/* * QEMU S390 bootmap interpreter * * Copyright (c) 2009 Alexander Graf <agraf@suse.de> * * This work is licensed under the terms of the GNU GPL, version 2 or (at * your option) any later version. See the COPYING file in the top-level * directory. */ #include "libc.h" #include "s390-ccw.h" #include "bootmap.h" #include "virtio.h" #include "bswap.h" #ifdef DEBUG /* #define DEBUG_FALLBACK */ #endif #ifdef DEBUG_FALLBACK #define dputs(txt) \ do { sclp_print("zipl: " txt); } while (0) #else #define dputs(fmt, ...) \ do { } while (0) #endif /* Scratch space */ static uint8_t sec[MAX_SECTOR_SIZE*4] __attribute__((__aligned__(PAGE_SIZE))); const uint8_t el_torito_magic[] = "EL TORITO SPECIFICATION" "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; /* * Match two CCWs located after PSW and eight filler bytes. * From libmagic and arch/s390/kernel/head.S. */ const uint8_t linux_s390_magic[] = "\x02\x00\x00\x18\x60\x00\x00\x50\x02\x00" "\x00\x68\x60\x00\x00\x50\x40\x40\x40\x40" "\x40\x40\x40\x40"; static inline bool is_iso_vd_valid(IsoVolDesc *vd) { const uint8_t vol_desc_magic[] = "CD001"; return !memcmp(&vd->ident[0], vol_desc_magic, 5) && vd->version == 0x1 && vd->type <= VOL_DESC_TYPE_PARTITION; } /*********************************************************************** * IPL an ECKD DASD (CDL or LDL/CMS format) */ static unsigned char _bprs[8*1024]; /* guessed "max" ECKD sector size */ static const int max_bprs_entries = sizeof(_bprs) / sizeof(ExtEckdBlockPtr); static uint8_t _s2[MAX_SECTOR_SIZE * 3] __attribute__((__aligned__(PAGE_SIZE))); static void *s2_prev_blk = _s2; static void *s2_cur_blk = _s2 + MAX_SECTOR_SIZE; static void *s2_next_blk = _s2 + MAX_SECTOR_SIZE * 2; static inline void verify_boot_info(BootInfo *bip) { IPL_assert(magic_match(bip->magic, ZIPL_MAGIC), "No zIPL sig in BootInfo"); IPL_assert(bip->version == BOOT_INFO_VERSION, "Wrong zIPL version"); IPL_assert(bip->bp_type == BOOT_INFO_BP_TYPE_IPL, "DASD is not for IPL"); IPL_assert(bip->dev_type == BOOT_INFO_DEV_TYPE_ECKD, "DASD is not ECKD"); IPL_assert(bip->flags == BOOT_INFO_FLAGS_ARCH, "Not for this arch"); IPL_assert(block_size_ok(bip->bp.ipl.bm_ptr.eckd.bptr.size), "Bad block size in zIPL section of the 1st record."); } static block_number_t eckd_block_num(EckdCHS *chs) { const uint64_t sectors = virtio_get_sectors(); const uint64_t heads = virtio_get_heads(); const uint64_t cylinder = chs->cylinder + ((chs->head & 0xfff0) << 12); const uint64_t head = chs->head & 0x000f; const block_number_t block = sectors * heads * cylinder + sectors * head + chs->sector - 1; /* block nr starts with zero */ return block; } static bool eckd_valid_address(BootMapPointer *p) { const uint64_t head = p->eckd.chs.head & 0x000f; if (head >= virtio_get_heads() || p->eckd.chs.sector > virtio_get_sectors() || p->eckd.chs.sector <= 0) { return false; } if (!virtio_guessed_disk_nature() && eckd_block_num(&p->eckd.chs) >= virtio_get_blocks()) { return false; } return true; } static block_number_t load_eckd_segments(block_number_t blk, uint64_t *address) { block_number_t block_nr; int j, rc; BootMapPointer *bprs = (void *)_bprs; bool more_data; memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); read_block(blk, bprs, "BPRS read failed"); do { more_data = false; for (j = 0;; j++) { block_nr = eckd_block_num(&bprs[j].xeckd.bptr.chs); if (is_null_block_number(block_nr)) { /* end of chunk */ break; } /* we need the updated blockno for the