/* * Physical memory management * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "memory.h" #include "exec-memory.h" #include "ioport.h" #include "bitops.h" #include "kvm.h" #include #define WANT_EXEC_OBSOLETE #include "exec-obsolete.h" unsigned memory_region_transaction_depth = 0; typedef struct AddrRange AddrRange; /* * Note using signed integers limits us to physical addresses at most * 63 bits wide. They are needed for negative offsetting in aliases * (large MemoryRegion::alias_offset). */ struct AddrRange { Int128 start; Int128 size; }; static AddrRange addrrange_make(Int128 start, Int128 size) { return (AddrRange) { start, size }; } static bool addrrange_equal(AddrRange r1, AddrRange r2) { return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size); } static Int128 addrrange_end(AddrRange r) { return int128_add(r.start, r.size); } static AddrRange addrrange_shift(AddrRange range, Int128 delta) { int128_addto(&range.start, delta); return range; } static bool addrrange_contains(AddrRange range, Int128 addr) { return int128_ge(addr, range.start) && int128_lt(addr, addrrange_end(range)); } static bool addrrange_intersects(AddrRange r1, AddrRange r2) { return addrrange_contains(r1, r2.start) || addrrange_contains(r2, r1.start); } static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2) { Int128 start = int128_max(r1.start, r2.start); Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2)); return addrrange_make(start, int128_sub(end, start)); } struct CoalescedMemoryRange { AddrRange addr; QTAILQ_ENTRY(CoalescedMemoryRange) link; }; struct MemoryRegionIoeventfd { AddrRange addr; bool match_data; uint64_t data; int fd; }; static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a, MemoryRegionIoeventfd b) { if (int128_lt(a.addr.start, b.addr.start)) { return true; } else if (int128_gt(a.addr.start, b.addr.start)) { return false; } else if (int128_lt(a.addr.size, b.addr.size)) { return true; } else if (int128_gt(a.addr.size, b.addr.size)) { return false; } else if (a.match_data < b.match_data) { return true; } else if (a.match_data > b.match_data) { return false; } else if (a.match_data) { if (a.data < b.data) { return true; } else if (a.data > b.data) { return false; } } if (a.fd < b.fd) { return true; } else if (a.fd > b.fd) { return false; } return false; } static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a, MemoryRegionIoeventfd b) { return !memory_region_ioeventfd_before(a, b) && !memory_region_ioeventfd_before(b, a); } typedef struct FlatRange FlatRange; typedef struct FlatView FlatView; /* Range of memory in the global map. Addresses are absolute. */ struct FlatRange { MemoryRegion *mr; target_phys_addr_t offset_in_region; AddrRange addr; uint8_t dirty_log_mask; bool readable; bool readonly; }; /* Flattened global view of current active memory hierarchy. Kept in sorted * order. */ struct FlatView { FlatRange *ranges; unsigned nr; unsigned nr_allocated; }; typedef struct AddressSpace AddressSpace; typedef struct AddressSpaceOps AddressSpaceOps; /* A system address space - I/O, memory, etc. */ struct AddressSpace { const AddressSpaceOps *ops; MemoryRegion *root; FlatView current_map; int ioeventfd_nb; MemoryRegionIoeventfd *ioeventfds; }; struct AddressSpaceOps { void (*range_add)(AddressSpace *as, FlatRange *fr); void (*range_del)(AddressSpace *as, FlatRange *fr); void (*log_start)(AddressSpace *as, FlatRange *fr); void (*log_stop)(AddressSpace *as, FlatRange *fr); void (*ioeventfd_add)(AddressSpace *as, MemoryRegionIoeventfd *fd); void (*ioeventfd_del)(AddressSpace *as, MemoryRegionIoeventfd *fd); }; #define FOR_EACH_FLAT_RANGE(var, view) \ for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var) static bool flatrange_equal(FlatRange *a, FlatRange *b) { return a->mr == b->mr && addrrange_equal(a->addr, b->addr) && a->offset_in_region == b->offset_in_region && a->readable == b->readable && a->readonly == b->readonly; } static void flatview_init(FlatView *view) { view->ranges = NULL; view->nr = 0; view->nr_allocated = 0; } /* Insert