#!/usr/bin/env python3 # Copyright (c) 2018 Linaro Limited # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, see <http://www.gnu.org/licenses/>. # # # Generate a decoding tree from a specification file. # See the syntax and semantics in docs/devel/decodetree.rst. # import io import os import re import sys import getopt insnwidth = 32 bitop_width = 32 insnmask = 0xffffffff variablewidth = False fields = {} arguments = {} formats = {} allpatterns = [] anyextern = False testforerror = False translate_prefix = 'trans' translate_scope = 'static ' input_file = '' output_file = None output_fd = None output_null = False insntype = 'uint32_t' decode_function = 'decode' # An identifier for C. re_C_ident = '[a-zA-Z][a-zA-Z0-9_]*' # Identifiers for Arguments, Fields, Formats and Patterns. re_arg_ident = '&[a-zA-Z0-9_]*' re_fld_ident = '%[a-zA-Z0-9_]*' re_fmt_ident = '@[a-zA-Z0-9_]*' re_pat_ident = '[a-zA-Z0-9_]*' # Local implementation of a topological sort. We use the same API that # the Python graphlib does, so that when QEMU moves forward to a # baseline of Python 3.9 or newer this code can all be dropped and # replaced with: # from graphlib import TopologicalSorter, CycleError # # https://docs.python.org/3.9/library/graphlib.html#graphlib.TopologicalSorter # # We only implement the parts of TopologicalSorter we care about: # ts = TopologicalSorter(graph=None) # create the sorter. graph is a dictionary whose keys are # nodes and whose values are lists of the predecessors of that node. # (That is, if graph contains "A" -> ["B", "C"] then we must output # B and C before A.) # ts.static_order() # returns a list of all the nodes in sorted order, or raises CycleError # CycleError # exception raised if there are cycles in the graph. The second # element in the args attribute is a list of nodes which form a # cycle; the first and last element are the same, eg [a, b, c, a] # (Our implementation doesn't give the order correctly.) # # For our purposes we can assume that the data set is always small # (typically 10 nodes or less, actual links in the graph very rare), # so we don't need to worry about efficiency of implementation. # # The core of this implementation is from # https://code.activestate.com/recipes/578272-topological-sort/ # (but updated to Python 3), and is under the MIT license. class CycleError(ValueError): """Subclass of ValueError raised if cycles exist in the graph""" pass class TopologicalSorter: """Topologically sort a graph""" def __init__(self, graph=None): self.graph = graph def static_order(self): # We do the sort right here, unlike the stdlib version from functools import reduce data = {} r = [] if not self.graph: return [] # This code wants the values in the dict to be specifically sets for k, v in self.graph.items(): data[k] = set(v) # Find all items that don't depend on anything. extra_items_in_deps = (reduce(set.union, data.values()) - set(data.keys())) # Add empty dependencies where needed data.update({item:{} for item in extra_items_in_deps}) while True: ordered = set(item for item, dep in data.items() if not dep) if not ordered: break r.extend(ordered) data = {item: (dep - ordered) for item, dep in data.items() if item not in ordered} if data: # This doesn't give as nice results as the stdlib, which # gives you the cycle by listing the nodes in order. Here # we only know the nodes in the cycle but not their order. raise CycleError(f'nodes are in a cycle', list(data.keys())) return r # end TopologicalSorter def error_with_file(file, lineno, *args): """Print an error message from file:line and args and exit.""" global output_file global output_fd prefix = '' if file: prefix += f'{file}:' if lineno: prefix += f'{lineno}:' if prefix: prefix += ' ' print(prefix, end='error: ', file=sys.stderr) print(*args, file=sys.stderr) if output_file and output_fd: output_fd.close() os.remove(output_file) exit(0 if testforerror else 1) # end error_with_file def error(lineno, *args): error_with_file(input_file, lineno, *args) # end error def output(*args): global output_fd for a in args: output_fd.write(a) def output_autogen(): output('/* This file is autogenerated by scripts/decodetree.py. */\n\n') def str_indent(c): """Return a string with C spaces""" return ' ' * c def str_fields(fields): """Return a string uniquely identifying FIELDS""" r = '' for n in sorted(fields.keys()): r += '_' + n return r[1:] def whex(val): """Return a hex string for val padded for insnwidth""" global insnwidth return f'0x{val:0{insnwidth // 4}x}' def whexC(val): """Return a hex string for val padded for insnwidth, and with the proper suffix for a C constant.""" suffix = '' if val >= 0x100000000: suffix = 'ull' elif val >= 0x80000000: suffix = 'u' return whex(val) + suffix def str_match_bits(bits, mask): """Return a string pretty-printing BITS/MASK""" global