/* * ARM implementation of KVM hooks * * Copyright Christoffer Dall 2009-2010 * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include <stdio.h> #include <sys/types.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <linux/kvm.h> #include "qemu-common.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "kvm_arm.h" #include "cpu.h" #include "internals.h" #include "hw/arm/arm.h" const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_LAST_INFO }; int kvm_arm_vcpu_init(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); struct kvm_vcpu_init init; init.target = cpu->kvm_target; memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); } bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, int *fdarray, struct kvm_vcpu_init *init) { int ret, kvmfd = -1, vmfd = -1, cpufd = -1; kvmfd = qemu_open("/dev/kvm", O_RDWR); if (kvmfd < 0) { goto err; } vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); if (vmfd < 0) { goto err; } cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); if (cpufd < 0) { goto err; } ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); if (ret >= 0) { ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); if (ret < 0) { goto err; } } else { /* Old kernel which doesn't know about the * PREFERRED_TARGET ioctl: we know it will only support * creating one kind of guest CPU which is its preferred * CPU type. */ while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { init->target = *cpus_to_try++; memset(init->features, 0, sizeof(init->features)); ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); if (ret >= 0) { break; } } if (ret < 0) { goto err; } } fdarray[0] = kvmfd; fdarray[1] = vmfd; fdarray[2] = cpufd; return true; err: if (cpufd >= 0) { close(cpufd); } if (vmfd >= 0) { close(vmfd); } if (kvmfd >= 0) { close(kvmfd); } return false; } void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) { int i; for (i = 2; i >= 0; i--) { close(fdarray[i]); } } static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data) { ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc); /* All we really need to set up for the 'host' CPU * is the feature bits -- we rely on the fact that the * various ID register values in ARMCPU are only used for * TCG CPUs. */ if (!kvm_arm_get_host_cpu_features(ahcc)) { fprintf(stderr, "Failed to retrieve host CPU features!\n"); abort(); } } static void kvm_arm_host_cpu_initfn(Object *obj) { ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj); ARMCPU *cpu = ARM_CPU(obj); CPUARMState *env = &cpu->env; cpu->kvm_target = ahcc->target; cpu->dtb_compatible = ahcc->dtb_compatible; env->features = ahcc->features; } static const TypeInfo host_arm_cpu_type_info = { .name = TYPE_ARM_HOST_CPU, #ifdef TARGET_AARCH64 .parent = TYPE_AARCH64_CPU, #else .parent = TYPE_ARM_CPU, #endif .instance_init = kvm_arm_host_cpu_initfn, .class_init = kvm_arm_host_cpu_class_init, .class_size = sizeof(ARMHostCPUClass), }; int kvm_arch_init(KVMState *s) { /* For ARM interrupt delivery is always asynchronous, * whether we are using an in-kernel VGIC or not. */ kvm_async_interrupts_allowed = true; type_register_static(&host_arm_cpu_type_info); return 0; } unsigned long kvm_arch_vcpu_id(CPUState *cpu) { return cpu->cpu_index; } /* We track all the KVM devices which need their memory addresses * passing to the kernel in a list of these structures. * When board init is complete we run through the list and * tell the kernel the base addresses of the memory regions. * We use a MemoryListener to track mapping and unmapping of * the regions during board creation, so the board models don't * need to do anything special for the KVM case. */ typedef struct KVMDevice { struct kvm_arm_device_addr kda; struct kvm_device_attr kdattr; MemoryRegion *mr; QSLIST_ENTRY(KVMDevice) entries; int dev_fd; } KVMDevice; static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; static void kvm_arm_devlistener_add(MemoryListener *listener, MemoryRegionSection *section) { KVMDevice *kd; QSLIST_FOREACH(kd, &kvm_devices_head, entries) { if (section->mr == kd->mr) { kd->kda.addr = section->offset_within_address_space; } } } static void kvm_arm_devlistener_del(MemoryListener *listener, MemoryRegionSection *section) { KVMDevice *kd; QSLIST_FOREACH(kd, &kvm_devices_head, entries) { if (section->mr == kd->mr) { kd->kda.addr = -1; } } } static MemoryListener devlistener = { .region_add = kvm_arm_devlistener_add, .region_del = kvm_arm_devlistener_del, }; static void kvm_arm_set_device_addr(KVMDevice *kd) { struct kvm_device_attr *attr = &kd->kdattr; int ret; /* If the device control API is available and we have a device fd on the * KVMDevice struct, let's use the newer API */ if (kd->dev_fd >= 0) { uint64_t addr = kd->kda.addr; attr->addr = (uintptr_t)&addr; ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); } else { ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); } if (ret < 0) { fprintf(stderr, "Failed to set device address: %s\n", strerror(-ret)); abort(); } } static void kvm_arm_machine_init_done(Notifier *notifier, void *data) { KVMDevice *kd, *tkd; memory_listener_unregister(&devlistener); QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { if (kd->kda.addr != -1) { kvm_arm_set_device_addr(kd); } memory_region_unref(kd->mr); g_free(kd); } } static Notifier notify = { .notify = kvm_arm_machine_init_done, }; void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, uint64_t