) { CALL_FROM_TB0(do_float_cvtps_pw); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtpw, ps) { CALL_FROM_TB0(do_float_cvtpw_ps); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, d) { CALL_FROM_TB0(do_float_cvts_d); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, w) { CALL_FROM_TB0(do_float_cvts_w); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, l) { CALL_FROM_TB0(do_float_cvts_l); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, pl) { CALL_FROM_TB0(do_float_cvts_pl); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, pu) { CALL_FROM_TB0(do_float_cvts_pu); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtw, s) { CALL_FROM_TB0(do_float_cvtw_s); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtw, d) { CALL_FROM_TB0(do_float_cvtw_d); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(pll, ps) { DT2 = ((uint64_t)WT0 << 32) | WT1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(plu, ps) { DT2 = ((uint64_t)WT0 << 32) | WTH1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(pul, ps) { DT2 = ((uint64_t)WTH0 << 32) | WT1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(puu, ps) { DT2 = ((uint64_t)WTH0 << 32) | WTH1; DEBUG_FPU_STATE(); RETURN(); } #define FLOAT_ROUNDOP(op, ttype, stype) \ FLOAT_OP(op ## ttype, stype) \ { \ CALL_FROM_TB0(do_float_ ## op ## ttype ## _ ## stype); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_ROUNDOP(round, l, d) FLOAT_ROUNDOP(round, l, s) FLOAT_ROUNDOP(round, w, d) FLOAT_ROUNDOP(round, w, s) FLOAT_ROUNDOP(trunc, l, d) FLOAT_ROUNDOP(trunc, l, s) FLOAT_ROUNDOP(trunc, w, d) FLOAT_ROUNDOP(trunc, w, s) FLOAT_ROUNDOP(ceil, l, d) FLOAT_ROUNDOP(ceil, l, s) FLOAT_ROUNDOP(ceil, w, d) FLOAT_ROUNDOP(ceil, w, s) FLOAT_ROUNDOP(floor, l, d) FLOAT_ROUNDOP(floor, l, s) FLOAT_ROUNDOP(floor, w, d) FLOAT_ROUNDOP(floor, w, s) #undef FLOAR_ROUNDOP FLOAT_OP(movf, d) { if (!(env->fpu->fcr31 & PARAM1)) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movf, s) { if (!(env->fpu->fcr31 & PARAM1)) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movf, ps) { if (!(env->fpu->fcr31 & PARAM1)) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movt, d) { if (env->fpu->fcr31 & PARAM1) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movt, s) { if (env->fpu->fcr31 & PARAM1) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movt, ps) { if (env->fpu->fcr31 & PARAM1) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movz, d) { if (!T0) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movz, s) { if (!T0) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movz, ps) { if (!T0) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movn, d) { if (T0) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movn, s) { if (T0) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movn, ps) { if (T0) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } /* operations calling helpers, for s, d and ps */ #define FLOAT_HOP(name) \ FLOAT_OP(name, d) \ { \ CALL_FROM_TB0(do_float_ ## name ## _d); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ CALL_FROM_TB0(do_float_ ## name ## _s); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, ps) \ { \ CALL_FROM_TB0(do_float_ ## name ## _ps); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_HOP(add) FLOAT_HOP(sub) FLOAT_HOP(mul) FLOAT_HOP(div) FLOAT_HOP(recip2) FLOAT_HOP(rsqrt2) FLOAT_HOP(rsqrt1) FLOAT_HOP(recip1) #undef FLOAT_HOP /* operations calling helpers, for s and d */ #define FLOAT_HOP(name) \ FLOAT_OP(name, d) \ { \ CALL_FROM_TB0(do_float_ ## name ## _d); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ CALL_FROM_TB0(do_float_ ## name ## _s); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_HOP(rsqrt) FLOAT_HOP(recip) #undef FLOAT_HOP /* operations calling helpers, for ps */ #define FLOAT_HOP(name) \ FLOAT_OP(name, ps) \ { \ CALL_FROM_TB0(do_float_ ## name ## _ps); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_HOP(addr) FLOAT_HOP(mulr) #undef FLOAT_HOP /* ternary operations */ #define FLOAT_TERNOP(name1, name2) \ FLOAT_OP(name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_TERNOP(mul, add) FLOAT_TERNOP(mul, sub) #undef FLOAT_TERNOP /* negated ternary operations */ #define FLOAT_NTERNOP(name1, name2) \ FLOAT_OP(n ## name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \ FDT2 ^= 1ULL << 63; \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(n ## name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FST2 ^= 1 << 31; \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(n ## name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \ FST2 ^= 1 << 31; \ FSTH2 ^= 1 << 31; \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_NTERNOP(mul, add) FLOAT_NTERNOP(mul, sub) #undef FLOAT_NTERNOP /* unary operations, modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_UNOP(sqrt) #undef FLOAT_UNOP /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, ps) \ { \ FST2 = float32_ ## name(FST0); \ FSTH2 = float32_ ## name(FSTH0); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP FLOAT_OP(mov, d) { FDT2 = FDT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(mov, s) { FST2 = FST0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(mov, ps) { FST2 = FST0; FSTH2 = FSTH0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(alnv, ps) { switch (T0 & 0x7) { case 0: FST2 = FST0; FSTH2 = FSTH0; break; case 4: #ifdef TARGET_WORDS_BIGENDIAN FSTH2 = FST0; FST2 = FSTH1; #else FSTH2 = FST1; FST2 = FSTH0; #endif break; default: /* unpredictable */ break; } DEBUG_FPU_STATE(); RETURN(); } #ifdef CONFIG_SOFTFLOAT #define clear_invalid() do { \ int flags = get_float_exception_flags(&env->fpu->fp_status); \ flags &= ~float_flag_invalid; \ set_float_exception_flags(flags, &env->fpu->fp_status); \ } while(0) #else #define clear_invalid() do { } while(0) #endif extern void dump_fpu_s(CPUState *env); #define CMP_OP(fmt, op) \ void OPPROTO op_cmp ## _ ## fmt ## _ ## op(void) \ { \ CALL_FROM_TB1(do_cmp ## _ ## fmt ## _ ## op, PARAM1); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ void OPPROTO op_cmpabs ## _ ## fmt ## _ ## op(void) \ { \ CALL_FROM_TB1(do_cmpabs ## _ ## fmt ## _ ## op, PARAM1); \ DEBUG_FPU_STATE(); \ RETURN(); \ } #define CMP_OPS(op) \ CMP_OP(d, op) \ CMP_OP(s, op) \ CMP_OP(ps, op) CMP_OPS(f) CMP_OPS(un) CMP_OPS(eq) CMP_OPS(ueq) CMP_OPS(olt) CMP_OPS(ult) CMP_OPS(ole) CMP_OPS(ule) CMP_OPS(sf) CMP_OPS(ngle) CMP_OPS(seq) CMP_OPS(ngl) CMP_OPS(lt) CMP_OPS(nge) CMP_OPS(le) CMP_OPS(ngt) #undef CMP_OPS #undef CMP_OP void op_bc1f (void) { T0 = !!(~GET_FP_COND(env->fpu) & (0x1 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any2f (void) { T0 = !!(~GET_FP_COND(env->fpu) & (0x3 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any4f (void) { T0 = !!(~GET_FP_COND(env->fpu) & (0xf << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1t (void) { T0 = !!(GET_FP_COND(env->fpu) & (0x1 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any2t (void) { T0 = !!(GET_FP_COND(env->fpu) & (0x3 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any4t (void) { T0 = !!