#include "cpu.h" #include "gdbstub.h" #include "helper.h" #include "host-utils.h" #include "sysemu.h" #include "bitops.h" #ifndef CONFIG_USER_ONLY static inline int get_phys_addr(CPUARMState *env, uint32_t address, int access_type, int is_user, hwaddr *phys_ptr, int *prot, target_ulong *page_size); #endif static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; /* VFP data registers are always little-endian. */ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { stfq_le_p(buf, env->vfp.regs[reg]); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { /* Aliases for Q regs. */ nregs += 16; if (reg < nregs) { stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); return 16; } } switch (reg - nregs) { case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; } return 0; } static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { int nregs; nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; if (reg < nregs) { env->vfp.regs[reg] = ldfq_le_p(buf); return 8; } if (arm_feature(env, ARM_FEATURE_NEON)) { nregs += 16; if (reg < nregs) { env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); return 16; } } switch (reg - nregs) { case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; } return 0; } static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c3 = value; tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ return 0; } static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (env->cp15.c13_fcse != value) { /* Unlike real hardware the qemu TLB uses virtual addresses, * not modified virtual addresses, so this causes a TLB flush. */ tlb_flush(env, 1); env->cp15.c13_fcse = value; } return 0; } static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) { /* For VMSA (when not using the LPAE long descriptor page table * format) this register includes the ASID, so do a TLB flush. * For PMSA it is purely a process ID and no action is needed. */ tlb_flush(env, 1); } env->cp15.c13_context = value; return 0; } static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate all (TLBIALL) */ tlb_flush(env, 1); return 0; } static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ tlb_flush_page(env, value & TARGET_PAGE_MASK); return 0; } static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate by ASID (TLBIASID) */ tlb_flush(env, value == 0); return 0; } static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ tlb_flush_page(env, value & TARGET_PAGE_MASK); return 0; } static const ARMCPRegInfo cp_reginfo[] = { /* DBGDIDR: just RAZ. In particular this means the "debug architecture * version" bits will read as a reserved value, which should cause * Linux to not try to use the debug hardware. */ { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* MMU Domain access control / MPU write buffer control */ { .name = "DACR", .cp = 15, .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), .resetvalue = 0, .writefn = dacr_write }, { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), .resetvalue = 0, .writefn = fcse_write }, { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), .resetvalue = 0, .writefn = contextidr_write }, /* ??? This covers not just the impdef TLB lockdown registers but also * some v7VMSA registers relating to TEX remap, so it is overly broad. */ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, /* MMU TLB control. Note that the wildcarding means we cover not just * the unified TLB ops but also the dside/iside/inner-shareable variants. */ { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, }, { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, }, { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, }, { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, }, /* Cache maintenance ops; some of this space may be overridden later. */ { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v6_cp_reginfo[] = { /* Not all pre-v6 cores implemented this WFI, so this is slightly * over-broad. */ { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, .access = PL1_W, .type = ARM_CP_WFI }, REGINFO_SENTINEL }; static const ARMCPRegInfo not_v7_cp_reginfo[] = { /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which * is UNPREDICTABLE; we choose to NOP as most implementations do). */ { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_WFI }, /* L1 cache lockdown. Not architectural in v6 and earlier but in practice * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and * OMAPCP will override this space. */ { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), .resetvalue = 0 }, { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), .resetvalue = 0 }, /* v6 doesn't have the cache ID registers but Linux reads them anyway */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (env->cp15.c1_coproc != value) { env->cp15.c1_coproc = value; /* ??? Is this safe when called from within a TB? */ tb_flush(env); } return 0; } static const ARMCPRegInfo v6_cp_reginfo[] = { /* prefetch by MVA in v6, NOP in v7 */ { .name = "MVA_prefetch", .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL1_W, .type = ARM_CP_NOP }, { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, .access = PL0_W, .type = ARM_CP_NOP }, { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn), .resetvalue = 0, }, /* Watchpoint Fault Address Register : should actually only be present * for 1136, 1176, 11MPCore. */ { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc), .resetvalue = 0, .writefn = cpacr_write }, REGINFO_SENTINEL }; static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { /* Generic performance monitor register read function for where * user access may be allowed by PMUSERENR. */ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { return EXCP_UDEF; } *value = CPREG_FIELD32(env, ri); return 0; } static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { return EXCP_UDEF; } /* only the DP, X, D and E bits are writable */ env->cp15.c9_pmcr &= ~0x39; env->cp15.c9_pmcr |= (value & 0x39); return 0; } static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { return EXCP_UDEF; } value &= (1 << 31); env->cp15.c9_pmcnten |= value; return 0; } static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { return EXCP_UDEF; } value &= (1 << 31); env->cp15.c9_pmcnten &= ~value; return 0; } static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { return EXCP_UDEF; } env->cp15.c9_pmovsr &= ~value; return 0; } static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) { return EXCP_UDEF; } env->cp15.c9_pmxevtyper = value & 0xff; return 0; } static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c9_pmuserenr = value & 1; return 0; } static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* We have no event counters so only the C bit can be changed */ value &= (1 << 31); env->cp15.c9_pminten |= value; return 0; } static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= (1 << 31); env->cp15.c9_pminten &= ~value; return 0; } static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { ARMCPU *cpu = arm_env_get_cpu(env); *value = cpu->ccsidr[env->cp15.c0_cssel]; return 0; } static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c0_cssel = value & 0xf; return 0; } static const ARMCPRegInfo v7_cp_reginfo[] = { /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped * debug components */ { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_W, .type = ARM_CP_NOP }, /* Performance monitors are implementation defined in v7, * but with an ARM recommended set of registers, which we * follow (although we don't actually implement any counters) * * Performance registers fall into three categories: * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) * For the cases controlled by PMUSERENR we must set .access to PL0_RW * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. */ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .readfn = pmreg_read, .writefn = pmcntenset_write }, { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .readfn = pmreg_read, .writefn = pmcntenclr_write }, { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), .readfn = pmreg_read, .writefn = pmovsr_write }, /* Unimplemented so WI. Strictly speaking write accesses in PL0 should * respect PMUSERENR. */ { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_W, .type = ARM_CP_NOP }, /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. * We choose to RAZ/WI. XXX should respect PMUSERENR. */ { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, /* Unimplemented, RAZ/WI. XXX PMUSERENR */ { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), .readfn = pmreg_read, .writefn = pmxevtyper_write }, /* Unimplemented, RAZ/WI. XXX PMUSERENR */ { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, .access = PL0_R | PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), .resetvalue = 0, .writefn = pmuserenr_write }, { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .resetvalue = 0, .writefn = pmintenset_write }, { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), .resetvalue = 0, .writefn = pmintenclr_write }, { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr), .resetvalue = 0, }, { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, .access = PL1_R, .readfn = ccsidr_read }, { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), .writefn = csselr_write, .resetvalue = 0 }, /* Auxiliary ID register: this actually has an IMPDEF value but for now * just RAZ for all cores: */ { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= 1; env->teecr = value; return 0; } static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { /* This is a helper function because the user access rights * depend on the value of the TEECR. */ if (arm_current_pl(env) == 0 && (env->teecr & 1)) { return EXCP_UDEF; } *value = env->teehbr; return 0; } static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_current_pl(env) == 0 && (env->teecr & 1)) { return EXCP_UDEF; } env->teehbr = value; return 0; } static const ARMCPRegInfo t2ee_cp_reginfo[] = { { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), .resetvalue = 0, .writefn = teecr_write }, { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), .resetvalue = 0, .readfn = teehbr_read, .writefn = teehbr_write }, REGINFO_SENTINEL }; static const ARMCPRegInfo v6k_cp_reginfo[] = { { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1), .resetvalue = 0 }, { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL0_R|PL1_W, .