next indirect entry * in the chain, but don't want to advance address */ if (j == (max_bprs_entries - 1)) { break; } IPL_assert(block_size_ok(bprs[j].xeckd.bptr.size), "bad chunk block size"); IPL_assert(eckd_valid_address(&bprs[j]), "bad chunk ECKD addr"); if ((bprs[j].xeckd.bptr.count == 0) && unused_space(&(bprs[j+1]), sizeof(EckdBlockPtr))) { /* This is a "continue" pointer. * This ptr should be the last one in the current * script section. * I.e. the next ptr must point to the unused memory area */ memset(_bprs, FREE_SPACE_FILLER, sizeof(_bprs)); read_block(block_nr, bprs, "BPRS continuation read failed"); more_data = true; break; } /* Load (count+1) blocks of code at (block_nr) * to memory (address). */ rc = virtio_read_many(block_nr, (void *)(*address), bprs[j].xeckd.bptr.count+1); IPL_assert(rc == 0, "code chunk read failed"); *address += (bprs[j].xeckd.bptr.count+1) * virtio_get_block_size(); } } while (more_data); return block_nr; } static bool find_zipl_boot_menu_banner(int *offset) { int i; /* Menu banner starts with "zIPL" */ for (i = 0; i < virtio_get_block_size() - 4; i++) { if (magic_match(s2_cur_blk + i, ZIPL_MAGIC_EBCDIC)) { *offset = i; return true; } } return false; } static int eckd_get_boot_menu_index(block_number_t s1b_block_nr) { block_number_t cur_block_nr; block_number_t prev_block_nr = 0; block_number_t next_block_nr = 0; EckdStage1b *s1b = (void *)sec; int banner_offset; int i; /* Get Stage1b data */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(s1b_block_nr, s1b, "Cannot read stage1b boot loader"); memset(_s2, FREE_SPACE_FILLER, sizeof(_s2)); /* Get Stage2 data */ for (i = 0; i < STAGE2_BLK_CNT_MAX; i++) { cur_block_nr = eckd_block_num(&s1b->seek[i].chs); if (!cur_block_nr) { break; } read_block(cur_block_nr, s2_cur_blk, "Cannot read stage2 boot loader"); if (find_zipl_boot_menu_banner(&banner_offset)) { /* * Load the adjacent blocks to account for the * possibility of menu data spanning multiple blocks. */ if (prev_block_nr) { read_block(prev_block_nr, s2_prev_blk, "Cannot read stage2 boot loader"); } if (i + 1 < STAGE2_BLK_CNT_MAX) { next_block_nr = eckd_block_num(&s1b->seek[i + 1].chs); } if (next_block_nr) { read_block(next_block_nr, s2_next_blk, "Cannot read stage2 boot loader"); } return menu_get_zipl_boot_index(s2_cur_blk + banner_offset); } prev_block_nr = cur_block_nr; } sclp_print("No zipl boot menu data found. Booting default entry."); return 0; } static void run_eckd_boot_script(block_number_t bmt_block_nr, block_number_t s1b_block_nr) { int i; unsigned int loadparm = get_loadparm_index(); block_number_t block_nr; uint64_t address; BootMapTable *bmt = (void *)sec; BootMapScript *bms = (void *)sec; if (menu_is_enabled_zipl()) { loadparm = eckd_get_boot_menu_index(s1b_block_nr); } debug_print_int("loadparm", loadparm); IPL_assert(loadparm < MAX_BOOT_ENTRIES, "loadparm value greater than" " maximum number of boot entries allowed"); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(bmt_block_nr, sec, "Cannot read Boot Map Table"); block_nr = eckd_block_num(&bmt->entry[loadparm].xeckd.bptr.chs); IPL_assert(block_nr != -1, "Cannot find Boot Map Table Entry"); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(block_nr, sec, "Cannot read Boot Map Script"); for (i = 0; bms->entry[i].type == BOOT_SCRIPT_LOAD || bms->entry[i].type == BOOT_SCRIPT_SIGNATURE; i++) { /* We don't support secure boot yet, so we skip signature entries */ if (bms->entry[i].type == BOOT_SCRIPT_SIGNATURE) { continue; } address = bms->entry[i].address.load_address; block_nr = eckd_block_num(&bms->entry[i].blkptr.xeckd.bptr.chs); do { block_nr = load_eckd_segments(block_nr, &address); } while (block_nr != -1); } IPL_assert(bms->entry[i].type == BOOT_SCRIPT_EXEC, "Unknown script entry type"); jump_to_IPL_code(bms->entry[i].address.load_address); /* no return */ } static void ipl_eckd_cdl(void) { XEckdMbr *mbr; EckdCdlIpl2 *ipl2 = (void *)sec; IplVolumeLabel *vlbl = (void *)sec; block_number_t bmt_block_nr, s1b_block_nr; /* we have just read the block #0 and recognized it as "IPL1" */ sclp_print("CDL\n"); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(1, ipl2, "Cannot read IPL2 record at block 1"); mbr = &ipl2->mbr; IPL_assert(magic_match(mbr, ZIPL_MAGIC), "No zIPL section in IPL2 record."); IPL_assert(block_size_ok(mbr->blockptr.xeckd.bptr.size), "Bad block size in zIPL section of IPL2 record."); IPL_assert(mbr->dev_type == DEV_TYPE_ECKD, "Non-ECKD device type in zIPL section of IPL2 record."); /* save pointer to Boot Map Table */ bmt_block_nr = eckd_block_num(&mbr->blockptr.xeckd.bptr.chs); /* save pointer to Stage1b Data */ s1b_block_nr = eckd_block_num(&ipl2->stage1.seek[0].chs); memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(2, vlbl, "Cannot read Volume Label at block 2"); IPL_assert(magic_match(vlbl->key, VOL1_MAGIC), "Invalid magic of volume label block"); IPL_assert(magic_match(vlbl->f.key, VOL1_MAGIC), "Invalid magic of volser block"); print_volser(vlbl->f.volser); run_eckd_boot_script(bmt_block_nr, s1b_block_nr); /* no return */ } static void print_eckd_ldl_msg(ECKD_IPL_mode_t mode) { LDL_VTOC *vlbl = (void *)sec; /* already read, 3rd block */ char msg[4] = { '?', '.', '\n', '\0' }; sclp_print((mode == ECKD_CMS) ? "CMS" : "LDL"); sclp_print(" version "); switch (vlbl->LDL_version) { case LDL1_VERSION: msg[0] = '1'; break; case LDL2_VERSION: msg[0] = '2'; break; default: msg[0] = ebc2asc[vlbl->LDL_version]; msg[1] = '?'; break; } sclp_print(msg); print_volser(vlbl->volser); } static void ipl_eckd_ldl(ECKD_IPL_mode_t mode) { block_number_t bmt_block_nr, s1b_block_nr; EckdLdlIpl1 *ipl1 = (void *)sec; if (mode != ECKD_LDL_UNLABELED) { print_eckd_ldl_msg(mode); } /* DO NOT read BootMap pointer (only one, xECKD) at block #2 */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(0, sec, "Cannot read block 0 to grab boot info."); if (mode == ECKD_LDL_UNLABELED) { if (!magic_match(ipl1->bip.magic, ZIPL_MAGIC)) { return; /* not applicable layout */ } sclp_print("unlabeled LDL.\n"); } verify_boot_info(&ipl1->bip); /* save pointer to Boot Map Table */ bmt_block_nr = eckd_block_num(&ipl1->bip.bp.ipl.bm_ptr.eckd.bptr.chs); /* save pointer to Stage1b Data */ s1b_block_nr = eckd_block_num(&ipl1->stage1.seek[0].chs); run_eckd_boot_script(bmt_block_nr, s1b_block_nr); /* no return */ } static void print_eckd_msg(void) { char msg[] = "Using ECKD scheme (block size *****), "; char *p = &msg[34], *q = &msg[30]; int n = virtio_get_block_size(); /* Fill in the block size and show up the message */ if (n > 0 && n <= 99999) { while (n) { *p-- = '0' + (n % 10); n /= 10; } while (p >= q) { *p-- = ' '; } } sclp_print(msg); } static void ipl_eckd(void) { XEckdMbr *mbr = (void *)sec; LDL_VTOC *vlbl = (void *)sec; print_eckd_msg(); /* Grab the MBR again */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(0, mbr, "Cannot read block 0 on DASD"); if (magic_match(mbr->magic, IPL1_MAGIC)) { ipl_eckd_cdl(); /* no return */ } /* LDL/CMS? */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(2, vlbl, "Cannot read block 2"); if (magic_match(vlbl->magic, CMS1_MAGIC)) { ipl_eckd_ldl(ECKD_CMS); /* no return */ } if (magic_match(vlbl->magic, LNX1_MAGIC)) { ipl_eckd_ldl(ECKD_LDL); /* no return */ } ipl_eckd_ldl(ECKD_LDL_UNLABELED); /* it still may return */ /* * Ok, it is not a LDL by any means. * It still might be a CDL with zero record keys for IPL1 and IPL2 */ ipl_eckd_cdl(); } /*********************************************************************** * IPL a SCSI disk */ static void zipl_load_segment(ComponentEntry *entry) { const int max_entries = (MAX_SECTOR_SIZE / sizeof(ScsiBlockPtr)); ScsiBlockPtr *bprs = (void *)sec; const int bprs_size = sizeof(sec); block_number_t blockno; uint64_t address; int i; char err_msg[] = "zIPL failed to read BPRS at 0xZZZZZZZZZZZZZZZZ"; char *blk_no = &err_msg[30]; /* where to print blockno in (those ZZs) */ blockno = entry->data.blockno; address = entry->load_address; debug_print_int("loading segment at block", blockno); debug_print_int("addr", address); do { memset(bprs, FREE_SPACE_FILLER, bprs_size); fill_hex_val(blk_no, &blockno, sizeof(blockno)); read_block(blockno, bprs, err_msg); for (i = 0;; i++) { uint64_t *cur_desc = (void *)&bprs[i]; blockno = bprs[i].blockno; if (!blockno) { break; } /* we need the updated blockno for the next indirect entry in the chain, but don't want to advance address */ if (i == (max_entries - 1)) { break; } if (bprs[i].blockct == 0 && unused_space(&bprs[i + 1], sizeof(ScsiBlockPtr))) { /* This is a "continue" pointer. * This ptr is the last one in the current script section. * I.e. the next ptr must point to the unused memory area. * The blockno is not zero, so the upper loop must continue * reading next section of BPRS. */ break; } address = virtio_load_direct(cur_desc[0], cur_desc[1], 0, (void *)address); IPL_assert(address != -1, "zIPL load segment failed"); } } while (blockno); } /* Run a zipl program */ static void zipl_run(ScsiBlockPtr *pte) { ComponentHeader *header; ComponentEntry *entry; uint8_t tmp_sec[MAX_SECTOR_SIZE]; read_block(pte->blockno, tmp_sec, "Cannot read header"); header = (ComponentHeader *)tmp_sec; IPL_assert(magic_match(tmp_sec, ZIPL_MAGIC), "No zIPL magic in header"); IPL_assert(header->type == ZIPL_COMP_HEADER_IPL, "Bad header type"); dputs("start loading images\n"); /* Load image(s) into RAM */ entry = (ComponentEntry *)(&header[1]); while (entry->component_type == ZIPL_COMP_ENTRY_LOAD || entry->component_type == ZIPL_COMP_ENTRY_SIGNATURE) { /* We don't support secure boot yet, so we skip signature entries */ if (entry->component_type == ZIPL_COMP_ENTRY_SIGNATURE) { entry++; continue; } zipl_load_segment(entry); entry++; IPL_assert((uint8_t *)(&entry[1]) <= (tmp_sec + MAX_SECTOR_SIZE), "Wrong entry value"); } IPL_assert(entry->component_type == ZIPL_COMP_ENTRY_EXEC, "No EXEC entry"); /* should not return */ jump_to_IPL_code(entry->load_address); } static void ipl_scsi(void) { ScsiMbr *mbr = (void *)sec; int program_table_entries = 0; BootMapTable *prog_table = (void *)sec; unsigned int loadparm = get_loadparm_index(); bool valid_entries[MAX_BOOT_ENTRIES] = {false}; size_t i; /* Grab the MBR */ memset(sec, FREE_SPACE_FILLER, sizeof(sec)); read_block(0, mbr, "Cannot read block 0"); if (!magic_match(mbr->magic, ZIPL_MAGIC)) { return; } sclp_print("Using SCSI scheme.