(GET_FP_COND(env->fpu) & (0xf << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_tlbwi (void) { CALL_FROM_TB0(env->tlb->do_tlbwi); RETURN(); } void op_tlbwr (void) { CALL_FROM_TB0(env->tlb->do_tlbwr); RETURN(); } void op_tlbp (void) { CALL_FROM_TB0(env->tlb->do_tlbp); RETURN(); } void op_tlbr (void) { CALL_FROM_TB0(env->tlb->do_tlbr); RETURN(); } /* Specials */ #if defined (CONFIG_USER_ONLY) void op_tls_value (void) { T0 = env->tls_value; } #endif void op_pmon (void) { CALL_FROM_TB1(do_pmon, PARAM1); RETURN(); } void op_di (void) { T0 = env->CP0_Status; env->CP0_Status = T0 & ~(1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_ei (void) { T0 = env->CP0_Status; env->CP0_Status = T0 | (1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_trap (void) { if (T0) { CALL_FROM_TB1(do_raise_exception, EXCP_TRAP); } RETURN(); } void op_debug (void) { CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG); RETURN(); } void op_set_lladdr (void) { env->CP0_LLAddr = T2; RETURN(); } void debug_pre_eret (void); void debug_post_eret (void); void op_eret (void) { if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_pre_eret); if (env->CP0_Status & (1 << CP0St_ERL)) { env->PC[env->current_tc] = env->CP0_ErrorEPC; env->CP0_Status &= ~(1 << CP0St_ERL); } else { env->PC[env->current_tc] = env->CP0_EPC; env->CP0_Status &= ~(1 << CP0St_EXL); } CALL_FROM_TB1(compute_hflags, env); if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_post_eret); env->CP0_LLAddr = 1; RETURN(); } void op_deret (void) { if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_pre_eret); env->PC[env->current_tc] = env->CP0_DEPC; env->hflags &= MIPS_HFLAG_DM; CALL_FROM_TB1(compute_hflags, env); if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_post_eret); env->CP0_LLAddr = 1; RETURN(); } void op_rdhwr_cpunum(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 0))) T0 = env->CP0_EBase & 0x3ff; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_rdhwr_synci_step(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 1))) T0 = env->SYNCI_Step; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_rdhwr_cc(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 2))) T0 = env->CP0_Count; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_rdhwr_ccres(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 3))) T0 = env->CCRes; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_save_state (void) { env->hflags = PARAM1; RETURN(); } void op_save_pc (void) { env->PC[env->current_tc] = PARAM1; RETURN(); } #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) void op_save_pc64 (void) { env->PC[env->current_tc] = ((uint64_t)PARAM1 << 32) | (uint32_t)PARAM2; RETURN(); } #endif void op_interrupt_restart (void) { if (!(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && (env->CP0_Status & (1 << CP0St_IE)) && (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) { env->CP0_Cause &= ~(0x1f << CP0Ca_EC); CALL_FROM_TB1(do_raise_exception, EXCP_EXT_INTERRUPT); } RETURN(); } void op_raise_exception (void) { CALL_FROM_TB1(do_raise_exception, PARAM1); RETURN(); } void op_raise_exception_err (void) { CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2); RETURN(); } void op_exit_tb (void) { EXIT_TB(); RETURN(); } void op_wait (void) { env->halted = 1; CALL_FROM_TB1(do_raise_exception, EXCP_HLT); RETURN(); } /* Bitfield operations. */ void op_ext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = ((uint32_t)T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0); RETURN(); } void op_ins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos; T0 = (T0 & ~mask) | (((uint32_t)T1 << pos) & mask); RETURN(); } void op_wsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF); RETURN(); } #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64) void op_dext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = (T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0); RETURN(); } void op_dins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos; T0 = (T0 & ~mask) | ((T1 << pos) & mask); RETURN(); } void op_dsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL); RETURN(); } void op_dshd(void) { T0 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL); RETURN(); } #endif void op_seb(void) { T0 = ((T1 & 0xFF) ^ 0x80) - 0x80; RETURN(); } void op_seh(void) { T0 = ((T1 & 0xFFFF) ^ 0x8000) - 0x8000; RETURN(); }