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2), .resetvalue = 0 }, { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3), .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo generic_timer_cp_reginfo[] = { /* Dummy implementation: RAZ/WI the whole crn=14 space */ { .name = "GENERIC_TIMER", .cp = 15, .crn = 14, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_feature(env, ARM_FEATURE_LPAE)) { env->cp15.c7_par = value; } else if (arm_feature(env, ARM_FEATURE_V7)) { env->cp15.c7_par = value & 0xfffff6ff; } else { env->cp15.c7_par = value & 0xfffff1ff; } return 0; } #ifndef CONFIG_USER_ONLY /* get_phys_addr() isn't present for user-mode-only targets */ /* Return true if extended addresses are enabled, ie this is an * LPAE implementation and we are using the long-descriptor translation * table format because the TTBCR EAE bit is set. */ static inline bool extended_addresses_enabled(CPUARMState *env) { return arm_feature(env, ARM_FEATURE_LPAE) && (env->cp15.c2_control & (1 << 31)); } static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { hwaddr phys_addr; target_ulong page_size; int prot; int ret, is_user = ri->opc2 & 2; int access_type = ri->opc2 & 1; if (ri->opc2 & 4) { /* Other states are only available with TrustZone */ return EXCP_UDEF; } ret = get_phys_addr(env, value, access_type, is_user, &phys_addr, &prot, &page_size); if (extended_addresses_enabled(env)) { /* ret is a DFSR/IFSR value for the long descriptor * translation table format, but with WnR always clear. * Convert it to a 64-bit PAR. */ uint64_t par64 = (1 << 11); /* LPAE bit always set */ if (ret == 0) { par64 |= phys_addr & ~0xfffULL; /* We don't set the ATTR or SH fields in the PAR. */ } else { par64 |= 1; /* F */ par64 |= (ret & 0x3f) << 1; /* FS */ /* Note that S2WLK and FSTAGE are always zero, because we don't * implement virtualization and therefore there can't be a stage 2 * fault. */ } env->cp15.c7_par = par64; env->cp15.c7_par_hi = par64 >> 32; } else { /* ret is a DFSR/IFSR value for the short descriptor * translation table format (with WnR always clear). * Convert it to a 32-bit PAR. */ if (ret == 0) { /* We do not set any attribute bits in the PAR */ if (page_size == (1 << 24) && arm_feature(env, ARM_FEATURE_V7)) { env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; } else { env->cp15.c7_par = phys_addr & 0xfffff000; } } else { env->cp15.c7_par = ((ret & (10 << 1)) >> 5) | ((ret & (12 << 1)) >> 6) | ((ret & 0xf) << 1) | 1; } env->cp15.c7_par_hi = 0; } return 0; } #endif static const ARMCPRegInfo vapa_cp_reginfo[] = { { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, .fieldoffset = offsetof(CPUARMState, cp15.c7_par), .writefn = par_write }, #ifndef CONFIG_USER_ONLY { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .writefn = ats_write }, #endif REGINFO_SENTINEL }; /* Return basic MPU access permission bits. */ static uint32_t simple_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val >> i) & mask; mask <<= 2; } return ret; } /* Pad basic MPU access permission bits to extended format. */ static uint32_t extended_mpu_ap_bits(uint32_t val) { uint32_t ret; uint32_t mask; int i; ret = 0; mask = 3; for (i = 0; i < 16; i += 2) { ret |= (val & mask) << i; mask <<= 2; } return ret; } static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c5_data = extended_mpu_ap_bits(value); return 0; } static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { *value = simple_mpu_ap_bits(env->cp15.c5_data); return 0; } static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c5_insn = extended_mpu_ap_bits(value); return 0; } static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { *value = simple_mpu_ap_bits(env->cp15.c5_insn); return 0; } static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { if (ri->crm >= 8) { return EXCP_UDEF; } *value = env->cp15.c6_region[ri->crm]; return 0; } static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (ri->crm >= 8) { return EXCP_UDEF; } env->cp15.c6_region[ri->crm] = value; return 0; } static const ARMCPRegInfo pmsav5_cp_reginfo[] = { { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, /* Protection region base and size registers */ { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_RW, .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, }, REGINFO_SENTINEL }; static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { if (arm_feature(env, ARM_FEATURE_LPAE)) { value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); /* With LPAE the TTBCR could result in a change of ASID * via the TTBCR.A1 bit, so do a TLB flush. */ tlb_flush(env, 1); } else { value &= 7; } /* Note that we always calculate c2_mask and c2_base_mask, but * they are only used for short-descriptor tables (ie if EAE is 0); * for long-descriptor tables the TTBCR fields are used differently * and the c2_mask and c2_base_mask values are meaningless. */ env->cp15.c2_control = value; env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value); env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value); return 0; } static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { env->cp15.c2_base_mask = 0xffffc000u; env->cp15.c2_control = 0; env->cp15.c2_mask = 0; } static const ARMCPRegInfo vmsa_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, }, { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, }, { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, }, { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .writefn = vmsa_ttbcr_write, .resetfn = vmsa_ttbcr_reset, .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data), .resetvalue = 0, }, REGINFO_SENTINEL }; static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_ticonfig = value & 0xe7; /* The OS_TYPE bit in this register changes the reported CPUID! */ env->cp15.c0_cpuid = (value & (1 << 5)) ? ARM_CPUID_TI915T : ARM_CPUID_TI925T; return 0; } static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c15_threadid = value & 0xffff; return 0; } static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Wait-for-interrupt (deprecated) */ cpu_interrupt(env, CPU_INTERRUPT_HALT); return 0; } static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* On OMAP there are registers indicating the max/min index of dcache lines * containing a dirty line; cache flush operations have to reset these. */ env->cp15.c15_i_max = 0x000; env->cp15.c15_i_min = 0xff0; return 0; } static const ARMCPRegInfo omap_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, }, { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, .writefn = omap_ticonfig_write }, { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0xff0, .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, .writefn = omap_threadid_write }, { .name = "TI925T_STATUS", .cp = 15, .crn = 15, .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, /* TODO: Peripheral port remap register: * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), * when MMU is off. */ { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE, .writefn = omap_cachemaint_write }, { .name = "C9", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { value &= 0x3fff; if (env->cp15.c15_cpar != value) { /* Changes cp0 to cp13 behavior, so needs a TB flush. */ tb_flush(env); env->cp15.c15_cpar = value; } return 0; } static const ARMCPRegInfo xscale_cp_reginfo[] = { { .name = "XSCALE_CPAR", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, .writefn = xscale_cpar_write, }, { .name = "XSCALE_AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), .resetvalue = 0, }, REGINFO_SENTINEL }; static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { /* RAZ/WI the whole crn=15 space, when we don't have a more specific * implementation of this implementation-defined space. * Ideally this should eventually disappear in favour of actually * implementing the correct behaviour for all cores. */ { .name = "C15_IMPDEF", .cp = 15, .crn = 15, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { /* Cache status: RAZ because we have no cache so it's always clean */ { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { /* We never have a a block transfer operation in progress */ { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* The cache ops themselves: these all NOP for QEMU */ { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, REGINFO_SENTINEL }; static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { /* The cache test-and-clean instructions always return (1 << 30) * to indicate that there are no dirty cache lines. */ { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) }, { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) }, REGINFO_SENTINEL }; static const ARMCPRegInfo strongarm_cp_reginfo[] = { /* Ignore ReadBuffer accesses */ { .name = "C9_READBUFFER", .cp = 15, .crn = 9, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, REGINFO_SENTINEL }; static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { uint32_t mpidr = env->cpu_index; /* We don't support setting cluster ID ([8..11]) * so these bits always RAZ. */ if (arm_feature(env, ARM_FEATURE_V7MP)) { mpidr |= (1 << 31); /* Cores which are uniprocessor (non-coherent) * but still implement the MP extensions set * bit 30. (For instance, A9UP.) However we do * not currently model any of those cores. */ } *value = mpidr; return 0; } static const ARMCPRegInfo mpidr_cp_reginfo[] = { { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, .access = PL1_R, .readfn = mpidr_read }, REGINFO_SENTINEL }; static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par; return 0; } static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c7_par_hi = value >> 32; env->cp15.c7_par = value; return 0; } static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri) { env->cp15.c7_par_hi = 0; env->cp15.c7_par = 0; } static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; return 0; } static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c2_base0_hi = value >> 32; env->cp15.c2_base0 = value; /* Writes to the 64 bit format TTBRs may change the ASID */ tlb_flush(env, 1); return 0; } static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri) { env->cp15.c2_base0_hi = 0; env->cp15.c2_base0 = 0; } static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; return 0; } static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c2_base1_hi = value >> 32; env->cp15.c2_base1 = value; return 0; } static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri) { env->cp15.c2_base1_hi = 0; env->cp15.c2_base1 = 0; } static const ARMCPRegInfo lpae_cp_reginfo[] = { /* NOP AMAIR0/1: the override is because these clash with the rather * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo. */ { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, /* 64 bit access versions of the (dummy) debug registers */ { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset }, { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read, .writefn = ttbr064_write, .resetfn = ttbr064_reset }, { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read, .writefn = ttbr164_write, .resetfn = ttbr164_reset }, REGINFO_SENTINEL }; static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { env->cp15.c1_sys = value; /* ??? Lots of these bits are not implemented. */ /* This may enable/disable the MMU, so do a TLB flush. */ tlb_flush(env, 1); return 0; } void register_cp_regs_for_features(ARMCPU *cpu) { /* Register all the coprocessor registers based on feature bits */ CPUARMState *env = &cpu->env; if (arm_feature(env, ARM_FEATURE_M)) { /* M profile has no coprocessor registers */ return; } define_arm_cp_regs(cpu, cp_reginfo); if (arm_feature(env, ARM_FEATURE_V6)) { /* The ID registers all have impdef reset values */ ARMCPRegInfo v6_idregs[] = { { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_pfr0 }, { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_pfr1 }, { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_dfr0 }, { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_afr0 }, { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr0 }, { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr1 }, { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr2 }, { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_mmfr3 }, { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar0 }, { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar1 }, { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar2 }, { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar3 }, { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar4 }, { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->id_isar5 }, /* 6..7 are as yet unallocated and must RAZ */ { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; define_arm_cp_regs(cpu, v6_idregs); define_arm_cp_regs(cpu, v6_cp_reginfo); } else { define_arm_cp_regs(cpu, not_v6_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V6K)) { define_arm_cp_regs(cpu, v6k_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_V7)) { /* v7 performance monitor control register: same implementor * field as main ID register, and we implement no event counters. */ ARMCPRegInfo pmcr = { .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), .readfn = pmreg_read, .writefn = pmcr_write }; ARMCPRegInfo clidr = { .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr }; define_one_arm_cp_reg(cpu, &pmcr); define_one_arm_cp_reg(cpu, &clidr); define_arm_cp_regs(cpu, v7_cp_reginfo); } else { define_arm_cp_regs(cpu, not_v7_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_MPU)) { /* These are the MPU registers prior to PMSAv6. Any new * PMSA core later than the ARM946 will require that we * implement the PMSAv6 or PMSAv7 registers, which are * completely different. */ assert(!arm_feature(env, ARM_FEATURE_V6)); define_arm_cp_regs(cpu, pmsav5_cp_reginfo); } else { define_arm_cp_regs(cpu, vmsa_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { define_arm_cp_regs(cpu, t2ee_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { define_arm_cp_regs(cpu, generic_timer_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_VAPA)) { define_arm_cp_regs(cpu, vapa_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_OMAPCP)) { define_arm_cp_regs(cpu, omap_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_STRONGARM)) { define_arm_cp_regs(cpu, strongarm_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_XSCALE)) { define_arm_cp_regs(cpu, xscale_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_MPIDR)) { define_arm_cp_regs(cpu, mpidr_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_LPAE)) { define_arm_cp_regs(cpu, lpae_cp_reginfo); } /* Slightly awkwardly, the OMAP and StrongARM cores need all of * cp15 crn=0 to be writes-ignored, whereas for other cores they should * be read-only (ie write causes UNDEF exception). */ { ARMCPRegInfo id_cp_reginfo[] = { /* Note that the MIDR isn't a simple constant register because * of the TI925 behaviour where writes to another register can * cause the MIDR value to change. */ { .name = "MIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_R, .resetvalue = cpu->midr, .writefn = arm_cp_write_ignore, .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) }, { .name = "CTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, { .name = "TCMTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "TLBTR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, REGINFO_SENTINEL }; ARMCPRegInfo crn0_wi_reginfo = { .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_OVERRIDE }; if (arm_feature(env, ARM_FEATURE_OMAPCP) || arm_feature(env, ARM_FEATURE_STRONGARM)) { ARMCPRegInfo *r; /* Register the blanket "writes ignored" value first to cover the * whole space. Then define the specific ID registers, but update * their access field to allow write access, so that they ignore * writes rather than causing them to UNDEF. */ define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { r->access = PL1_RW; define_one_arm_cp_reg(cpu, r); } } else { /* Just register the standard ID registers (read-only, meaning * that writes will UNDEF). */ define_arm_cp_regs(cpu, id_cp_reginfo); } } if (arm_feature(env, ARM_FEATURE_AUXCR)) { ARMCPRegInfo auxcr = { .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }; define_one_arm_cp_reg(cpu, &auxcr); } /* Generic registers whose values depend on the implementation */ { ARMCPRegInfo sctlr = { .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr }; if (arm_feature(env, ARM_FEATURE_XSCALE)) { /* Normally we would always end the TB on an SCTLR write, but Linux * arch/arm/mach-pxa/sleep.S expects two instructions following * an MMU enable to execute from cache. Imitate this behaviour. */ sctlr.type |= ARM_CP_SUPPRESS_TB_END; } define_one_arm_cp_reg(cpu, &sctlr); } } ARMCPU *cpu_arm_init(const char *cpu_model) { ARMCPU *cpu; CPUARMState *env; static int inited = 0; if (!object_class_by_name(cpu_model)) { return NULL; } cpu = ARM_CPU(object_new(cpu_model)); env = &cpu->env; env->cpu_model_str = cpu_model; arm_cpu_realize(cpu); if (tcg_enabled() && !inited) { inited = 1; arm_translate_init(); } cpu_reset(CPU(cpu)); if (arm_feature(env, ARM_FEATURE_NEON)) { gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, 51, "arm-neon.