\n"); debug_print_int("MBR Version", mbr->version_id); IPL_check(mbr->version_id == 1, "Unknown MBR layout version, assuming version 1"); debug_print_int("program table", mbr->pt.blockno); IPL_assert(mbr->pt.blockno, "No Program Table"); /* Parse the program table */ read_block(mbr->pt.blockno, sec, "Error reading Program Table"); IPL_assert(magic_match(sec, ZIPL_MAGIC), "No zIPL magic in PT"); for (i = 0; i < MAX_BOOT_ENTRIES; i++) { if (prog_table->entry[i].scsi.blockno) { valid_entries[i] = true; program_table_entries++; } } debug_print_int("program table entries", program_table_entries); IPL_assert(program_table_entries != 0, "Empty Program Table"); if (menu_is_enabled_enum()) { loadparm = menu_get_enum_boot_index(valid_entries); } debug_print_int("loadparm", loadparm); IPL_assert(loadparm < MAX_BOOT_ENTRIES, "loadparm value greater than" " maximum number of boot entries allowed"); zipl_run(&prog_table->entry[loadparm].scsi); /* no return */ } /*********************************************************************** * IPL El Torito ISO9660 image or DVD */ static bool is_iso_bc_entry_compatible(IsoBcSection *s) { uint8_t *magic_sec = (uint8_t *)(sec + ISO_SECTOR_SIZE); if (s->unused || !s->sector_count) { return false; } read_iso_sector(bswap32(s->load_rba), magic_sec, "Failed to read image sector 0"); /* Checking bytes 8 - 32 for S390 Linux magic */ return !memcmp(magic_sec + 8, linux_s390_magic, 24); } /* Location of the current sector of the directory */ static uint32_t sec_loc[ISO9660_MAX_DIR_DEPTH]; /* Offset in the current sector of the directory */ static uint32_t sec_offset[ISO9660_MAX_DIR_DEPTH]; /* Remained directory space in bytes */ static uint32_t dir_rem[ISO9660_MAX_DIR_DEPTH]; static inline uint32_t iso_get_file_size(uint32_t load_rba) { IsoVolDesc *vd = (IsoVolDesc *)sec; IsoDirHdr *cur_record = &vd->vd.primary.rootdir; uint8_t *temp = sec + ISO_SECTOR_SIZE; int level = 0; read_iso_sector(ISO_PRIMARY_VD_SECTOR, sec, "Failed to read ISO primary descriptor"); sec_loc[0] = iso_733_to_u32(cur_record->ext_loc); dir_rem[0] = 0; sec_offset[0] = 0; while (level >= 0) { IPL_assert(sec_offset[level] <= ISO_SECTOR_SIZE, "Directory tree structure violation"); cur_record = (IsoDirHdr *)(temp + sec_offset[level]); if (sec_offset[level] == 0) { read_iso_sector(sec_loc[level], temp, "Failed to read ISO directory"); if (dir_rem[level] == 0) { /* Skip self and parent records */ dir_rem[level] = iso_733_to_u32(cur_record->data_len) - cur_record->dr_len; sec_offset[level] += cur_record->dr_len; cur_record = (IsoDirHdr *)(temp + sec_offset[level]); dir_rem[level] -= cur_record->dr_len; sec_offset[level] += cur_record->dr_len; continue; } } if (!cur_record->dr_len || sec_offset[level] == ISO_SECTOR_SIZE) { /* Zero-padding and/or the end of current sector */ dir_rem[level] -= ISO_SECTOR_SIZE - sec_offset[level]; sec_offset[level] = 0; sec_loc[level]++; } else { /* The directory record is valid */ if (load_rba == iso_733_to_u32(cur_record->ext_loc)) { return iso_733_to_u32(cur_record->data_len); } dir_rem[level] -= cur_record->dr_len; sec_offset[level] += cur_record->dr_len; if (cur_record->file_flags & 0x2) { /* Subdirectory */ if (level == ISO9660_MAX_DIR_DEPTH - 1) { sclp_print("ISO-9660 directory depth limit exceeded\n"); } else { level++; sec_loc[level] = iso_733_to_u32(cur_record->ext_loc); sec_offset[level] = 0; dir_rem[level] = 0; continue; } } } if (dir_rem[level] == 0) { /* Nothing