insnwidth i = 1 << (insnwidth - 1) space = 0x01010100 r = '' while i != 0: if i & mask: if i & bits: r += '1' else: r += '0' else: r += '.' if i & space: r += ' ' i >>= 1 return r def is_pow2(x): """Return true iff X is equal to a power of 2.""" return (x & (x - 1)) == 0 def ctz(x): """Return the number of times 2 factors into X.""" assert x != 0 r = 0 while ((x >> r) & 1) == 0: r += 1 return r def is_contiguous(bits): if bits == 0: return -1 shift = ctz(bits) if is_pow2((bits >> shift) + 1): return shift else: return -1 def eq_fields_for_args(flds_a, arg): if len(flds_a) != len(arg.fields): return False # Only allow inference on default types for t in arg.types: if t != 'int': return False for k, a in flds_a.items(): if k not in arg.fields: return False return True def eq_fields_for_fmts(flds_a, flds_b): if len(flds_a) != len(flds_b): return False for k, a in flds_a.items(): if k not in flds_b: return False b = flds_b[k] if a.__class__ != b.__class__ or a != b: return False return True class Field: """Class representing a simple instruction field""" def __init__(self, sign, pos, len): self.sign = sign self.pos = pos self.len = len self.mask = ((1 << len) - 1) << pos def __str__(self): if self.sign: s = 's' else: s = '' return str(self.pos) + ':' + s + str(self.len) def str_extract(self, lvalue_formatter): global bitop_width s = 's' if self.sign else '' return f'{s}extract{bitop_width}(insn, {self.pos}, {self.len})' def referenced_fields(self): return [] def __eq__(self, other): return self.sign == other.sign and self.mask == other.mask def __ne__(self, other): return not self.__eq__(other) # end Field class MultiField: """Class representing a compound instruction field""" def __init__(self, subs, mask): self.subs = subs self.sign = subs[0].sign self.mask = mask def __str__(self): return str(self.subs) def str_extract(self, lvalue_formatter): global bitop_width ret = '0' pos = 0 for f in reversed(self.subs): ext = f.str_extract(lvalue_formatter) if pos == 0: ret = ext else: ret = f'deposit{bitop_width}({ret}, {pos}, {bitop_width - pos}, {ext})' pos += f.len return ret def referenced_fields(self): l = [] for f in self.subs: l.extend(f.referenced_fields()) return l def __ne__(self, other): if len(self.subs) != len(other.subs): return True for a, b in zip(self.subs, other.subs): if a.__class__ != b.__class__ or a != b: return True return False def __eq__(self, other): return not self.__ne__(other) # end MultiField class ConstField: """Class representing an argument field with constant value""" def __init__(self, value): self.value = value self.mask = 0 self.sign = value < 0 def __str__(self): return str(self.value) def str_extract(self, lvalue_formatter): return str(self.value) def referenced_fields(self): return [] def __cmp__(self, other): return self.value - other.value # end ConstField class FunctionField: """Class representing a field passed through a function""" def __init__(self, func, base): self.mask = base.mask self.sign = base.sign self.base = base self.func = func def __str__(self): return self.func + '(' + str(self.base) + ')' def str_extract(self, lvalue_formatter): return (self.func + '(ctx, ' + self.base.str_extract(lvalue_formatter) + ')') def referenced_fields(self): return self.base.referenced_fields() def __eq__(self, other): return self.func == other.func and self.base == other.base def __ne__(self, other): return not self.__eq__(other) # end FunctionField class ParameterField: """Class representing a pseudo-field read from a function""" def __init__(self, func): self.mask = 0 self.sign = 0 self.func = func def __str__(self): return self.func def str_extract(self, lvalue_formatter): return self.func + '(ctx)' def referenced_fields(self): return [] def __eq__(self, other): return self.func == other.func def __ne__(self, other): return not self.__eq__(other) # end ParameterField class NamedField: """Class representing a field already named in the pattern""" def __init__(self, name, sign, len): self.mask = 0 self.sign = sign self.len = len self.name = name def __str__(self): return self.name def str_extract(self, lvalue_formatter): global bitop_width s = 's' if self.sign else '' lvalue = lvalue_formatter(self.name) return f'{s}extract{bitop_width}({lvalue}, 0, {self.len})' def referenced_fields(self): return [self.name] def __eq__(self, other): return self.name == other.name def __ne__(self, other): return not self.