/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "monitor/monitor.h" #include "qemu/coroutine-tls.h" #include "qapi/error.h" #include "qapi/qapi-commands-machine.h" #include "qapi/qapi-commands-misc.h" #include "qapi/qapi-events-run-state.h" #include "qapi/qmp/qerror.h" #include "exec/gdbstub.h" #include "system/hw_accel.h" #include "exec/cpu-common.h" #include "qemu/thread.h" #include "qemu/main-loop.h" #include "qemu/plugin.h" #include "system/cpus.h" #include "qemu/guest-random.h" #include "hw/nmi.h" #include "system/replay.h" #include "system/runstate.h" #include "system/cpu-timers.h" #include "system/whpx.h" #include "hw/boards.h" #include "hw/hw.h" #include "trace.h" #ifdef CONFIG_LINUX #include #ifndef PR_MCE_KILL #define PR_MCE_KILL 33 #endif #ifndef PR_MCE_KILL_SET #define PR_MCE_KILL_SET 1 #endif #ifndef PR_MCE_KILL_EARLY #define PR_MCE_KILL_EARLY 1 #endif #endif /* CONFIG_LINUX */ /* The Big QEMU Lock (BQL) */ static QemuMutex bql; /* * The chosen accelerator is supposed to register this. */ static const AccelOpsClass *cpus_accel; bool cpu_is_stopped(CPUState *cpu) { return cpu->stopped || !runstate_is_running(); } bool cpu_work_list_empty(CPUState *cpu) { return QSIMPLEQ_EMPTY_ATOMIC(&cpu->work_list); } bool cpu_thread_is_idle(CPUState *cpu) { if (cpu->stop || !cpu_work_list_empty(cpu)) { return false; } if (cpu_is_stopped(cpu)) { return true; } if (!cpu->halted || cpu_has_work(cpu)) { return false; } if (cpus_accel->cpu_thread_is_idle) { return cpus_accel->cpu_thread_is_idle(cpu); } return true; } bool all_cpu_threads_idle(void) { CPUState *cpu; CPU_FOREACH(cpu) { if (!cpu_thread_is_idle(cpu)) { return false; } } return true; } /***********************************************************/ void hw_error(const char *fmt, ...) { va_list ap; CPUState *cpu; va_start(ap, fmt); fprintf(stderr, "qemu: hardware error: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); CPU_FOREACH(cpu) { fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); cpu_dump_state(cpu, stderr, CPU_DUMP_FPU); } va_end(ap); abort(); } void cpu_synchronize_all_states(void) { CPUState *cpu; CPU_FOREACH(cpu) { cpu_synchronize_state(cpu); } } void cpu_synchronize_all_post_reset(void) { CPUState *cpu; CPU_FOREACH(cpu) { cpu_synchronize_post_reset(cpu); } } void cpu_synchronize_all_post_init(void) { CPUState *cpu; CPU_FOREACH(cpu) { cpu_synchronize_post_init(cpu); } } void cpu_synchronize_all_pre_loadvm(void) { CPUState *cpu; CPU_FOREACH(cpu) { cpu_synchronize_pre_loadvm(cpu); } } void cpu_synchronize_state(CPUState *cpu) { if (cpus_accel->synchronize_state) { cpus_accel->synchronize_state(cpu); } } void cpu_synchronize_post_reset(CPUState *cpu) { if (cpus_accel->synchronize_post_reset) { cpus_accel->synchronize_post_reset(cpu); } } void cpu_synchronize_post_init(CPUState *cpu) { if (cpus_accel->synchronize_post_init) { cpus_accel->synchronize_post_init(cpu); } } void cpu_synchronize_pre_loadvm(CPUState *cpu) { if (cpus_accel->synchronize_pre_loadvm) { cpus_accel->synchronize_pre_loadvm(cpu); } } bool cpus_are_resettable(void) { if (cpus_accel->cpus_are_resettable) { return cpus_accel->cpus_are_resettable(); } return true; } void cpu_exec_reset_hold(CPUState *cpu) { if (cpus_accel->cpu_reset_hold) { cpus_accel->cpu_reset_hold(cpu); } } int64_t cpus_get_virtual_clock(void) { /* * XXX * * need to check that cpus_accel is not NULL, because qcow2 calls * qemu_get_clock_ns(CLOCK_VIRTUAL) without any accel initialized and * with ticks disabled in some io-tests: * 030 040 041 060 099 120 127 140 156 161 172 181 191 192 195 203 229 249 256 267 * * is this expected? * * XXX */ if (cpus_accel && cpus_accel->get_virtual_clock) { return cpus_accel->get_virtual_clock(); } return cpu_get_clock(); } /* * Signal the new virtual time to the accelerator. This is only needed * by accelerators that need to track the changes as we warp time. */ void cpus_set_virtual_clock(int64_t new_time) { if (cpus_accel && cpus_accel->set_virtual_clock) { cpus_accel->set_virtual_clock(new_time); } } /* * return