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP3)) { gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, 35, "arm-vfp3.xml", 0); } else if (arm_feature(env, ARM_FEATURE_VFP)) { gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, 19, "arm-vfp.xml", 0); } qemu_init_vcpu(env); return cpu; } /* Sort alphabetically by type name, except for "any". */ static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); if (strcmp(name_a, "any") == 0) { return 1; } else if (strcmp(name_b, "any") == 0) { return -1; } else { return strcmp(name_a, name_b); } } static void arm_cpu_list_entry(gpointer data, gpointer user_data) { ObjectClass *oc = data; CPUListState *s = user_data; (*s->cpu_fprintf)(s->file, " %s\n", object_class_get_name(oc)); } void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) { CPUListState s = { .file = f, .cpu_fprintf = cpu_fprintf, }; GSList *list; list = object_class_get_list(TYPE_ARM_CPU, false); list = g_slist_sort(list, arm_cpu_list_compare); (*cpu_fprintf)(f, "Available CPUs:\n"); g_slist_foreach(list, arm_cpu_list_entry, &s); g_slist_free(list); } void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque) { /* Define implementations of coprocessor registers. * We store these in a hashtable because typically * there are less than 150 registers in a space which * is 16*16*16*8*8 = 262144 in size. * Wildcarding is supported for the crm, opc1 and opc2 fields. * If a register is defined twice then the second definition is * used, so this can be used to define some generic registers and * then override them with implementation specific variations. * At least one of the original and the second definition should * include ARM_CP_OVERRIDE in its type bits -- this is just a guard * against accidental use. */ int crm, opc1, opc2; int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; /* 64 bit registers have only CRm and Opc1 fields */ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); /* Check that the register definition has enough info to handle * reads and writes if they are permitted. */ if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { if (r->access & PL3_R) { assert(r->fieldoffset || r->readfn); } if (r->access & PL3_W) { assert(r->fieldoffset || r->writefn); } } /* Bad type field probably means missing sentinel at end of reg list */ assert(cptype_valid(r->type)); for (crm = crmmin; crm <= crmmax; crm++) { for (opc1 = opc1min; opc1 <= opc1max; opc1++) { for (opc2 = opc2min; opc2 <= opc2max; opc2++) { uint32_t *key = g_new(uint32_t, 1); ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2); r2->opaque = opaque; /* Make sure reginfo passed to helpers for wildcarded regs * has the correct crm/opc1/opc2 for this reg, not CP_ANY: */ r2->crm = crm; r2->opc1 = opc1; r2->opc2 = opc2; /* Overriding of an existing definition must be explicitly * requested. */ if (!(r->type & ARM_CP_OVERRIDE)) { ARMCPRegInfo *oldreg; oldreg = g_hash_table_lookup(cpu->cp_regs, key); if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { fprintf(stderr, "Register redefined: cp=%d %d bit " "crn=%d crm=%d opc1=%d opc2=%d, " "was %s, now %s\n", r2->cp, 32 + 32 * is64, r2->crn, r2->crm, r2->opc1, r2->opc2, oldreg->name, r2->name); assert(0); } } g_hash_table_insert(cpu->cp_regs, key, r2); } } } } void define_arm_cp_regs_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *regs, void *opaque) { /* Define a whole list of registers */ const ARMCPRegInfo *r; for (r = regs; r->type != ARM_CP_SENTINEL; r++) { define_one_arm_cp_reg_with_opaque(cpu, r, opaque); } } const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp) { return g_hash_table_lookup(cpu->cp_regs, &encoded_cp); } int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { /* Helper coprocessor write function for write-ignore registers */ return 0; } int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value) { /* Helper coprocessor write function for read-as-zero registers */ *value = 0; return 0; } static int bad_mode_switch(CPUARMState *env, int mode) { /* Return true if it is not valid for us to switch to * this CPU mode (ie all the UNPREDICTABLE cases in * the ARM ARM CPSRWriteByInstr pseudocode). */ switch (mode) { case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: case ARM_CPU_MODE_SVC: case ARM_CPU_MODE_ABT: case ARM_CPU_MODE_UND: case ARM_CPU_MODE_IRQ: case ARM_CPU_MODE_FIQ: return 0; default: return 1; } } uint32_t cpsr_read(CPUARMState *env) { int ZF; ZF = (env->ZF == 0); return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | ((env->condexec_bits & 0xfc) << 8) | (env->GE << 16); } void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { if (mask & CPSR_NZCV) { env->ZF = (~val) & CPSR_Z; env->NF = val; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; } if (mask & CPSR_Q) env->QF = ((val & CPSR_Q) != 0); if (mask & CPSR_T) env->thumb = ((val & CPSR_T) != 0); if (mask & CPSR_IT_0_1) { env->condexec_bits &= ~3; env->condexec_bits |= (val >> 25) & 3; } if (mask & CPSR_IT_2_7) { env->condexec_bits &= 3; env->condexec_bits |= (val >> 8) & 0xfc; } if (mask & CPSR_GE) { env->GE = (val >> 16) & 0xf; } if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { if (bad_mode_switch(env, val & CPSR_M)) { /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. * We choose to ignore the attempt and leave the CPSR M field * untouched. */ mask &= ~CPSR_M; } else { switch_mode(env, val & CPSR_M); } } mask &= ~CACHED_CPSR_BITS; env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); } /* Sign/zero extend */ uint32_t HELPER(sxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(int8_t)x; res |= (uint32_t)(int8_t)(x >> 16) << 16; return res; } uint32_t HELPER(uxtb16)(uint32_t x) { uint32_t res; res = (uint16_t)(uint8_t)x; res |= (uint32_t)(uint8_t)(x >> 16) << 16; return res; } uint32_t HELPER(clz)(uint32_t x) { return clz32(x); } int32_t HELPER(sdiv)(int32_t num, int32_t den) { if (den == 0) return 0; if (num == INT_MIN && den == -1) return INT_MIN; return num / den; } uint32_t HELPER(udiv)(uint32_t num, uint32_t den) { if (den == 0) return 0; return num / den; } uint32_t HELPER(rbit)(uint32_t x) { x = ((x & 0xff000000) >> 24) | ((x & 0x00ff0000) >> 8) | ((x & 0x0000ff00) << 8) | ((x & 0x000000ff) << 24); x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); x = ((x & 0x88888888) >> 3) | ((x & 0x44444444) >> 1) | ((x & 0x22222222) << 1) | ((x & 0x11111111) << 3); return x; } #if defined(CONFIG_USER_ONLY) void do_interrupt (CPUARMState *env) { env->exception_index = -1; } int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw, int mmu_idx) { if (rw == 2) { env->exception_index = EXCP_PREFETCH_ABORT; env->cp15.c6_insn = address; } else { env->exception_index = EXCP_DATA_ABORT; env->cp15.c6_data = address; } return 1; } /* These should probably raise undefined insn exceptions. */ void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) { cpu_abort(env, "v7m_mrs %d\n", reg); } uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { cpu_abort(env, "v7m_mrs %d\n", reg); return 0; } void switch_mode(CPUARMState *env, int mode) { if (mode != ARM_CPU_MODE_USR) cpu_abort(env, "Tried to switch out of user mode\n"); } void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) { cpu_abort(env, "banked r13 write\n"); } uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) { cpu_abort(env, "banked r13 read\n"); return 0; } #else /* Map CPU modes onto saved register banks. */ static inline int bank_number(CPUARMState *env, int mode) { switch (mode) { case ARM_CPU_MODE_USR: case ARM_CPU_MODE_SYS: return 0; case ARM_CPU_MODE_SVC: return 1; case ARM_CPU_MODE_ABT: return 2; case ARM_CPU_MODE_UND: return 3; case ARM_CPU_MODE_IRQ: return 4; case ARM_CPU_MODE_FIQ: return 5; } cpu_abort(env, "Bad mode %x\n", mode); return -1; } void switch_mode(CPUARMState *env, int mode) { int old_mode; int i; old_mode = env->uncached_cpsr & CPSR_M; if (mode == old_mode) return; if (old_mode == ARM_CPU_MODE_FIQ) { memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); } else if (mode == ARM_CPU_MODE_FIQ) { memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); } i = bank_number(env, old_mode); env->banked_r13[i] = env->regs[13]; env->banked_r14[i] = env->regs[14]; env->banked_spsr[i] = env->spsr; i = bank_number(env, mode); env->regs[13] = env->banked_r13[i]; env->regs[14] = env->banked_r14[i]; env->spsr = env->banked_spsr[i]; } static void v7m_push(CPUARMState *env, uint32_t val) { env->regs[13] -= 4; stl_phys(env->regs[13], val); } static uint32_t v7m_pop(CPUARMState *env) { uint32_t val; val = ldl_phys(env->regs[13]); env->regs[13] += 4; return val; } /* Switch to V7M main or process stack pointer. */ static void switch_v7m_sp(CPUARMState *env, int process) { uint32_t tmp; if (env->v7m.current_sp != process) { tmp = env->v7m.other_sp; env->v7m.other_sp = env->regs[13]; env->regs[13] = tmp; env->v7m.current_sp = process; } } static void do_v7m_exception_exit(CPUARMState *env) { uint32_t type; uint32_t xpsr; type = env->regs[15]; if (env->v7m.exception != 0) armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); /* Switch to the target stack. */ switch_v7m_sp(env, (type & 4) != 0); /* Pop registers. */ env->regs[0] = v7m_pop(env); env->regs[1] = v7m_pop(env); env->regs[2] = v7m_pop(env); env->regs[3] = v7m_pop(env); env->regs[12] = v7m_pop(env); env->regs[14] = v7m_pop(env); env->regs[15] = v7m_pop(env); xpsr = v7m_pop(env); xpsr_write(env, xpsr, 0xfffffdff); /* Undo stack alignment. */ if (xpsr & 0x200) env->regs[13] |= 4; /* ??? The exception return type specifies Thread/Handler mode. However this is also implied by the xPSR value. Not sure what to do if there is a mismatch. */ /* ??? Likewise for mismatches between the CONTROL register and the stack pointer. */ } static void do_interrupt_v7m(CPUARMState *env) { uint32_t xpsr = xpsr_read(env); uint32_t lr; uint32_t addr; lr = 0xfffffff1; if (env->v7m.current_sp) lr |= 4; if (env->v7m.exception == 0) lr |= 8; /* For exceptions we just mark as pending on the NVIC, and let that handle it. */ /* TODO: Need to escalate if the current priority is higher than the one we're raising. */ switch (env->exception_index) { case EXCP_UDEF: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); return; case EXCP_SWI: env->regs[15] += 2; armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); return; case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); return; case EXCP_BKPT: if (semihosting_enabled) { int nr; nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; if (nr == 0xab) { env->regs[15] += 2; env->regs[0] = do_arm_semihosting(env); return; } } armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); return; case EXCP_IRQ: env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); break; case EXCP_EXCEPTION_EXIT: do_v7m_exception_exit(env); return; default: cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); return; /* Never