__eq__(other) # end NamedField class Arguments: """Class representing the extracted fields of a format""" def __init__(self, nm, flds, types, extern): self.name = nm self.extern = extern self.fields = flds self.types = types def __str__(self): return self.name + ' ' + str(self.fields) def struct_name(self): return 'arg_' + self.name def output_def(self): if not self.extern: output('typedef struct {\n') for (n, t) in zip(self.fields, self.types): output(f' {t} {n};\n') output('} ', self.struct_name(), ';\n\n') # end Arguments class General: """Common code between instruction formats and instruction patterns""" def __init__(self, name, lineno, base, fixb, fixm, udfm, fldm, flds, w): self.name = name self.file = input_file self.lineno = lineno self.base = base self.fixedbits = fixb self.fixedmask = fixm self.undefmask = udfm self.fieldmask = fldm self.fields = flds self.width = w self.dangling = None def __str__(self): return self.name + ' ' + str_match_bits(self.fixedbits, self.fixedmask) def str1(self, i): return str_indent(i) + self.__str__() def dangling_references(self): # Return a list of all named references which aren't satisfied # directly by this format/pattern. This will be either: # * a format referring to a field which is specified by the # pattern(s) using it # * a pattern referring to a field which is specified by the # format it uses # * a user error (referring to a field that doesn't exist at all) if self.dangling is None: # Compute this once and cache the answer dangling = [] for n, f in self.fields.items(): for r in f.referenced_fields(): if r not in self.fields: dangling.append(r) self.dangling = dangling return self.dangling def output_fields(self, indent, lvalue_formatter): # We use a topological sort to ensure that any use of NamedField # comes after the initialization of the field it is referencing. graph = {} for n, f in self.fields.items(): refs = f.referenced_fields() graph[n] = refs try: ts = TopologicalSorter(graph) for n in ts.static_order(): # We only want to emit assignments for the keys # in our fields list, not for anything that ends up # in the tsort graph only because it was referenced as # a NamedField. try: f = self.fields[n] output(indent, lvalue_formatter(n), ' = ', f.str_extract(lvalue_formatter), ';\n') except KeyError: pass except CycleError as e: # The second element of args is a list of nodes which form # a cycle (there might be others too, but only one is reported). # Pretty-print it to tell the user. cycle = ' => '.join(e.args[1]) error(self.lineno, 'field definitions form a cycle: ' + cycle) # end General class Format(General): """Class representing an instruction format""" def extract_name(self): global decode_function return decode_function + '_extract_' + self.name def output_extract(self): output('static void ', self.extract_name(), '(DisasContext *ctx, ', self.base.struct_name(), ' *a, ', insntype, ' insn)\n{\n') self.output_fields(str_indent(4), lambda n: 'a->' + n) output('}\n\n') # end Format class Pattern(General): """Class representing an instruction pattern""" def output_decl(self): global translate_scope global translate_prefix output('typedef ', self.base.base.struct_name(), ' arg_', self.name, ';\n') output(translate_scope, 'bool ', translate_prefix, '_', self.name, '(DisasContext *ctx, arg_', self.name, ' *a);\n') def output_code(self, i, extracted, outerbits, outermask): global translate_prefix ind = str_indent(i) arg = self.base.base.name output(ind, '/* ', self.file, ':', str(self.lineno), ' */\n') # We might have named references in the format that refer to fields # in the pattern, or named references in the pattern that refer # to fields in the format. This affects whether we extract the fields # for the format before or after the ones for the pattern. # For simplicity we don't allow cross references in both directions. # This is also where we catch the syntax error of referring to # a nonexistent field. fmt_refs = self.base.dangling_references() for r in fmt_refs: if r not in self.fields: error(self.lineno, f'format refers to undefined field {r}') pat_refs = self.dangling_references() for r in pat_refs: if r not in self.base.fields: error(self.lineno, f'pattern refers to undefined field {r}') if pat_refs and fmt_refs: error(self.lineno, ('pattern that uses fields defined in format ' 'cannot use format that uses fields defined ' 'in pattern')) if fmt_refs: # pattern fields first self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n) assert not extracted, "dangling fmt refs but it was already extracted" if not extracted: output(ind, self.base.extract_name(), '(ctx, &u.f_', arg, ', insn);\n') if not fmt_refs: # pattern fields last self.output_fields(ind, lambda n: 'u.f_' + arg + '.' + n) output(ind, 'if (', translate_prefix, '_', self.name, '(ctx, &u.f_', arg, ')) return true;\n') # Normal patterns do not have children. def build_tree(self): return def prop_masks(self): return def prop_format(self): return def prop_width(self): return # end Pattern class MultiPattern(General): """Class representing a set of instruction patterns""" def __init__(self, lineno): self.file = input_file self.lineno = lineno self.pats = [] self.base = None self.fixedbits = 0 self.fixedmask = 0 self.undefmask = 0 self.width = None def __str__(self): r = 'group' if self.fixedbits is not None: r += ' ' + str_match_bits(self.fixedbits, self.fixedmask) return r def output_decl(self): for p in self.pats: p.output_decl() def prop_masks(self): global insnmask fixedmask = insnmask undefmask = insnmask # Collect fixedmask/undefmask for all of the children. for p in self.pats: p.prop_masks() fixedmask &= p.fixedmask undefmask &= p.undefmask # Widen fixedmask until all fixedbits match repeat = True fixedbits = 0 while repeat and fixedmask != 0: fixedbits = None for p in self.pats: thisbits = p.fixedbits & fixedmask if fixedbits is None: fixedbits = thisbits elif fixedbits != thisbits: fixedmask &= ~(fixedbits ^ thisbits) break else: repeat = False self.fixedbits = fixedbits self.fixedmask = fixedmask self.undefmask = undefmask def build_tree(self): for p in self.pats: p.build_tree() def prop_format(self): for p in self.pats: p.prop_format() def prop_width(self): width = None for p in self.pats: p.prop_width() if width is None: width = p.width elif width != p.width: error_with_file(self.file, self.lineno, 'width mismatch in patterns within braces') self.width = width # end MultiPattern class IncMultiPattern(MultiPattern): """Class representing an overlapping set of instruction patterns""" def output_code(self, i, extracted, outerbits, outermask): global translate_prefix ind = str_indent(i) for p in self.pats: if outermask != p.fixedmask: innermask = p.fixedmask & ~outermask innerbits = p.fixedbits & ~outermask output(ind, f'if ((insn & {whexC(innermask)}) == {whexC(innerbits)}) {{\n') output(ind, f' /* {str_match_bits(p.fixedbits, p.fixedmask)} */\n') p.output_code(i + 4, extracted, p.fixedbits, p.fixedmask) output(ind, '}\n') else: p.output_code(i, extracted, p.fixedbits, p.fixedmask) def build_tree(self): if not self.pats: error_with_file(self.file, self.lineno, 'empty pattern group') super().build_tree() #end IncMultiPattern class Tree: """Class representing a node in a decode tree""" def __init__(self, fm, tm): self.fixedmask = fm self.thismask = tm self.subs = [] self.base = None def str1(self, i): ind = str_indent(i) r = ind + whex(self.fixedmask) if self.format: r += ' ' + self.format.name r += ' [\n' for (b, s) in self.subs: r += ind + f' {whex(b)}:\n' r += s.str1(i + 4) + '\n' r += ind + ']' return r def __str__(self): return self.str1(0) def output_code(self, i, extracted, outerbits, outermask): ind = str_indent(i) # If we identified all nodes below have the same format, # extract the fields now. But don't do it if the format relies # on named fields from the insn pattern, as those won't have # been initialised at this point. if not extracted and self.base and not self.base.dangling_references(): output(ind, self.base.extract_name(), '(ctx, &u.f_', self.base.base.name, ', insn);\n') extracted = True # Attempt to aid the compiler in producing compact switch statements. # If the bits in the mask are contiguous, extract them. sh = is_contiguous(self.thismask) if sh > 0: # Propagate SH down into the local functions. def str_switch(b, sh=sh): return f'(insn >> {sh}) & {b >> sh:#x}' def str_case(b, sh=sh): return hex(b >> sh) else: def str_switch(b): return f'insn & {whexC(b)}' def str_case(b): return whexC(b) output(ind, 'switch (', str_switch(self.thismask), ') {\n') for b, s in sorted(self.subs): assert (self.thismask & ~s.fixedmask) == 0 innermask = outermask | self.thismask innerbits = outerbits | b output(ind, 'case ', str_case(b), ':\n') output(ind, ' /* ', str_match_bits(innerbits, innermask), ' */\n') s.output_code(i + 4, extracted, innerbits, innermask) output(ind, ' break;\n') output(ind, '}\n') # end Tree class ExcMultiPattern(MultiPattern): """Class representing a non-overlapping set of instruction patterns""" def output_code(self, i, extracted, outerbits, outermask): # Defer everything to our decomposed Tree node self.tree.output_code(i, extracted, outerbits, outermask) @staticmethod def __build_tree(pats, outerbits, outermask): # Find the intersection of all remaining fixedmask. innermask = ~outermask & insnmask for i in pats: innermask &= i.fixedmask if innermask == 0: # Edge condition: One pattern covers the entire insnmask if len(pats) == 1: t = Tree(outermask, innermask) t.subs.append((0, pats[0])) return t text = 'overlapping patterns:' for p in pats: text += '\n' + p.file + ':' + str(p.lineno) + ': ' + str(p) error_with_file(pats[0].file, pats[0].lineno, text) fullmask = outermask | innermask # Sort each element of pats into the bin selected by the mask. bins = {} for i in pats: fb = i.fixedbits & innermask if fb in bins: bins[fb].append(i) else: bins[fb] = [i] # We must recurse if any bin has more than one element or if # the single element in the bin has not been fully matched. t = Tree(fullmask, innermask) for b, l in bins.items(): s = l[0] if len(l) > 1 or s.fixedmask & ~fullmask != 0: s = ExcMultiPattern.