attr, int dev_fd) { KVMDevice *kd; if (!kvm_irqchip_in_kernel()) { return; } if (QSLIST_EMPTY(&kvm_devices_head)) { memory_listener_register(&devlistener, NULL); qemu_add_machine_init_done_notifier(¬ify); } kd = g_new0(KVMDevice, 1); kd->mr = mr; kd->kda.id = devid; kd->kda.addr = -1; kd->kdattr.flags = 0; kd->kdattr.group = group; kd->kdattr.attr = attr; kd->dev_fd = dev_fd; QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); memory_region_ref(kd->mr); } static int compare_u64(const void *a, const void *b) { if (*(uint64_t *)a > *(uint64_t *)b) { return 1; } if (*(uint64_t *)a < *(uint64_t *)b) { return -1; } return 0; } /* Initialize the CPUState's cpreg list according to the kernel's * definition of what CPU registers it knows about (and throw away * the previous TCG-created cpreg list). */ int kvm_arm_init_cpreg_list(ARMCPU *cpu) { struct kvm_reg_list rl; struct kvm_reg_list *rlp; int i, ret, arraylen; CPUState *cs = CPU(cpu); rl.n = 0; ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); if (ret != -E2BIG) { return ret; } rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); rlp->n = rl.n; ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); if (ret) { goto out; } /* Sort the list we get back from the kernel, since cpreg_tuples * must be in strictly ascending order. */ qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); for (i = 0, arraylen = 0; i < rlp->n; i++) { if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { continue; } switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U32: case KVM_REG_SIZE_U64: break; default: fprintf(stderr, "Can't handle size of register in kernel list\n"); ret = -EINVAL; goto out; } arraylen++; } cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, arraylen); cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, arraylen); cpu->cpreg_array_len = arraylen; cpu->cpreg_vmstate_array_len = arraylen; for (i = 0, arraylen = 0; i < rlp->n; i++) { uint64_t regidx = rlp->reg[i]; if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { continue; } cpu->cpreg_indexes[arraylen] = regidx; arraylen++; } assert(cpu->cpreg_array_len == arraylen); if (!write_kvmstate_to_list(cpu)) { /* Shouldn't happen unless kernel is inconsistent about * what registers exist. */ fprintf(stderr, "Initial read of kernel register state failed\n"); ret = -EINVAL; goto out; } out: g_free(rlp); return ret; } bool write_kvmstate_to_list(ARMCPU *cpu) { CPUState *cs = CPU(cpu); int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { struct kvm_one_reg r; uint64_t regidx = cpu->cpreg_indexes[i]; uint32_t v32; int ret; r.id = regidx; switch (regidx & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U32: r.addr = (uintptr_t)&v32; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); if (!ret) { cpu->cpreg_values[i] = v32; } break; case KVM_REG_SIZE_U64: r.addr = (uintptr_t)(cpu->cpreg_values + i); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); break; default: abort(); } if (ret) { ok = false; } } return ok; } bool write_list_to_kvmstate(ARMCPU *cpu) { CPUState *cs = CPU(cpu); int i; bool ok = true; for (i = 0; i < cpu->cpreg_array_len; i++) { struct kvm_one_reg r; uint64_t regidx = cpu->cpreg_indexes[i]; uint32_t v32; int ret; r.id = regidx; switch (regidx & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U32: v32 = cpu->cpreg_values[i]; r.addr = (uintptr_t)&v32; break; case KVM_REG_SIZE_U64: r.addr = (uintptr_t)(cpu->cpreg_values + i); break; default: abort(); } ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); if (ret) { /* We might fail for "unknown register" and also for * "you tried to set a register which is constant with * a different value from what it actually contains". */ ok = false; } } return ok; } void kvm_arm_reset_vcpu(ARMCPU *cpu) { int ret; /* Re-init VCPU so that all registers are set to * their respective reset values. */ ret = kvm_arm_vcpu_init(CPU(cpu)); if (ret < 0) { fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); abort(); } if (!write_kvmstate_to_list(cpu)) { fprintf(stderr, "write_kvmstate_to_list failed\n"); abort(); } } void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) { } void kvm_arch_post_run(CPUState *cs, struct kvm_run *run) { } int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { return 0; } bool kvm_arch_stop_on_emulation_error(CPUState *cs) { return true; } int kvm_arch_process_async_events(CPUState *cs) { return 0; } int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr) { return 1; } int kvm_arch_on_sigbus(int code, void *addr) { return 1; } void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); return -EINVAL; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); return -EINVAL; } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); return -EINVAL; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); return -EINVAL; } void kvm_arch_remove_all_hw_breakpoints(void) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); } void kvm_arch_init_irq_routing(KVMState *s) { } int kvm_arch_irqchip_create(KVMState *s) { int ret; /* If we can create the VGIC using the newer device control API, we * let the device do this when it initializes itself, otherwise we * fall back to the old API */ ret = kvm_create_device(s, KVM_DEV_TYPE_ARM_VGIC_V2, true); if (ret == 0) { return 1; } return 0; } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data) { return 0; }