/* * ARM virtual CPU header * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef CPU_ARM_H #define CPU_ARM_H #define TARGET_LONG_BITS 32 #define ELF_MACHINE EM_ARM #include "cpu-defs.h" #include "softfloat.h" #define TARGET_HAS_ICE 1 #define EXCP_UDEF 1 /* undefined instruction */ #define EXCP_SWI 2 /* software interrupt */ #define EXCP_PREFETCH_ABORT 3 #define EXCP_DATA_ABORT 4 #define EXCP_IRQ 5 #define EXCP_FIQ 6 #define EXCP_BKPT 7 /* We currently assume float and double are IEEE single and double precision respectively. Doing runtime conversions is tricky because VFP registers may contain integer values (eg. as the result of a FTOSI instruction). s<2n> maps to the least significant half of d s<2n+1> maps to the most significant half of d */ typedef struct CPUARMState { /* Regs for current mode. */ uint32_t regs[16]; /* Frequently accessed CPSR bits are stored separately for efficiently. This contains all the other bits. Use cpsr_{read,write} to access the whole CPSR. */ uint32_t uncached_cpsr; uint32_t spsr; /* Banked registers. */ uint32_t banked_spsr[6]; uint32_t banked_r13[6]; uint32_t banked_r14[6]; /* These hold r8-r12. */ uint32_t usr_regs[5]; uint32_t fiq_regs[5]; /* cpsr flag cache for faster execution */ uint32_t CF; /* 0 or 1 */ uint32_t VF; /* V is the bit 31. All other bits are undefined */ uint32_t NZF; /* N is bit 31. Z is computed from NZF */ uint32_t QF; /* 0 or 1 */ int thumb; /* 0 = arm mode, 1 = thumb mode */ /* System control coprocessor (cp15) */ struct { uint32_t c0_cpuid; uint32_t c1_sys; /* System control register. */ uint32_t c1_coproc; /* Coprocessor access register. */ uint32_t c2; /* MMU translation table base. */ uint32_t c3; /* MMU domain access control register. */ uint32_t c5_insn; /* Fault status registers. */ uint32_t c5_data; uint32_t c6_insn; /* Fault address registers. */ uint32_t c6_data; uint32_t c9_insn; /* Cache lockdown registers. */ uint32_t c9_data; uint32_t c13_fcse; /* FCSE PID. */ uint32_t c13_context; /* Context ID. */ } cp15; /* Internal CPU feature flags. */ uint32_t features; /* exception/interrupt handling */ jmp_buf jmp_env; int exception_index; int interrupt_request; int user_mode_only; int halted; /* VFP coprocessor state. */ struct { float64 regs[16]; uint32_t xregs[16]; /* We store these fpcsr fields separately for convenience. */ int vec_len; int vec_stride; /* Temporary variables if we don't have spare fp regs. */ float32 tmp0s, tmp1s; float64 tmp0d, tmp1d; float_status fp_status; } vfp; #if defined(CONFIG_USER_ONLY) /* For usermode syscall translation. */ int eabi; #endif CPU_COMMON } CPUARMState; CPUARMState *cpu_arm_init(void); int cpu_arm_exec(CPUARMState *s); void cpu_arm_close(CPUARMState *s); void do_interrupt(CPUARMState *); void switch_mode(CPUARMState *, int); /* you can call this signal handler from your SIGBUS and SIGSEGV signal handlers to inform the virtual CPU of exceptions. non zero is returned if the signal was handled by the virtual CPU. */ struct siginfo; int cpu_arm_signal_handler(int host_signum, struct siginfo *info, void *puc); #define CPSR_M (0x1f) #define CPSR_T (1 << 5) #define CPSR_F (1 << 6) #define CPSR_I (1 << 7) #define CPSR_A (1 << 8) #define CPSR_E (1 << 9) #define CPSR_IT_2_7 (0xfc00) /* Bits 20-23 reserved. */ #define CPSR_J (1 << 24) #define CPSR_IT_0_1 (3 << 25) #define CPSR_Q (1 << 27) #define CPSR_NZCV (0xf << 28) #define CACHED_CPSR_BITS (CPSR_T | CPSR_Q | CPSR_NZCV) /* Return the current CPSR value. */ static inline uint32_t cpsr_read(CPUARMState *env) { int ZF; ZF = (env->NZF == 0); return env->uncached_cpsr | (env->NZF & 0x80000000) | (ZF << 30) | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 5); } /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */ static inline void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { /* NOTE: N = 1 and Z = 1 cannot be stored currently */ if (mask & CPSR_NZCV) { env->NZF = (val & 0xc0000000) ^ 0x40000000; env->CF = (val >> 29) & 1; env->VF = (val << 3) & 0x80000000; } if (mask & CPSR_Q) env->QF = ((val & CPSR_Q) != 0); if (mask & CPSR_T) env->thumb = ((val & CPSR_T) != 0); if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { switch_mode(env, val & CPSR_M); } mask &= ~CACHED_CPSR_BITS; env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); } enum arm_cpu_mode { ARM_CPU_MODE_USR = 0x10, ARM_CPU_MODE_FIQ = 0x11, ARM_CPU_MODE_IRQ = 0x12, ARM_CPU_MODE_SVC = 0x13, ARM_CPU_MODE_ABT = 0x17, ARM_CPU_MODE_UND = 0x1b, ARM_CPU_MODE_SYS = 0x1f }; /* VFP system registers. */ #define ARM_VFP_FPSID 0 #define ARM_VFP_FPSCR 1 #define ARM_VFP_FPEXC 8 #define ARM_VFP_FPINST 9 #define ARM_VFP_FPINST2 10 enum arm_features { ARM_FEATURE_VFP, ARM_FEATURE_AUXCR /* ARM1026 Auxiliary control register. */ }; static inline int arm_feature(CPUARMState *env, int feature) { return (env->features & (1u << feature)) != 0; } void cpu_arm_set_model(CPUARMState *env, uint32_t id); #define ARM_CPUID_ARM1026 0x4106a262 #define ARM_CPUID_ARM926 0x41069265 #if defined(CONFIG_USER_ONLY) #define TARGET_PAGE_BITS 12 #else /* The ARM MMU allows 1k pages. */ /* ??? Linux doesn't actually use these, and they're deprecated in recent architecture revisions. Maybe an a configure option to disable them. */ #define TARGET_PAGE_BITS 10 #endif #include "cpu-all.h" #endif