__build_tree(l, b | outerbits, fullmask) t.subs.append((b, s)) return t def build_tree(self): super().build_tree() self.tree = self.__build_tree(self.pats, self.fixedbits, self.fixedmask) @staticmethod def __prop_format(tree): """Propagate Format objects into the decode tree""" # Depth first search. for (b, s) in tree.subs: if isinstance(s, Tree): ExcMultiPattern.__prop_format(s) # If all entries in SUBS have the same format, then # propagate that into the tree. f = None for (b, s) in tree.subs: if f is None: f = s.base if f is None: return if f is not s.base: return tree.base = f def prop_format(self): super().prop_format() self.__prop_format(self.tree) # end ExcMultiPattern def parse_field(lineno, name, toks): """Parse one instruction field from TOKS at LINENO""" global fields global insnwidth global re_C_ident # A "simple" field will have only one entry; # a "multifield" will have several. subs = [] width = 0 func = None for t in toks: if re.match('^!function=', t): if func: error(lineno, 'duplicate function') func = t.split('=') func = func[1] continue if re.fullmatch(re_C_ident + ':s[0-9]+', t): # Signed named field subtoks = t.split(':') n = subtoks[0] le = int(subtoks[1]) f = NamedField(n, True, le) subs.append(f) width += le continue if re.fullmatch(re_C_ident + ':[0-9]+', t): # Unsigned named field subtoks = t.split(':') n = subtoks[0] le = int(subtoks[1]) f = NamedField(n, False, le) subs.append(f) width += le continue if re.fullmatch('[0-9]+:s[0-9]+', t): # Signed field extract subtoks = t.split(':s') sign = True elif re.fullmatch('[0-9]+:[0-9]+', t): # Unsigned field extract subtoks = t.split(':') sign = False else: error(lineno, f'invalid field token "{t}"') po = int(subtoks[0]) le = int(subtoks[1]) if po + le > insnwidth: error(lineno, f'field {t} too large') f = Field(sign, po, le) subs.append(f) width += le if width > insnwidth: error(lineno, 'field too large') if len(subs) == 0: if func: f = ParameterField(func) else: error(lineno, 'field with no value') else: if len(subs) == 1: f = subs[0] else: mask = 0 for s in subs: if mask & s.mask: error(lineno, 'field components overlap') mask |= s.mask f = MultiField(subs, mask) if func: f = FunctionField(func, f) if name in fields: error(lineno, 'duplicate field', name) fields[name] = f # end parse_field def parse_arguments(lineno, name, toks): """Parse one argument set from TOKS at LINENO""" global arguments global re_C_ident global anyextern flds = [] types = [] extern = False for n in toks: if re.fullmatch('!extern', n): extern = True anyextern = True continue if re.fullmatch(re_C_ident + ':' + re_C_ident, n): (n, t) = n.split(':') elif re.fullmatch(re_C_ident, n): t = 'int' else: error(lineno, f'invalid argument set token "{n}"') if n in flds: error(lineno, f'duplicate argument "{n}"') flds.append(n) types.append(t) if name in arguments: error(lineno, 'duplicate argument set', name) arguments[name] = Arguments(name, flds, types, extern) # end parse_arguments def lookup_field(lineno, name): global fields if name in fields: return fields[name] error(lineno, 'undefined field', name) def add_field(lineno, flds, new_name, f): if new_name in flds: error(lineno, 'duplicate field', new_name) flds[new_name] = f return flds def add_field_byname(lineno, flds, new_name, old_name): return add_field(lineno, flds, new_name, lookup_field(lineno, old_name)) def infer_argument_set(flds): global arguments global decode_function for arg in arguments.values(): if eq_fields_for_args(flds, arg): return arg name = decode_function + str(len(arguments)) arg = Arguments(name, flds.keys(), ['int'] * len(flds), False) arguments[name] = arg return arg def infer_format(arg, fieldmask, flds, width): global arguments global formats global decode_function const_flds = {} var_flds = {} for n, c in flds.items(): if c is ConstField: const_flds[n] = c else: var_flds[n] = c # Look for an existing format with the same argument set and fields for fmt in formats.values(): if arg and fmt.base != arg: continue if fieldmask != fmt.fieldmask: continue if width != fmt.width: continue if not eq_fields_for_fmts(flds, fmt.fields): continue return (fmt, const_flds) name = decode_function + '_Fmt_' + str(len(formats)) if not arg: arg = infer_argument_set(flds) fmt = Format(name, 0, arg, 0, 0, 0, fieldmask, var_flds, width) formats[name] = fmt return (fmt, const_flds) # end infer_format def parse_generic(lineno, parent_pat, name, toks): """Parse one instruction format from TOKS at LINENO""" global fields global arguments global formats global allpatterns global re_arg_ident global re_fld_ident global re_fmt_ident global re_C_ident global insnwidth global insnmask global variablewidth is_format = parent_pat is None fixedmask = 0 fixedbits = 0 