remaining */ level--; read_iso_sector(sec_loc[level], temp, "Failed to read ISO directory"); } } return 0; } static void load_iso_bc_entry(IsoBcSection *load) { IsoBcSection s = *load; /* * According to spec, extent for each file * is padded and ISO_SECTOR_SIZE bytes aligned */ uint32_t blks_to_load = bswap16(s.sector_count) >> ET_SECTOR_SHIFT; uint32_t real_size = iso_get_file_size(bswap32(s.load_rba)); if (real_size) { /* Round up blocks to load */ blks_to_load = (real_size + ISO_SECTOR_SIZE - 1) / ISO_SECTOR_SIZE; sclp_print("ISO boot image size verified\n"); } else { sclp_print("ISO boot image size could not be verified\n"); } read_iso_boot_image(bswap32(s.load_rba), (void *)((uint64_t)bswap16(s.load_segment)), blks_to_load); jump_to_low_kernel(); } static uint32_t find_iso_bc(void) { IsoVolDesc *vd = (IsoVolDesc *)sec; uint32_t block_num = ISO_PRIMARY_VD_SECTOR; if (virtio_read_many(block_num++, sec, 1)) { /* If primary vd cannot be read, there is no boot catalog */ return 0; } while (is_iso_vd_valid(vd) && vd->type != VOL_DESC_TERMINATOR) { if (vd->type == VOL_DESC_TYPE_BOOT) { IsoVdElTorito *et = &vd->vd.boot; if (!memcmp(&et->el_torito[0], el_torito_magic, 32)) { return bswap32(et->bc_offset); } } read_iso_sector(block_num++, sec, "Failed to read ISO volume descriptor"); } return 0; } static IsoBcSection *find_iso_bc_entry(void) { IsoBcEntry *e = (IsoBcEntry *)sec; uint32_t offset = find_iso_bc(); int i; unsigned int loadparm = get_loadparm_index(); if (!offset) { return NULL; } read_iso_sector(offset, sec, "Failed to read El Torito boot catalog"); if (!is_iso_bc_valid(e)) { /* The validation entry is mandatory */ panic("No valid boot catalog found!\n"); return NULL; } /* * Each entry has 32 bytes size, so one sector cannot contain > 64 entries. * We consider only boot catalogs with no more than 64 entries. */ for (i = 1; i < ISO_BC_ENTRY_PER_SECTOR; i++) { if (e[i].id == ISO_BC_BOOTABLE_SECTION) { if (is_iso_bc_entry_compatible(&e[i].body.sect)) { if (loadparm <= 1) { /* found, default, or unspecified */ return &e[i].body.sect; } loadparm--; } } } panic("No suitable boot entry found on ISO-9660 media!\n"); return NULL; } static void ipl_iso_el_torito(void) { IsoBcSection *s = find_iso_bc_entry(); if (s) { load_iso_bc_entry(s); /* no return */ } } /*********************************************************************** * Bus specific IPL sequences */ static void zipl_load_vblk(void) { if (virtio_guessed_disk_nature()) { virtio_assume_iso9660(); } ipl_iso_el_torito(); if (virtio_guessed_disk_nature()) { sclp_print("Using guessed DASD geometry.\n"); virtio_assume_eckd(); } ipl_eckd(); } static void zipl_load_vscsi(void) { if (virtio_get_block_size() == VIRTIO_ISO_BLOCK_SIZE) { /* Is it an ISO image in non-CD drive? */ ipl_iso_el_torito(); } sclp_print("Using guessed DASD geometry.\n"); virtio_assume_eckd(); ipl_eckd(); } /*********************************************************************** * IPL starts here */ void zipl_load(void) { VDev *vdev = virtio_get_device(); if (vdev->is_cdrom) { ipl_iso_el_torito(); panic("\n! Cannot IPL this ISO image !\n"); } if (virtio_get_device_type() == VIRTIO_ID_NET) { jump_to_IPL_code(vdev->netboot_start_addr); } ipl_scsi(); switch (virtio_get_device_type()) { case VIRTIO_ID_BLOCK: zipl_load_vblk(); break; case VIRTIO_ID_SCSI: zipl_load_vscsi(); break; default: panic("\n! Unknown IPL device type !\n"); } panic("\n* this can never happen *\n"); }