the time elapsed in VM between vm_start and vm_stop. Unless * icount is active, cpus_get_elapsed_ticks() uses units of the host CPU cycle * counter. */ int64_t cpus_get_elapsed_ticks(void) { if (cpus_accel->get_elapsed_ticks) { return cpus_accel->get_elapsed_ticks(); } return cpu_get_ticks(); } static void generic_handle_interrupt(CPUState *cpu, int mask) { cpu->interrupt_request |= mask; if (!qemu_cpu_is_self(cpu)) { qemu_cpu_kick(cpu); } } void cpu_interrupt(CPUState *cpu, int mask) { if (cpus_accel->handle_interrupt) { cpus_accel->handle_interrupt(cpu, mask); } else { generic_handle_interrupt(cpu, mask); } } /* * True if the vm was previously suspended, and has not been woken or reset. */ static int vm_was_suspended; void vm_set_suspended(bool suspended) { vm_was_suspended = suspended; } bool vm_get_suspended(void) { return vm_was_suspended; } static int do_vm_stop(RunState state, bool send_stop) { int ret = 0; RunState oldstate = runstate_get(); if (runstate_is_live(oldstate)) { vm_was_suspended = (oldstate == RUN_STATE_SUSPENDED); runstate_set(state); cpu_disable_ticks(); if (oldstate == RUN_STATE_RUNNING) { pause_all_vcpus(); } vm_state_notify(0, state); if (send_stop) { qapi_event_send_stop(); } } bdrv_drain_all(); ret = bdrv_flush_all(); trace_vm_stop_flush_all(ret); return ret; } /* Special vm_stop() variant for terminating the process. Historically clients * did not expect a QMP STOP event and so we need to retain compatibility. */ int vm_shutdown(void) { return do_vm_stop(RUN_STATE_SHUTDOWN, false); } bool cpu_can_run(CPUState *cpu) { if (cpu->stop) { return false; } if (cpu_is_stopped(cpu)) { return false; } return true; } void cpu_handle_guest_debug(CPUState *cpu) { if (replay_running_debug()) { if (!cpu->singlestep_enabled) { /* * Report about the breakpoint and * make a single step to skip it */ replay_breakpoint(); cpu_single_step(cpu, SSTEP_ENABLE); } else { cpu_single_step(cpu, 0); } } else { gdb_set_stop_cpu(cpu); qemu_system_debug_request(); cpu->stopped = true; } } #ifdef CONFIG_LINUX static void sigbus_reraise(void) { sigset_t set; struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_handler = SIG_DFL; if (!sigaction(SIGBUS, &action, NULL)) { raise(SIGBUS); sigemptyset(&set); sigaddset(&set, SIGBUS); pthread_sigmask(SIG_UNBLOCK, &set, NULL); } perror("Failed to re-raise SIGBUS!"); abort(); } static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx) { if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) { sigbus_reraise(); } if (current_cpu) { /* Called asynchronously in VCPU thread. */ if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) { sigbus_reraise(); } } else { /* Called synchronously (via signalfd) in main thread. */ if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) { sigbus_reraise(); } } } static void qemu_init_sigbus(void) { struct sigaction action; /* * ALERT: when modifying this, take care that SIGBUS forwarding in * qemu_prealloc_mem() will continue working as expected. */ memset(&action, 0, sizeof(action)); action.sa_flags = SA_SIGINFO; action.sa_sigaction = sigbus_handler; sigaction(SIGBUS, &action, NULL); prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); } #else /* !CONFIG_LINUX */ static void qemu_init_sigbus(void) { } #endif /* !CONFIG_LINUX */ static QemuThread io_thread; /* cpu creation */ static QemuCond qemu_cpu_cond; /* system init */ static QemuCond qemu_pause_cond; void qemu_init_cpu_loop(void) { qemu_init_sigbus(); qemu_cond_init(&qemu_cpu_cond); qemu_cond_init(&qemu_pause_cond); qemu_mutex_init(&bql); qemu_thread_get_self(&io_thread); } void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data) { do_run_on_cpu(cpu, func, data, &bql); } static void qemu_cpu_stop(CPUState *cpu, bool exit) { g_assert(qemu_cpu_is_self(cpu)); cpu->stop = false; cpu->stopped = true; if (exit) { cpu_exit(cpu); } qemu_cond_broadcast(&qemu_pause_cond); } void qemu_wait_io_event_common(CPUState *cpu) { qatomic_set_mb(&cpu->thread_kicked, false); if (cpu->stop) { qemu_cpu_stop(cpu, false); } process_queued_cpu_work(cpu); } void qemu_wait_io_event(CPUState *cpu) { bool slept = false; while (cpu_thread_is_idle(cpu)) { if (!slept) { slept = true; qemu_plugin_vcpu_idle_cb(cpu); } qemu_cond_wait(cpu->halt_cond, &bql); } if (slept) { qemu_plugin_vcpu_resume_cb(cpu); } qemu_wait_io_event_common(cpu); } void cpus_kick_thread(CPUState *cpu) { if (cpu->thread_kicked) { return; } cpu->thread_kicked = true; #ifndef _WIN32 int err = pthread_kill(cpu->thread->thread, SIG_IPI); if (err && err != ESRCH) { fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); exit(1); } #else qemu_sem_post(&cpu->sem); #endif } void qemu_cpu_kick(CPUState *cpu) { qemu_cond_broadcast(cpu->halt_cond); if (cpus_accel->kick_vcpu_thread) { cpus_accel->kick_vcpu_thread(cpu); } else { /* default */ cpus_kick_thread(cpu); } } void qemu_cpu_kick_self(void) { assert(current_cpu); cpus_kick_thread(current_cpu); } bool qemu_cpu_is_self(CPUState *cpu) { return qemu_thread_is_self(cpu->thread); } bool qemu_in_vcpu_thread(void) { return current_cpu && qemu_cpu_is_self(current_cpu); } QEMU_DEFINE_STATIC_CO_TLS(bool, bql_locked) static uint32_t bql_unlock_blocked; void bql_block_unlock(bool increase) { uint32_t new_value; assert(bql_locked()); /* check for overflow! */ new_value = bql_unlock_blocked + increase - !increase; assert((new_value > bql_unlock_blocked) == increase); bql_unlock_blocked = new_value; } bool bql_locked(void) { return get_bql_locked(); } bool qemu_in_main_thread(void) { return bql_locked(); } /* * The BQL is taken from so many places that it is worth profiling the * callers directly, instead of funneling them all through a single function. */ void bql_lock_impl(const char *file, int line) { QemuMutexLockFunc bql_lock_fn = qatomic_read(&bql_mutex_lock_func); g_assert(!bql_locked()); bql_lock_fn(&bql, file, line); set_bql_locked(true); } void bql_unlock(void) { g_assert(bql_locked()); g_assert(!bql_unlock_blocked); set_bql_locked(false); qemu_mutex_unlock(&bql); } void qemu_cond_wait_bql(QemuCond *cond) { qemu_cond_wait(cond, &bql); } void qemu_cond_timedwait_bql(QemuCond *cond, int ms) { qemu_cond_timedwait(cond, &bql, ms); } /* signal CPU creation */ void cpu_thread_signal_created(CPUState *cpu) { cpu->created = true; qemu_cond_signal(&qemu_cpu_cond); } /* signal CPU destruction */ void cpu_thread_signal_destroyed(CPUState *cpu) { cpu->created = false; qemu_cond_signal(&qemu_cpu_cond); } void cpu_pause(CPUState *cpu) { if (qemu_cpu_is_self(cpu)) { qemu_cpu_stop(cpu, true); } else { cpu->stop = true; qemu_cpu_kick(cpu); } } void cpu_resume(CPUState *cpu) { cpu->stop = false; cpu->stopped = false; qemu_cpu_kick(cpu); } static bool all_vcpus_paused(void) { CPUState *cpu; CPU_FOREACH(cpu) { if (!cpu->stopped) { return false; } } return true; } void pause_all_vcpus(void) { CPUState *cpu; qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); CPU_FOREACH(cpu) { cpu_pause(cpu); } /* We need to drop the replay_lock so any vCPU threads woken up * can finish their replay tasks */ replay_mutex_unlock(); while (!all_vcpus_paused()) { qemu_cond_wait(&qemu_pause_cond, &bql); CPU_FOREACH(cpu) { qemu_cpu_kick(cpu); } } bql_unlock(); replay_mutex_lock(); bql_lock(); } void resume_all_vcpus(void) { CPUState *cpu; if (!runstate_is_running()) { return; } qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); CPU_FOREACH(cpu) { cpu_resume(cpu); } } void cpu_remove_sync(CPUState *cpu) { cpu->stop = true; cpu->unplug = true; qemu_cpu_kick(cpu); bql_unlock(); qemu_thread_join(cpu->thread); bql_lock(); } void cpus_register_accel(const AccelOpsClass *ops) { assert(ops != NULL); assert(ops->create_vcpu_thread != NULL); /* mandatory */ cpus_accel = ops; } const AccelOpsClass *cpus_get_accel(void) { /* broken if we call this early */ assert(cpus_accel); return cpus_accel; } void qemu_init_vcpu(CPUState *cpu) { MachineState *ms = MACHINE(qdev_get_machine()); cpu->nr_cores = machine_topo_get_cores_per_socket(ms); cpu->nr_threads = ms->smp.threads; cpu->stopped = true; cpu->random_seed = qemu_guest_random_seed_thread_part1(); if (!cpu->as) { /* If the target cpu hasn't set up any address spaces itself, * give it the default one. */ cpu->num_ases = 1; cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory); } /* accelerators all implement the AccelOpsClass */ g_assert(cpus_accel != NULL && cpus_accel->create_vcpu_thread != NULL); cpus_accel->create_vcpu_thread(cpu); while (!cpu->created) { qemu_cond_wait(&qemu_cpu_cond, &bql); } } void cpu_stop_current(void) { if (current_cpu) { current_cpu->stop = true; cpu_exit(current_cpu); } } int vm_stop(RunState state) { if (qemu_in_vcpu_thread()) { qemu_system_vmstop_request_prepare(); qemu_system_vmstop_request(state); /* * FIXME: should not return to device code in case * vm_stop() has been requested. */ cpu_stop_current(); return 0; } return do_vm_stop(state, true); } /** * Prepare for (re)starting the VM. * Returns 0 if the vCPUs should be restarted, -1 on an error condition, * and 1 otherwise. */ int vm_prepare_start(bool step_pending) { int ret = vm_was_suspended ? 1 : 0; RunState state = vm_was_suspended ? RUN_STATE_SUSPENDED : RUN_STATE_RUNNING; RunState requested; qemu_vmstop_requested(&requested); if (runstate_is_running() && requested == RUN_STATE__MAX) { return -1; } /* Ensure that a STOP/RESUME pair of events is emitted if a * vmstop request was pending. The BLOCK_IO_ERROR event, for * example, according to documentation is always followed by * the STOP event. */ if (runstate_is_running()) { qapi_event_send_stop(); qapi_event_send_resume(); return -1; } /* * WHPX accelerator needs to know whether we are going to step * any CPUs, before starting the first one. */ if (cpus_accel->synchronize_pre_resume) { cpus_accel->synchronize_pre_resume(step_pending); } /* We are sending this now, but the CPUs will be resumed shortly later */ qapi_event_send_resume(); cpu_enable_ticks(); runstate_set(state); vm_state_notify(1, state); vm_was_suspended = false; return ret; } void vm_start(void) { if (!vm_prepare_start(false)) { resume_all_vcpus(); } } void vm_resume(RunState state) { if (runstate_is_live(state)) { vm_start(); } else { runstate_set(state); } } /* does a state transition even if the VM is already stopped, current state is forgotten forever */ int vm_stop_force_state(RunState state) { if (runstate_is_live(runstate_get())) { return vm_stop(state); } else { int ret; runstate_set(state); bdrv_drain_all(); /* Make sure to return an error if the flush in a previous vm_stop() * failed. */ ret = bdrv_flush_all(); trace_vm_stop_flush_all(ret); return ret; } } void qmp_memsave(uint64_t addr, uint64_t size, const char *filename, bool has_cpu, int64_t cpu_index, Error **errp) { FILE *f; uint64_t l; CPUState *cpu; uint8_t buf[1024]; uint64_t orig_addr = addr, orig_size = size; if (!has_cpu) { cpu_index = 0; } cpu = qemu_get_cpu(cpu_index); if (cpu == NULL) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", "a CPU number"); return; } f = fopen(filename, "wb"); if (!f) { error_setg_file_open(errp, errno, filename); return; } while (size != 0) { l = sizeof(buf); if (l > size) l = size; if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRIu64 " specified", orig_addr, orig_size); goto exit; } if (fwrite(buf, 1, l, f) != l) { error_setg(errp, "writing memory to '%s' failed", filename); goto exit; } addr += l; size -= l; } exit: fclose(f); } void qmp_pmemsave(uint64_t addr, uint64_t size, const char *filename, Error **errp) { FILE *f; uint64_t l; uint8_t buf[1024]; f = fopen(filename, "wb"); if (!f) { error_setg_file_open(errp, errno, filename); return; } while (size != 0) { l = sizeof(buf); if (l > size) l = size; cpu_physical_memory_read(addr, buf, l); if (fwrite(buf, 1, l, f) != l) { error_setg(errp, "writing memory to '%s' failed", filename); goto exit; } addr += l; size -= l; } exit: fclose(f); } void qmp_inject_nmi(Error **errp) { nmi_monitor_handle(monitor_get_cpu_index(monitor_cur()), errp); }