undefmask = 0 width = 0 flds = {} arg = None fmt = None for t in toks: # '&Foo' gives a format an explicit argument set. if re.fullmatch(re_arg_ident, t): tt = t[1:] if arg: error(lineno, 'multiple argument sets') if tt in arguments: arg = arguments[tt] else: error(lineno, 'undefined argument set', t) continue # '@Foo' gives a pattern an explicit format. if re.fullmatch(re_fmt_ident, t): tt = t[1:] if fmt: error(lineno, 'multiple formats') if tt in formats: fmt = formats[tt] else: error(lineno, 'undefined format', t) continue # '%Foo' imports a field. if re.fullmatch(re_fld_ident, t): tt = t[1:] flds = add_field_byname(lineno, flds, tt, tt) continue # 'Foo=%Bar' imports a field with a different name. if re.fullmatch(re_C_ident + '=' + re_fld_ident, t): (fname, iname) = t.split('=%') flds = add_field_byname(lineno, flds, fname, iname) continue # 'Foo=number' sets an argument field to a constant value if re.fullmatch(re_C_ident + '=[+-]?[0-9]+', t): (fname, value) = t.split('=') value = int(value) flds = add_field(lineno, flds, fname, ConstField(value)) continue # Pattern of 0s, 1s, dots and dashes indicate required zeros, # required ones, or dont-cares. if re.fullmatch('[01.-]+', t): shift = len(t) fms = t.replace('0', '1') fms = fms.replace('.', '0') fms = fms.replace('-', '0') fbs = t.replace('.', '0') fbs = fbs.replace('-', '0') ubm = t.replace('1', '0') ubm = ubm.replace('.', '0') ubm = ubm.replace('-', '1') fms = int(fms, 2) fbs = int(fbs, 2) ubm = int(ubm, 2) fixedbits = (fixedbits << shift) | fbs fixedmask = (fixedmask << shift) | fms undefmask = (undefmask << shift) | ubm # Otherwise, fieldname:fieldwidth elif re.fullmatch(re_C_ident + ':s?[0-9]+', t): (fname, flen) = t.split(':') sign = False if flen[0] == 's': sign = True flen = flen[1:] shift = int(flen, 10) if shift + width > insnwidth: error(lineno, f'field {fname} exceeds insnwidth') f = Field(sign, insnwidth - width - shift, shift) flds = add_field(lineno, flds, fname, f) fixedbits <<= shift fixedmask <<= shift undefmask <<= shift else: error(lineno, f'invalid token "{t}"') width += shift if variablewidth and width < insnwidth and width % 8 == 0: shift = insnwidth - width fixedbits <<= shift fixedmask <<= shift undefmask <<= shift undefmask |= (1 << shift) - 1 # We should have filled in all of the bits of the instruction. elif not (is_format and width == 0) and width != insnwidth: error(lineno, f'definition has {width} bits') # Do not check for fields overlapping fields; one valid usage # is to be able to duplicate fields via import. fieldmask = 0 for f in flds.values(): fieldmask |= f.mask # Fix up what we've parsed to match either a format or a pattern. if is_format: # Formats cannot reference formats. if fmt: error(lineno, 'format referencing format') # If an argument set is given, then there should be no fields # without a place to store it. if arg: for f in flds.keys(): if f not in arg.fields: error(lineno, f'field {f} not in argument set {arg.name}') else: arg = infer_argument_set(flds) if name in formats: error(lineno, 'duplicate format name', name) fmt = Format(name, lineno, arg, fixedbits, fixedmask, undefmask, fieldmask, flds, width) formats[name] = fmt else: # Patterns can reference a format ... if fmt: # ... but not an argument simultaneously if arg: error(lineno, 'pattern specifies both format and argument set') if fixedmask & fmt.fixedmask: error(lineno, 'pattern fixed bits overlap format fixed bits') if width != fmt.width: error(lineno, 'pattern uses format of different width') fieldmask |= fmt.fieldmask fixedbits |= fmt.fixedbits fixedmask |= fmt.fixedmask undefmask |= fmt.undefmask else: (fmt, flds) = infer_format(arg, fieldmask, flds, width) arg = fmt.base for f in flds.keys(): if f not in arg.fields: error(lineno, f'field {f} not in argument set {arg.name}') if f in fmt.fields.keys(): error(lineno, f'field {f} set by format and pattern') for f in arg.fields: if f not in flds.keys() and f not in fmt.fields.keys(): error(lineno, f'field {f} not initialized') pat = Pattern(name, lineno, fmt, fixedbits, fixedmask, undefmask, fieldmask, flds, width) parent_pat.pats.append(pat) allpatterns.append(pat) # Validate the masks that we have assembled. if fieldmask & fixedmask: error(lineno, 'fieldmask overlaps fixedmask ', f'({whex(fieldmask)} & {whex(fixedmask)})') if fieldmask & undefmask: error(lineno, 'fieldmask overlaps undefmask ', f'({whex(fieldmask)} & {whex(undefmask)})') if fixedmask & undefmask: error(lineno, 'fixedmask overlaps undefmask ', f'({whex(fixedmask)} & {whex(undefmask)})') if not is_format: allbits = fieldmask | fixedmask | undefmask if allbits != insnmask: error(lineno, 'bits left unspecified ', f'({whex(allbits ^ insnmask)})') # end parse_general def parse_file(f, parent_pat): """Parse all of the patterns within a file""" global re_arg_ident