happens. Keep compiler happy. */ } /* Align stack pointer. */ /* ??? Should only do this if Configuration Control Register STACKALIGN bit is set. */ if (env->regs[13] & 4) { env->regs[13] -= 4; xpsr |= 0x200; } /* Switch to the handler mode. */ v7m_push(env, xpsr); v7m_push(env, env->regs[15]); v7m_push(env, env->regs[14]); v7m_push(env, env->regs[12]); v7m_push(env, env->regs[3]); v7m_push(env, env->regs[2]); v7m_push(env, env->regs[1]); v7m_push(env, env->regs[0]); switch_v7m_sp(env, 0); /* Clear IT bits */ env->condexec_bits = 0; env->regs[14] = lr; addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); env->regs[15] = addr & 0xfffffffe; env->thumb = addr & 1; } /* Handle a CPU exception. */ void do_interrupt(CPUARMState *env) { uint32_t addr; uint32_t mask; int new_mode; uint32_t offset; if (IS_M(env)) { do_interrupt_v7m(env); return; } /* TODO: Vectored interrupt controller. */ switch (env->exception_index) { case EXCP_UDEF: new_mode = ARM_CPU_MODE_UND; addr = 0x04; mask = CPSR_I; if (env->thumb) offset = 2; else offset = 4; break; case EXCP_SWI: if (semihosting_enabled) { /* Check for semihosting interrupt. */ if (env->thumb) { mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) & 0xff; } else { mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) & 0xffffff; } /* Only intercept calls from privileged modes, to provide some semblance of security. */ if (((mask == 0x123456 && !env->thumb) || (mask == 0xab && env->thumb)) && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { env->regs[0] = do_arm_semihosting(env); return; } } new_mode = ARM_CPU_MODE_SVC; addr = 0x08; mask = CPSR_I; /* The PC already points to the next instruction. */ offset = 0; break; case EXCP_BKPT: /* See if this is a semihosting syscall. */ if (env->thumb && semihosting_enabled) { mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; if (mask == 0xab && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { env->regs[15] += 2; env->regs[0] = do_arm_semihosting(env); return; } } env->cp15.c5_insn = 2; /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: new_mode = ARM_CPU_MODE_ABT; addr = 0x0c; mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_DATA_ABORT: new_mode = ARM_CPU_MODE_ABT; addr = 0x10; mask = CPSR_A | CPSR_I; offset = 8; break; case EXCP_IRQ: new_mode = ARM_CPU_MODE_IRQ; addr = 0x18; /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_FIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; offset = 4; break; default: cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); return; /* Never happens. Keep compiler happy. */ } /* High vectors. */ if (env->cp15.c1_sys & (1 << 13)) { addr += 0xffff0000; } switch_mode (env, new_mode); env->spsr = cpsr_read(env); /* Clear IT bits. */ env->condexec_bits = 0; /* Switch to the new mode, and to the correct instruction set. */ env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; env->uncached_cpsr |= mask; /* this is a lie, as the was no c1_sys on V4T/V5, but who cares * and we should just guard the thumb mode on V4 */ if (arm_feature(env, ARM_FEATURE_V4T)) { env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; } env->regs[14] = env->regs[15] + offset; env->regs[15] = addr; env->interrupt_request |= CPU_INTERRUPT_EXITTB; } /* Check section/page access permissions. Returns the page protection flags, or zero if the access is not permitted. */ static inline int check_ap(CPUARMState *env, int ap, int domain_prot, int access_type, int is_user) { int prot_ro; if (domain_prot == 3) { return PAGE_READ | PAGE_WRITE; } if (access_type == 1) prot_ro = 0; else prot_ro = PAGE_READ; switch (ap) { case 0: if (access_type == 1) return 0; switch ((env->cp15.c1_sys >> 8) & 3) { case 1: return is_user ? 0 : PAGE_READ; case 2: return PAGE_READ; default: return 0; } case 1: return is_user ? 0 : PAGE_READ | PAGE_WRITE; case 2: if (is_user) return prot_ro; else return PAGE_READ | PAGE_WRITE; case 3: return PAGE_READ | PAGE_WRITE; case 4: /* Reserved. */ return 0; case 5: return is_user ? 0 : prot_ro; case 6: return prot_ro; case 7: if (!arm_feature (env, ARM_FEATURE_V6K)) return 0; return prot_ro; default: abort(); } } static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) { uint32_t table; if (address & env->cp15.c2_mask) table = env->cp15.c2_base1 & 0xffffc000; else table = env->cp15.c2_base0 & env->cp15.c2_base_mask; table |= (address >> 18) & 0x3ffc; return table; } static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, int is_user, hwaddr *phys_ptr, int *prot, target_ulong *page_size) { int code; uint32_t table; uint32_t desc; int type; int ap; int domain; int domain_prot; hwaddr phys_addr; /* Pagetable walk. */ /* Lookup l1 descriptor. */ table = get_level1_table_address(env, address); desc = ldl_phys(table); type = (desc & 3); domain = (desc >> 5) & 0x0f; domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; if (type == 0) { /* Section translation fault. */ code = 5; goto do_fault; } if (domain_prot == 0 || domain_prot == 2) { if (type == 2) code = 9; /* Section domain fault. */ else code = 11; /* Page domain fault. */ goto do_fault; } if (type == 2) { /* 1Mb section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); ap = (desc >> 10) & 3; code = 13; *page_size = 1024 * 1024; } else { /* Lookup l2 entry. */ if (type == 1) { /* Coarse pagetable. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); } else { /* Fine pagetable. */ table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); } desc = ldl_phys(table); switch (desc & 3) { case 0: /* Page translation fault. */ code = 7; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); ap = (desc >> (4 + ((address >> 13) & 6))) & 3; *page_size = 0x10000; break; case 2: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); ap = (desc >> (4 + ((address >> 13) & 6))) & 3; *page_size = 0x1000; break; case 3: /* 1k page. */ if (type == 1) { if (arm_feature(env, ARM_FEATURE_XSCALE)) { phys_addr = (desc & 0xfffff000) | (address & 0xfff); } else { /* Page translation fault. */ code = 7; goto do_fault; } } else { phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); } ap = (desc >> 4) & 3; *page_size = 0x400; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } code = 15; } *prot = check_ap(env, ap, domain_prot, access_type, is_user); if (!*prot) { /* Access permission fault. */ goto do_fault; } *prot |= PAGE_EXEC; *phys_ptr = phys_addr; return 0; do_fault: return code | (domain << 4); } static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, int is_user, hwaddr *phys_ptr, int *prot, target_ulong *page_size) { int code; uint32_t table; uint32_t desc; uint32_t xn; uint32_t pxn = 0; int type; int ap; int domain = 0; int domain_prot; hwaddr phys_addr; /* Pagetable walk. */ /* Lookup l1 descriptor. */ table = get_level1_table_address(env, address); desc = ldl_phys(table); type = (desc & 3); if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { /* Section translation fault, or attempt to use the encoding * which is Reserved on implementations without PXN. */ code = 5; goto do_fault; } if ((type == 1) || !(desc & (1 << 18))) { /* Page or Section. */ domain = (desc >> 5) & 0x0f; } domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; if (domain_prot == 0 || domain_prot == 2) { if (type != 1) { code = 9; /* Section domain fault. */ } else { code = 11; /* Page domain fault. */ } goto do_fault; } if (type != 1) { if (desc & (1 << 18)) { /* Supersection. */ phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); *page_size = 0x1000000; } else { /* Section. */ phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); *page_size = 0x100000; } ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); xn = desc & (1 << 4); pxn = desc & 1; code = 13; } else { if (arm_feature(env, ARM_FEATURE_PXN)) { pxn = (desc >> 2) & 1; } /* Lookup l2 entry. */ table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); desc = ldl_phys(table); ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); switch (desc & 3) { case 0: /* Page translation fault. */ code = 7; goto do_fault; case 1: /* 64k page. */ phys_addr = (desc & 0xffff0000) | (address & 0xffff); xn = desc & (1 << 15); *page_size = 0x10000; break; case 2: case 3: /* 4k page. */ phys_addr = (desc & 0xfffff000) | (address & 0xfff); xn = desc & 1; *page_size = 0x1000; break; default: /* Never happens, but compiler isn't smart enough to tell. */ abort(); } code = 15; } if (domain_prot == 3) { *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; } else { if (pxn && !is_user) { xn = 1; } if (xn && access_type == 2) goto do_fault; /* The simplified model uses AP[0] as an access control bit. */ if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { /* Access flag fault. */ code = (code == 15) ? 6 : 3; goto do_fault; } *prot = check_ap(env, ap, domain_prot, access_type, is_user); if (!