global re_fld_ident global re_fmt_ident global re_pat_ident # Read all of the lines of the file. Concatenate lines # ending in backslash; discard empty lines and comments. toks = [] lineno = 0 nesting = 0 nesting_pats = [] for line in f: lineno += 1 # Expand and strip spaces, to find indent. line = line.rstrip() line = line.expandtabs() len1 = len(line) line = line.lstrip() len2 = len(line) # Discard comments end = line.find('#') if end >= 0: line = line[:end] t = line.split() if len(toks) != 0: # Next line after continuation toks.extend(t) else: # Allow completely blank lines. if len1 == 0: continue indent = len1 - len2 # Empty line due to comment. if len(t) == 0: # Indentation must be correct, even for comment lines. if indent != nesting: error(lineno, 'indentation ', indent, ' != ', nesting) continue start_lineno = lineno toks = t # Continuation? if toks[-1] == '\\': toks.pop() continue name = toks[0] del toks[0] # End nesting? if name == '}' or name == ']': if len(toks) != 0: error(start_lineno, 'extra tokens after close brace') # Make sure { } and [ ] nest properly. if (name == '}') != isinstance(parent_pat, IncMultiPattern): error(lineno, 'mismatched close brace') try: parent_pat = nesting_pats.pop() except: error(lineno, 'extra close brace') nesting -= 2 if indent != nesting: error(lineno, 'indentation ', indent, ' != ', nesting) toks = [] continue # Everything else should have current indentation. if indent != nesting: error(start_lineno, 'indentation ', indent, ' != ', nesting) # Start nesting? if name == '{' or name == '[': if len(toks) != 0: error(start_lineno, 'extra tokens after open brace') if name == '{': nested_pat = IncMultiPattern(start_lineno) else: nested_pat = ExcMultiPattern(start_lineno) parent_pat.pats.append(nested_pat) nesting_pats.append(parent_pat) parent_pat = nested_pat nesting += 2 toks = [] continue # Determine the type of object needing to be parsed. if re.fullmatch(re_fld_ident, name): parse_field(start_lineno, name[1:], toks) elif re.fullmatch(re_arg_ident, name): parse_arguments(start_lineno, name[1:], toks) elif re.fullmatch(re_fmt_ident, name): parse_generic(start_lineno, None, name[1:], toks) elif re.fullmatch(re_pat_ident, name): parse_generic(start_lineno, parent_pat, name, toks) else: error(lineno, f'invalid token "{name}"') toks = [] if nesting != 0: error(lineno, 'missing close brace') # end parse_file class SizeTree: """Class representing a node in a size decode tree""" def __init__(self, m, w): self.mask = m self.subs = [] self.base = None self.width = w def str1(self, i): ind = str_indent(i) r = ind + whex(self.mask) + ' [\n' for (b, s) in self.subs: r += ind + f' {whex(b)}:\n' r += s.str1(i + 4) + '\n' r += ind + ']' return r def __str__(self): return self.str1(0) def output_code(self, i, extracted, outerbits, outermask): ind = str_indent(i) # If we need to load more bytes to test, do so now. if extracted < self.width: output(ind, f'insn = {decode_function}_load_bytes', f'(ctx, insn, {extracted // 8}, {self.width // 8});\n') extracted = self.width # Attempt to aid the compiler in producing compact switch statements. # If the bits in the mask are contiguous, extract them. sh = is_contiguous(self.mask) if sh > 0: # Propagate SH down into the local functions. def str_switch(b, sh=sh): return f'(insn >> {sh}) & {b >> sh:#x}' def str_case(b, sh=sh): return hex(b >> sh) else: def str_switch(b): return f'insn & {whexC(b)}' def str_case(b): return whexC(b) output(ind, 'switch (', str_switch(self.mask), ') {\n') for b, s in sorted(self.subs): innermask = outermask | self.mask innerbits = outerbits | b output(ind, 'case ', str_case(b), ':\n') output(ind, ' /* ', str_match_bits(innerbits, innermask), ' */\n') s.output_code(i + 4, extracted, innerbits, innermask) output(ind, '}\n') output(ind, 'return insn;\n') # end SizeTree class SizeLeaf: """Class representing a leaf node in a size decode tree""" def __init__(self, m, w): self.mask = m self.width = w def str1(self, i): return str_indent(i) + whex(self.mask) def __str__(self): return self.str1(0) def output_code(self, i, extracted, outerbits, outermask): global decode_function ind = str_indent(i) # If we need to load more bytes, do so now. if extracted < self.width: output(ind, f'insn = {decode_function}_load_bytes', f'(ctx, insn, {extracted // 8}, {self.width // 8});\n') extracted = self.width output(ind, 'return insn;\n') # end SizeLeaf def build_size_tree(pats, width, outerbits, outermask): global insnwidth # Collect the mask of bits that are fixed in this width innermask = 0xff << (insnwidth - width) innermask &= ~outermask minwidth = None onewidth = True for i in pats: innermask &= i.fixedmask if minwidth is None: minwidth = i.width elif minwidth != i.width: onewidth = False; if minwidth < i.width: minwidth = i.width if onewidth: return SizeLeaf(innermask, minwidth) if innermask == 0: if width < minwidth: return build_size_tree(pats, width + 8, outerbits, outermask) pnames = [] for p in pats: pnames.append(p.name + ':' + p.file + ':' + str(p.lineno)) error_with_file(pats[0].file, pats[0].lineno, f'overlapping patterns size {width}:', pnames) bins = {} for i in pats: fb = i.fixedbits & innermask if fb in bins: bins[fb].append(i) else: bins[fb] = [i] fullmask = outermask | innermask lens = sorted(bins.keys()) if len(lens) == 1: b = lens[0] return build_size_tree(bins[b], width + 8, b | outerbits, fullmask) r = SizeTree(innermask, width) for b, l in bins.items(): s = build_size_tree(l, width, b | outerbits, fullmask) r.subs.append((b, s)) return r # end build_size_tree def prop_size(tree): """Propagate minimum widths up the decode size tree""" if isinstance(tree, SizeTree): min = None for (b, s) in tree.subs: width = prop_size(s) if min is None or min > width: min = width assert min >= tree.width tree.width = min else: min = tree.width return min # end prop_size def main(): global arguments global formats global allpatterns global translate_scope global translate_prefix global output_fd global output_file global output_null global input_file global insnwidth global insntype global insnmask global decode_function global bitop_width global variablewidth global anyextern global testforerror decode_scope = 'static ' long_opts = ['decode=', 'translate=', 'output=', 'insnwidth=', 'static-decode=', 'varinsnwidth=', 'test-for-error', 'output-null'] try: (opts, args) = getopt.gnu_getopt(sys.argv[1:], 'o:vw:', long_opts) except getopt.GetoptError as err: error(0, err) for o, a in opts: if o in ('-o', '--output'): output_file = a elif o == '--decode': decode_function = a decode_scope = '' elif o == '--static-decode': decode_function = a elif o == '--translate': translate_prefix = a translate_scope = '' elif o in ('-w', '--insnwidth', '--varinsnwidth'): if o == '--varinsnwidth': variablewidth = True insnwidth = int(a) if insnwidth == 16: insntype = 'uint16_t' insnmask = 0xffff elif insnwidth == 64: insntype = 'uint64_t' insnmask = 0xffffffffffffffff bitop_width = 64 elif insnwidth != 32: error(0, 'cannot handle insns of width', insnwidth) elif o == '--test-for-error': testforerror = True elif o == '--output-null': output_null = True else: assert False, 'unhandled option' if len(args) < 1: error(0, 'missing input file') toppat = ExcMultiPattern(0) for filename in args: input_file = filename f = open(filename, 'rt', encoding='utf-8') parse_file(f, toppat) f.close() # We do not want to compute masks for toppat, because those masks # are used as a starting point for build_tree. For toppat, we must # insist that decode begins from naught. for i in toppat.pats: i.prop_masks() toppat.build_tree() toppat.prop_format() if variablewidth: for i in toppat.pats: i.prop_width() stree = build_size_tree(toppat.pats, 8, 0, 0) prop_size(stree) if output_null: output_fd = open(os.devnull, 'wt', encoding='utf-8', errors="ignore") elif output_file: output_fd = open(output_file, 'wt', encoding='utf-8') else: output_fd = io.TextIOWrapper(sys.stdout.buffer, encoding=sys.stdout.encoding, errors="ignore") output_autogen() for n in sorted(arguments.keys()): f = arguments[n] f.output_def() # A single translate function can be invoked for different patterns. # Make sure that the argument sets are the same, and declare the # function only once. # # If we're sharing formats, we're likely also sharing trans_* functions, # but we can't tell which ones. Prevent issues from the compiler by # suppressing redundant declaration warnings. if anyextern: output("#pragma GCC diagnostic push\n", "#pragma GCC diagnostic ignored \"-Wredundant-decls\"\n", "#ifdef __clang__\n" "# pragma GCC diagnostic ignored \"-Wtypedef-redefinition\"\n", "#endif\n\n") out_pats = {} for i in allpatterns: if i.name in out_pats: p = out_pats[i.name] if i.base.base != p.base.base: error(0, i.name, ' has conflicting argument sets') else: i.output_decl() out_pats[i.name] = i output('\n') if anyextern: output("#pragma GCC diagnostic pop\n\n") for n in sorted(formats.keys()): f = formats[n] f.output_extract() output(decode_scope, 'bool ', decode_function, '(DisasContext *ctx, ', insntype, ' insn)\n{\n') i4 = str_indent(4) if len(allpatterns) != 0: output(i4, 'union {\n') for n in sorted(arguments.keys()): f = arguments[n] output(i4, i4, f.struct_name(), ' f_', f.name, ';\n') output(i4, '} u;\n\n') toppat.output_code(4, False, 0, 0) output(i4, 'return false;\n') output('}\n') if variablewidth: output('\n', decode_scope, insntype, ' ', decode_function, '_load(DisasContext *ctx)\n{\n', ' ', insntype, ' insn = 0;\n\n') stree.output_code(4, 0, 0, 0) output('}\n') if output_file: output_fd.close() exit(1 if testforerror else 0) # end main if __name__ == '__main__': main()