*prot) { /* Access permission fault. */ goto do_fault; } if (!xn) { *prot |= PAGE_EXEC; } } *phys_ptr = phys_addr; return 0; do_fault: return code | (domain << 4); } /* Fault type for long-descriptor MMU fault reporting; this corresponds * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. */ typedef enum { translation_fault = 1, access_fault = 2, permission_fault = 3, } MMUFaultType; static int get_phys_addr_lpae(CPUARMState *env, uint32_t address, int access_type, int is_user, hwaddr *phys_ptr, int *prot, target_ulong *page_size_ptr) { /* Read an LPAE long-descriptor translation table. */ MMUFaultType fault_type = translation_fault; uint32_t level = 1; uint32_t epd; uint32_t tsz; uint64_t ttbr; int ttbr_select; int n; hwaddr descaddr; uint32_t tableattrs; target_ulong page_size; uint32_t attrs; /* Determine whether this address is in the region controlled by * TTBR0 or TTBR1 (or if it is in neither region and should fault). * This is a Non-secure PL0/1 stage 1 translation, so controlled by * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: */ uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3); uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3); if (t0sz && !extract32(address, 32 - t0sz, t0sz)) { /* there is a ttbr0 region and we are in it (high bits all zero) */ ttbr_select = 0; } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) { /* there is a ttbr1 region and we are in it (high bits all one) */ ttbr_select = 1; } else if (!t0sz) { /* ttbr0 region is "everything not in the ttbr1 region" */ ttbr_select = 0; } else if (!t1sz) { /* ttbr1 region is "everything not in the ttbr0 region" */ ttbr_select = 1; } else { /* in the gap between the two regions, this is a Translation fault */ fault_type = translation_fault; goto do_fault; } /* Note that QEMU ignores shareability and cacheability attributes, * so we don't need to do anything with the SH, ORGN, IRGN fields * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently * implement any ASID-like capability so we can ignore it (instead * we will always flush the TLB any time the ASID is changed). */ if (ttbr_select == 0) { ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0; epd = extract32(env->cp15.c2_control, 7, 1); tsz = t0sz; } else { ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1; epd = extract32(env->cp15.c2_control, 23, 1); tsz = t1sz; } if (epd) { /* Translation table walk disabled => Translation fault on TLB miss */ goto do_fault; } /* If the region is small enough we will skip straight to a 2nd level * lookup. This affects the number of bits of the address used in * combination with the TTBR to find the first descriptor. ('n' here * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero). */ if (tsz > 1) { level = 2; n = 14 - tsz; } else { n = 5 - tsz; } /* Clear the vaddr bits which aren't part of the within-region address, * so that we don't have to special case things when calculating the * first descriptor address. */ address &= (0xffffffffU >> tsz); /* Now we can extract the actual base address from the TTBR */ descaddr = extract64(ttbr, 0, 40); descaddr &= ~((1ULL << n) - 1); tableattrs = 0; for (;;) { uint64_t descriptor; descaddr |= ((address >> (9 * (4 - level))) & 0xff8); descriptor = ldq_phys(descaddr); if (!(descriptor & 1) || (!(descriptor & 2) && (level == 3))) { /* Invalid, or the Reserved level 3 encoding */ goto do_fault; } descaddr = descriptor & 0xfffffff000ULL; if ((descriptor & 2) && (level < 3)) { /* Table entry. The top five bits are attributes which may * propagate down through lower levels of the table (and * which are all arranged so that 0 means "no effect", so * we can gather them up by ORing in the bits at each level). */ tableattrs |= extract64(descriptor, 59, 5); level++; continue; } /* Block entry at level 1 or 2, or page entry at level 3. * These are basically the same thing, although the number * of bits we pull in from the vaddr varies. */ page_size = (1 << (39 - (9 * level))); descaddr |= (address & (page_size - 1)); /* Extract attributes from the descriptor and merge with table attrs */ attrs = extract64(descriptor, 2, 10) | (extract64(descriptor, 52, 12) << 10); attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 * means "force PL1 access only", which means forcing AP[1] to 0. */ if (extract32(tableattrs, 2, 1)) { attrs &= ~(1 << 4); } /* Since we're always in the Non-secure state, NSTable is ignored. */ break; } /* Here descaddr is the final physical address, and attributes * are all in attrs. */ fault_type = access_fault; if ((attrs & (1 << 8)) == 0) { /* Access flag */ goto do_fault; } fault_type = permission_fault; if (is_user && !(attrs & (1 << 4))) { /* Unprivileged access not enabled */ goto do_fault; } *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) { /* XN or PXN */ if (access_type == 2) { goto do_fault; } *prot &= ~PAGE_EXEC; } if (attrs & (1 << 5)) { /* Write access forbidden */ if (access_type == 1) { goto do_fault; } *prot &= ~PAGE_WRITE; } *phys_ptr = descaddr; *page_size_ptr = page_size; return 0; do_fault: /* Long-descriptor format IFSR/DFSR value */ return (1 << 9) | (fault_type << 2) | level; } static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type, int is_user, hwaddr *phys_ptr, int *prot) { int n; uint32_t mask; uint32_t base; *phys_ptr = address; for (n = 7; n >= 0; n--) { base = env->cp15.c6_region[n]; if ((base & 1) == 0) continue; mask = 1 << ((base >> 1) & 0x1f); /* Keep this shift separate from the above to avoid an (undefined) << 32. */ mask = (mask << 1) - 1; if (((base ^ address) & ~mask) == 0) break; } if (n < 0) return 2; if (access_type == 2) { mask = env->cp15.c5_insn; } else { mask = env->cp15.c5_data; } mask = (mask >> (n * 4)) & 0xf; switch (mask) { case 0: return 1; case 1: if (is_user) return 1; *prot = PAGE_READ | PAGE_WRITE; break; case 2: *prot = PAGE_READ; if (!is_user) *prot |= PAGE_WRITE; break; case 3: *prot = PAGE_READ | PAGE_WRITE; break; case 5: if (is_user) return 1; *prot = PAGE_READ; break; case 6: *prot = PAGE_READ; break; default: /* Bad permission. */ return 1; } *prot |= PAGE_EXEC; return 0; } /* get_phys_addr - get the physical address for this virtual address * * Find the physical address corresponding to the given virtual address, * by doing a translation table walk on MMU based systems or using the * MPU state on MPU based systems. * * Returns 0 if the translation was successful. Otherwise, phys_ptr, * prot and page_size are not filled in, and the return value provides * information on why the translation aborted, in the format of a * DFSR/IFSR fault register, with the following caveats: * * we honour the short vs long DFSR format differences. * * the WnR bit is never set (the caller must do this). * * for MPU based systems we don't bother to return a full FSR format * value. * * @env: CPUARMState * @address: virtual address to get physical address for * @access_type: 0 for read, 1 for write, 2 for execute * @is_user: 0 for privileged access, 1 for user * @phys_ptr: set to the physical address corresponding to the virtual address * @prot: set to the permissions for the page containing phys_ptr * @page_size: set to the size of the page containing phys_ptr */ static inline int get_phys_addr(CPUARMState *env, uint32_t address, int access_type, int is_user, hwaddr *phys_ptr, int *prot, target_ulong *page_size) { /* Fast Context Switch Extension. */ if (address < 0x02000000) address += env->cp15.c13_fcse; if ((env->cp15.c1_sys & 1) == 0) { /* MMU/MPU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; *page_size = TARGET_PAGE_SIZE; return 0; } else if (arm_feature(env, ARM_FEATURE_MPU)) { *page_size = TARGET_PAGE_SIZE; return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, prot); } else if (extended_addresses_enabled(env)) { return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, prot, page_size); } else if (env->cp15.c1_sys & (1 << 23)) { return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, prot, page_size); } else { return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, prot, page_size); } } int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int access_type, int mmu_idx) { hwaddr phys_addr; target_ulong page_size; int prot; int ret, is_user; is_user = mmu_idx == MMU_USER_IDX; ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, &page_size); if (ret == 0) { /* Map a single [sub]page. */ phys_addr &= ~(hwaddr)0x3ff; address &= ~(uint32_t)0x3ff; tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); return 0; } if (access_type == 2) { env->cp15.c5_insn = ret; env->cp15.c6_insn = address; env->exception_index = EXCP_PREFETCH_ABORT; } else { env->cp15.c5_data = ret; if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) env->cp15.c5_data |= (1 << 11); env->cp15.c6_data = address; env->exception_index = EXCP_DATA_ABORT; } return 1; } hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr) { hwaddr phys_addr; target_ulong page_size; int prot; int ret; ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size); if (ret != 0) return -1; return phys_addr; } void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) { if ((env->uncached_cpsr & CPSR_M) == mode) { env->regs[13] = val; } else { env->banked_r13[bank_number(env, mode)] = val; } } uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) { if ((env->uncached_cpsr & CPSR_M) == mode) { return env->regs[13]; } else { return env->banked_r13[bank_number(env, mode)]; } } uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { switch (reg) { case 0: /* APSR */ return xpsr_read(env) & 0xf8000000; case 1: /* IAPSR */ return xpsr_read(env) & 0xf80001ff; case 2: /* EAPSR */ return xpsr_read(env) & 0xff00fc00; case 3: /* xPSR */ return xpsr_read(env) & 0xff00fdff; case 5: /* IPSR */ return xpsr_read(env) & 0x000001ff; case 6: /* EPSR */ return xpsr_read(env) & 0x0700fc00; case 7: /* IEPSR */ return xpsr_read(env) & 0x0700edff; case 8: /* MSP */ return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; case 9: /* PSP */ return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; case 16: /* PRIMASK */ return (env->uncached_cpsr & CPSR_I) != 0; case 17: /* BASEPRI */ case 18: /* BASEPRI_MAX */ return env->v7m.basepri; case 19: /* FAULTMASK */ return (env->uncached_cpsr & CPSR_F) != 0; case 20: /* CONTROL */ return env->v7m.control; default: /* ??? For debugging only. */ cpu_abort(env, "Unimplemented system register read (%d)\n", reg); return 0; } } void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) { switch (reg) { case 0: /* APSR */ xpsr_write(env, val, 0xf8000000); break; case 1: /* IAPSR */ xpsr_write(env, val, 0xf8000000); break; case 2: /* EAPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 3: /* xPSR */ xpsr_write(env, val, 0xfe00fc00); break; case 5: /* IPSR */ /* IPSR bits are readonly. */ break; case 6: /* EPSR */ xpsr_write(env, val, 0x0600fc00); break; case 7: /* IEPSR */ xpsr_write(env, val, 0x0600fc00); break; case 8: /* MSP */ if (env->v7m.current_sp) env->v7m.other_sp = val; else env->regs[13] = val; break; case 9: /* PSP */ if (env->v7m.current_sp) env->regs[13] = val; else env->v7m.other_sp = val; break; case 16: /* PRIMASK */ if (val & 1) env->uncached_cpsr |= CPSR_I; else env->uncached_cpsr &= ~CPSR_I; break; case 17: /* BASEPRI */ env->v7m.basepri = val & 0xff; break; case 18: /* BASEPRI_MAX */ val &= 0xff; if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) env->v7m.basepri = val; break; case 19: /* FAULTMASK */ if (val & 1) env->uncached_cpsr |= CPSR_F; else env->uncached_cpsr &= ~CPSR_F; break; case 20: /* CONTROL */ env->v7m.control = val & 3; switch_v7m_sp(env, (val & 2) != 0); break; default: /* ??? For debugging only. */ cpu_abort(env, "Unimplemented system register write (%d)\n", reg); return; } } #endif /* Note that signed overflow is undefined in C. The following routines are careful to use unsigned types where modulo arithmetic is required. Failure to do so _will_ break on newer gcc. */ /* Signed saturating arithmetic. */ /* Perform 16-bit signed saturating addition. */ static inline uint16_t add16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating addition. */ static inline uint8_t add8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } /* Perform 16-bit signed saturating subtraction. */ static inline uint16_t sub16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a - b; if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed saturating subtraction. */ static inline uint8_t sub8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a - b; if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); #define PFX q #include "op_addsub.h" /* Unsigned saturating arithmetic. */ static inline uint16_t add16_usat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (res < a) res = 0xffff; return res; } static inline uint16_t sub16_usat(uint16_t a, uint16_t b) { if (a > b) return a - b; else return 0; } static inline uint8_t add8_usat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (res < a) res = 0xff; return res; } static inline uint8_t sub8_usat(uint8_t a, uint8_t b) { if (a > b) return a - b; else return 0; } #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); #define PFX uq #include "op_addsub.h" /* Signed modulo arithmetic. */ #define SARITH16(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ RESULT(sum, n, 16); \ if (sum >= 0) \ ge |= 3 << (n * 2); \ } while(0) #define SARITH8(a, b, n, op) do { \ int32_t sum; \ sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ RESULT(sum, n, 8); \ if (sum >= 0) \ ge |= 1 << n; \ } while(0) #define ADD16(a, b, n) SARITH16(a, b, n, +) #define SUB16(a, b, n) SARITH16(a, b, n, -) #define ADD8(a, b, n) SARITH8(a, b, n, +) #define SUB8(a, b, n) SARITH8(a, b, n, -) #define PFX s #define ARITH_GE #include "op_addsub.h" /* Unsigned modulo arithmetic. */ #define ADD16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 1) \ ge |= 3 << (n * 2); \ } while(0) #define ADD8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 1) \ ge |= 1 << n; \ } while(0) #define SUB16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define SUB8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 0) \ ge |= 1 << n; \ } while(0) #define PFX u #define ARITH_GE #include "op_addsub.h" /* Halved signed arithmetic. */ #define ADD16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) #define PFX sh #include "op_addsub.h" /* Halved unsigned arithmetic. */ #define ADD16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define PFX uh #include "op_addsub.h" static inline uint8_t do_usad(uint8_t a, uint8_t b) { if (a > b) return a - b; else return b - a; } /* Unsigned sum of absolute byte differences. */ uint32_t HELPER(usad8)(uint32_t a, uint32_t b) { uint32_t sum; sum = do_usad(a, b); sum += do_usad(a >> 8, b >> 8); sum += do_usad(a >> 16, b >>16); sum += do_usad(a >> 24, b >> 24); return sum; } /* For ARMv6 SEL instruction. */ uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) { uint32_t mask; mask = 0; if (flags & 1) mask |= 0xff; if (flags & 2) mask |= 0xff00; if (flags & 4) mask |= 0xff0000; if (flags & 8) mask |= 0xff000000; return (a & mask) | (b & ~mask); } uint32_t HELPER(logicq_cc)(uint64_t val) { return (val >> 32) | (val != 0); } /* VFP support. We follow the convention used for VFP instructions: Single precision routines have a "s" suffix, double precision a "d" suffix. */ /* Convert host exception flags to vfp form. */ static inline int vfp_exceptbits_from_host(int host_bits) { int target_bits = 0; if (host_bits & float_flag_invalid) target_bits |= 1; if (host_bits & float_flag_divbyzero) target_bits |= 2; if (host_bits & float_flag_overflow) target_bits |= 4; if (host_bits & (float_flag_underflow | float_flag_output_denormal)) target_bits |= 8; if (host_bits & float_flag_inexact) target_bits |= 0x10; if (host_bits & float_flag_input_denormal) target_bits |= 0x80; return target_bits; } uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) { int i; uint32_t fpscr; fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | (env->vfp.vec_len << 16) | (env->vfp.vec_stride << 20); i = get_float_exception_flags(&env->vfp.fp_status); i |= get_float_exception_flags(&env->vfp.standard_fp_status); fpscr |= vfp_exceptbits_from_host(i); return fpscr; } uint32_t vfp_get_fpscr(CPUARMState *env) { return HELPER(vfp_get_fpscr)(env); } /* Convert vfp exception flags to target form. */ static inline int vfp_exceptbits_to_host(int target_bits) { int host_bits = 0; if (target_bits & 1) host_bits |= float_flag_invalid; if (target_bits & 2) host_bits |= float_flag_divbyzero; if (target_bits & 4) host_bits |= float_flag_overflow; if (target_bits & 8) host_bits |= float_flag_underflow; if (target_bits & 0x10) host_bits |= float_flag_inexact; if (target_bits & 0x80) host_bits |= float_flag_input_denormal; return host_bits; } void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) { int i; uint32_t changed; changed = env->vfp.xregs[ARM_VFP_FPSCR]; env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); env->vfp.vec_len = (val >> 16) & 7; env->vfp.vec_stride = (val >> 20) & 3; changed ^= val; if (changed & (3 << 22)) { i = (val >> 22) & 3; switch (i) { case 0: i = float_round_nearest_even; break; case 1: i = float_round_up; break; case 2: i = float_round_down; break; case 3: i = float_round_to_zero; break; } set_float_rounding_mode(i, &env->vfp.fp_status); } if (changed & (1 << 24)) { set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); } if (changed & (1 << 25)) set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); i = vfp_exceptbits_to_host(val); set_float_exception_flags(i, &env->vfp.fp_status); set_float_exception_flags(0, &env->vfp.standard_fp_status); } void vfp_set_fpscr(CPUARMState *env, uint32_t val) { HELPER(vfp_set_fpscr)(env, val); } #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) #define VFP_BINOP(name) \ float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ { \ float_status *fpst = fpstp; \ return float32_ ## name(a, b, fpst); \ } \ float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ { \ float_status *fpst = fpstp; \ return float64_ ## name(a, b, fpst); \ } VFP_BINOP(add) VFP_BINOP(sub) VFP_BINOP(mul) VFP_BINOP(div) #undef VFP_BINOP float32 VFP_HELPER(neg, s)(float32 a) { return float32_chs(a); } float64 VFP_HELPER(neg, d)(float64 a) { return float64_chs(a); } float32 VFP_HELPER(abs, s)(float32 a) { return float32_abs(a); } float64 VFP_HELPER(abs, d)(float64 a) { return float64_abs(a); } float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) { return float32_sqrt(a, &env->vfp.fp_status); } float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) { return float64_sqrt(a, &env->vfp.fp_status); } /* XXX: check quiet/signaling case */ #define DO_VFP_cmp(p, type) \ void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ { \ uint32_t flags; \ switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ case 0: flags = 0x6; break; \ case -1: flags = 0x8; break; \ case 1: flags = 0x2; break; \ default: case 2: flags = 0x3; break; \ } \ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ } \ void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ { \ uint32_t flags; \ switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ case 0: flags = 0x6; break; \ case -1: flags = 0x8; break; \ case 1: flags = 0x2; break; \ default: case 2: flags = 0x3; break; \ } \ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ } DO_VFP_cmp(s, float32) DO_VFP_cmp(d, float64) #undef DO_VFP_cmp /* Integer to float and float to integer conversions */ #define CONV_ITOF(name, fsz, sign) \ float##fsz HELPER(name)(uint32_t x, void *fpstp) \ { \ float_status *fpst = fpstp; \ return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ } #define CONV_FTOI(name, fsz, sign, round) \ uint32_t HELPER(name)(float##fsz x, void *fpstp) \ { \ float_status *fpst = fpstp; \ if (float##fsz##_is_any_nan(x)) { \ float_raise(float_flag_invalid, fpst); \ return 0; \ } \ return float##fsz##_to_##sign##int32##round(x, fpst); \ } #define FLOAT_CONVS(name, p, fsz, sign) \ CONV_ITOF(vfp_##name##to##p, fsz, sign) \ CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) FLOAT_CONVS(si, s, 32, ) FLOAT_CONVS(si, d, 64, ) FLOAT_CONVS(ui, s, 32, u) FLOAT_CONVS(ui, d, 64, u) #undef CONV_ITOF #undef CONV_FTOI #undef FLOAT_CONVS /* floating point conversion */ float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) { float64 r = float32_to_float64(x, &env->vfp.fp_status); /* ARM requires that S<->D conversion of any kind of NaN generates * a quiet NaN by forcing the most significant frac bit to 1. */ return float64_maybe_silence_nan(r); } float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) { float32 r = float64_to_float32(x, &env->vfp.fp_status); /* ARM requires that S<->D conversion of any kind of NaN generates * a quiet NaN by forcing the most significant frac bit to 1. */ return float32_maybe_silence_nan(r); } /* VFP3 fixed point conversion. */ #define VFP_CONV_FIX(name, p, fsz, itype, sign) \ float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \ void *fpstp) \ { \ float_status *fpst = fpstp; \ float##fsz tmp; \ tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \ return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ } \ uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \ void *fpstp) \ { \ float_status *fpst = fpstp; \ float##fsz tmp; \ if (float##fsz##_is_any_nan(x)) { \ float_raise(float_flag_invalid, fpst); \ return 0; \ } \ tmp = float##fsz##_scalbn(x, shift, fpst); \ return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \ } VFP_CONV_FIX(sh, d, 64, int16, ) VFP_CONV_FIX(sl, d, 64, int32, ) VFP_CONV_FIX(uh, d, 64, uint16, u) VFP_CONV_FIX(ul, d, 64, uint32, u) VFP_CONV_FIX(sh, s, 32, int16, ) VFP_CONV_FIX(sl, s, 32, int32, ) VFP_CONV_FIX(uh, s, 32, uint16, u) VFP_CONV_FIX(ul, s, 32, uint32, u) #undef VFP_CONV_FIX /* Half precision conversions. */ static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) { int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; float32 r = float16_to_float32(make_float16(a), ieee, s); if (ieee) { return float32_maybe_silence_nan(r); } return r; } static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) { int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; float16 r = float32_to_float16(a, ieee, s); if (ieee) { r = float16_maybe_silence_nan(r); } return float16_val(r); } float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) { return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); } uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) { return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); } float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) { return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); } uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) { return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); } #define float32_two make_float32(0x40000000) #define float32_three make_float32(0x40400000) #define float32_one_point_five make_float32(0x3fc00000) float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { if (!(float32_is_zero(a) || float32_is_zero(b))) { float_raise(float_flag_input_denormal, s); } return float32_two; } return float32_sub(float32_two, float32_mul(a, b, s), s); } float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; float32 product; if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { if (!(float32_is_zero(a) || float32_is_zero(b))) { float_raise(float_flag_input_denormal, s); } return float32_one_point_five; } product = float32_mul(a, b, s); return float32_div(float32_sub(float32_three, product, s), float32_two, s); } /* NEON helpers. */ /* Constants 256 and 512 are used in some helpers; we avoid relying on * int->float conversions at run-time. */ #define float64_256 make_float64(0x4070000000000000LL) #define float64_512 make_float64(0x4080000000000000LL) /* The algorithm that must be used to calculate the estimate * is specified by the ARM ARM. */ static float64 recip_estimate(float64 a, CPUARMState *env) { /* These calculations mustn't set any fp exception flags, * so we use a local copy of the fp_status. */ float_status dummy_status = env->vfp.standard_fp_status; float_status *s = &dummy_status; /* q = (int)(a * 512.0) */ float64 q = float64_mul(float64_512, a, s); int64_t q_int = float64_to_int64_round_to_zero(q, s); /* r = 1.0 / (((double)q + 0.5) / 512.0) */ q = int64_to_float64(q_int, s); q = float64_add(q, float64_half, s); q = float64_div(q, float64_512, s); q = float64_div(float64_one, q, s); /* s = (int)(256.0 * r + 0.5) */ q = float64_mul(q, float64_256, s); q = float64_add(q, float64_half, s); q_int = float64_to_int64_round_to_zero(q, s); /* return (double)s / 256.0 */ return float64_div(int64_to_float64(q_int, s), float64_256, s); } float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; float64 f64; uint32_t val32 = float32_val(a); int result_exp; int a_exp = (val32 & 0x7f800000) >> 23; int sign = val32 & 0x80000000; if (float32_is_any_nan(a)) { if (float32_is_signaling_nan(a)) { float_raise(float_flag_invalid, s); } return float32_default_nan; } else if (float32_is_infinity(a)) { return float32_set_sign(float32_zero, float32_is_neg(a)); } else if (float32_is_zero_or_denormal(a)) { if (!float32_is_zero(a)) { float_raise(float_flag_input_denormal, s); } float_raise(float_flag_divbyzero, s); return float32_set_sign(float32_infinity, float32_is_neg(a)); } else if (a_exp >= 253) { float_raise(float_flag_underflow, s); return float32_set_sign(float32_zero, float32_is_neg(a)); } f64 = make_float64((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)); result_exp = 253 - a_exp; f64 = recip_estimate(f64, env); val32 = sign | ((result_exp & 0xff) << 23) | ((float64_val(f64) >> 29) & 0x7fffff); return make_float32(val32); } /* The algorithm that must be used to calculate the estimate * is specified by the ARM ARM. */ static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) { /* These calculations mustn't set any fp exception flags, * so we use a local copy of the fp_status. */ float_status dummy_status = env->vfp.standard_fp_status; float_status *s = &dummy_status; float64 q; int64_t q_int; if (float64_lt(a, float64_half, s)) { /* range 0.25 <= a < 0.5 */ /* a in units of 1/512 rounded down */ /* q0 = (int)(a * 512.0); */ q = float64_mul(float64_512, a, s); q_int = float64_to_int64_round_to_zero(q, s); /* reciprocal root r */ /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ q = int64_to_float64(q_int, s); q = float64_add(q, float64_half, s); q = float64_div(q, float64_512, s); q = float64_sqrt(q, s); q = float64_div(float64_one, q, s); } else { /* range 0.5 <= a < 1.0 */ /* a in units of 1/256 rounded down */ /* q1 = (int)(a * 256.0); */ q = float64_mul(float64_256, a, s); int64_t q_int = float64_to_int64_round_to_zero(q, s); /* reciprocal root r */ /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ q = int64_to_float64(q_int, s); q = float64_add(q, float64_half, s); q = float64_div(q, float64_256, s); q = float64_sqrt(q, s); q = float64_div(float64_one, q, s); } /* r in units of 1/256 rounded to nearest */ /* s = (int)(256.0 * r + 0.5); */ q = float64_mul(q, float64_256,s ); q = float64_add(q, float64_half, s); q_int = float64_to_int64_round_to_zero(q, s); /* return (double)s / 256.0;*/ return float64_div(int64_to_float64(q_int, s), float64_256, s); } float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) { float_status *s = &env->vfp.standard_fp_status; int result_exp; float64 f64; uint32_t val; uint64_t val64; val = float32_val(a); if (float32_is_any_nan(a)) { if (float32_is_signaling_nan(a)) { float_raise(float_flag_invalid, s); } return float32_default_nan; } else if (float32_is_zero_or_denormal(a)) { if (!float32_is_zero(a)) { float_raise(float_flag_input_denormal, s); } float_raise(float_flag_divbyzero, s); return float32_set_sign(float32_infinity, float32_is_neg(a)); } else if (float32_is_neg(a)) { float_raise(float_flag_invalid, s); return float32_default_nan; } else if (float32_is_infinity(a)) { return float32_zero; } /* Normalize to a double-precision value between 0.25 and 1.0, * preserving the parity of the exponent. */ if ((val & 0x800000) == 0) { f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); } else { f64 = make_float64(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); } result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; f64 = recip_sqrt_estimate(f64, env); val64 = float64_val(f64); val = ((result_exp & 0xff) << 23) | ((val64 >> 29) & 0x7fffff); return make_float32(val); } uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) { float64 f64; if ((a & 0x80000000) == 0) { return 0xffffffff; } f64 = make_float64((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)); f64 = recip_estimate (f64, env); return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); } uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) { float64 f64; if ((a & 0xc0000000) == 0) { return 0xffffffff; } if (a & 0x80000000) { f64 = make_float64((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)); } else { /* bits 31-30 == '01' */ f64 = make_float64((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)); } f64 = recip_sqrt_estimate(f64, env); return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); } /* VFPv4 fused multiply-accumulate */ float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) { float_status *fpst = fpstp; return float32_muladd(a, b, c, 0, fpst); } float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) { float_status *fpst = fpstp; return float64_muladd(a, b, c, 0, fpst); }