a range into a given position. Caller is responsible for maintaining * sorting order. */ static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range) { if (view->nr == view->nr_allocated) { view->nr_allocated = MAX(2 * view->nr, 10); view->ranges = g_realloc(view->ranges, view->nr_allocated * sizeof(*view->ranges)); } memmove(view->ranges + pos + 1, view->ranges + pos, (view->nr - pos) * sizeof(FlatRange)); view->ranges[pos] = *range; ++view->nr; } static void flatview_destroy(FlatView *view) { g_free(view->ranges); } static bool can_merge(FlatRange *r1, FlatRange *r2) { return int128_eq(addrrange_end(r1->addr), r2->addr.start) && r1->mr == r2->mr && int128_eq(int128_add(int128_make64(r1->offset_in_region), r1->addr.size), int128_make64(r2->offset_in_region)) && r1->dirty_log_mask == r2->dirty_log_mask && r1->readable == r2->readable && r1->readonly == r2->readonly; } /* Attempt to simplify a view by merging ajacent ranges */ static void flatview_simplify(FlatView *view) { unsigned i, j; i = 0; while (i < view->nr) { j = i + 1; while (j < view->nr && can_merge(&view->ranges[j-1], &view->ranges[j])) { int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size); ++j; } ++i; memmove(&view->ranges[i], &view->ranges[j], (view->nr - j) * sizeof(view->ranges[j])); view->nr -= j - i; } } static void memory_region_read_accessor(void *opaque, target_phys_addr_t addr, uint64_t *value, unsigned size, unsigned shift, uint64_t mask) { MemoryRegion *mr = opaque; uint64_t tmp; tmp = mr->ops->read(mr->opaque, addr, size); *value |= (tmp & mask) << shift; } static void memory_region_write_accessor(void *opaque, target_phys_addr_t addr, uint64_t *value, unsigned size, unsigned shift, uint64_t mask) { MemoryRegion *mr = opaque; uint64_t tmp; tmp = (*value >> shift) & mask; mr->ops->write(mr->opaque, addr, tmp, size); } static void access_with_adjusted_size(target_phys_addr_t addr, uint64_t *value, unsigned size, unsigned access_size_min, unsigned access_size_max, void (*access)(void *opaque, target_phys_addr_t addr, uint64_t *value, unsigned size, unsigned shift, uint64_t mask), void *opaque) { uint64_t access_mask; unsigned access_size; unsigned i; if (!access_size_min) { access_size_min = 1; } if (!access_size_max) { access_size_max = 4; } access_size = MAX(MIN(size, access_size_max), access_size_min); access_mask = -1ULL >> (64 - access_size * 8); for (i = 0; i < size; i += access_size) { /* FIXME: big-endian support */ access(opaque, addr + i, value, access_size, i * 8, access_mask); } } static void memory_region_prepare_ram_addr(MemoryRegion *mr); static void as_memory_range_add(AddressSpace *as, FlatRange *fr) { ram_addr_t phys_offset, region_offset; memory_region_prepare_ram_addr(fr->mr); phys_offset = fr->mr->ram_addr; region_offset = fr->offset_in_region; /* cpu_register_physical_memory_log() wants region_offset for * mmio, but prefers offseting phys_offset for RAM. Humour it. */ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { phys_offset += region_offset; region_offset = 0; } if (!fr->readable) { phys_offset &= ~TARGET_PAGE_MASK & ~IO_MEM_ROMD; } if (fr->readonly) { phys_offset |= IO_MEM_ROM; } cpu_register_physical_memory_log(int128_get64(fr->addr.start), int128_get64(fr->addr.size), phys_offset, region_offset, fr->dirty_log_mask); } static void as_memory_range_del(AddressSpace *as, FlatRange *fr) { if (fr->dirty_log_mask) { Int128 end = addrrange_end(fr->addr); cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start), int128_get64(end)); } cpu_register_physical_memory(int128_get64(fr->addr.start), int128_get64(fr->addr.size), IO_MEM_UNASSIGNED); } static void as_memory_log_start(AddressSpace *as, FlatRange *fr) { cpu_physical_log_start(int128_get64(fr->addr.start), int128_get64(fr->addr.size)); } static void as_memory_log_stop(AddressSpace *as, FlatRange *fr) { cpu_physical_log_stop(int128_get64(fr->addr.start), int128_get64(fr->addr.size)); } static void as_memory_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd) { int r; assert(fd->match_data && int128_get64(fd->addr.size) == 4); r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start), fd->data, true); if (r < 0) { abort(); } } static void as_memory_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd) { int r; r = kvm_set_ioeventfd_mmio_long(fd->fd, int128_get64(fd->addr.start), fd->data, false); if (r < 0) { abort(); } } static const AddressSpaceOps address_space_ops_memory = { .range_add = as_memory_range_add, .range_del = as_memory_range_del, .log_start = as_memory_log_start, .log_stop = as_memory_log_stop, .ioeventfd_add = as_memory_ioeventfd_add, .ioeventfd_del = as_memory_ioeventfd_del, }; static AddressSpace address_space_memory = { .ops = &address_space_ops_memory, }; static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset, unsigned width, bool write) { const MemoryRegionPortio *mrp; for (mrp = mr->ops->old_portio; mrp->size; ++mrp) { if (offset >= mrp->offset && offset < mrp->offset + mrp->len && width == mrp->size && (write ? (bool)mrp->write : (bool)mrp->read)) { return mrp; } } return NULL; } static void memory_region_iorange_read(IORange *iorange, uint64_t offset, unsigned width, uint64_t *data) { MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange); if (mr->ops->old_portio) { const MemoryRegionPortio *mrp = find_portio(mr, offset, width, false); *data = ((uint64_t)1 << (width * 8)) - 1; if (mrp) { *data = mrp->read(mr->opaque, offset + mr->offset); } else if (width == 2) { mrp = find_portio(mr, offset, 1, false); assert(mrp); *data = mrp->read(mr->opaque, offset + mr->offset) | (mrp->read(mr->opaque, offset + mr->offset + 1) << 8); } return; } *data = 0; access_with_adjusted_size(offset + mr->offset, data, width, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_accessor, mr); } static void memory_region_iorange_write(IORange *iorange, uint64_t offset, unsigned width, uint64_t data) { MemoryRegion *mr = container_of(iorange, MemoryRegion, iorange); if (mr->ops->old_portio) { const MemoryRegionPortio *mrp = find_portio(mr, offset, width, true); if (mrp) { mrp->write(mr->opaque, offset + mr->offset, data); } else if (width == 2) { mrp = find_portio(mr, offset, 1, false); assert(mrp); mrp->write(mr->opaque, offset + mr->offset, data & 0xff); mrp->write(mr->opaque, offset + mr->offset + 1, data >> 8); } return; } access_with_adjusted_size(offset + mr->offset, &data, width, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_accessor, mr); } static const IORangeOps memory_region_iorange_ops = { .read = memory_region_iorange_read, .write = memory_region_iorange_write, }; static void as_io_range_add(AddressSpace *as, FlatRange *fr) { iorange_init(&fr->mr->iorange, &memory_region_iorange_ops, int128_get64(fr->addr.start), int128_get64(fr->addr.size)); ioport_register(&fr->mr->iorange); } static void as_io_range_del(AddressSpace *as, FlatRange *fr) { isa_unassign_ioport(int128_get64(fr->addr.start), int128_get64(fr->addr.size)); } static void as_io_ioeventfd_add(AddressSpace *as, MemoryRegionIoeventfd *fd) { int r; assert(fd->match_data && int128_get64(fd->addr.size) == 2); r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start), fd->data, true); if (r < 0) { abort(); } } static void as_io_ioeventfd_del(AddressSpace *as, MemoryRegionIoeventfd *fd) { int r; r = kvm_set_ioeventfd_pio_word(fd->fd, int128_get64(fd->addr.start), fd->data, false); if (r < 0) { abort(); } } static const AddressSpaceOps address_space_ops_io = { .range_add = as_io_range_add, .range_del = as_io_range_del, .ioeventfd_add = as_io_ioeventfd_add, .ioeventfd_del = as_io_ioeventfd_del, }; static AddressSpace address_space_io = { .ops = &address_space_ops_io, }; /* Render a memory region into the global view. Ranges in @view obscure * ranges in @mr. */ static void render_memory_region(FlatView *view, MemoryRegion *mr, Int128 base, AddrRange clip, bool readonly) { MemoryRegion *subregion; unsigned i; target_phys_addr_t offset_in_region; Int128 remain; Int128 now; FlatRange fr; AddrRange tmp; int128_addto(&base, int128_make64(mr->addr)); readonly |= mr->readonly; tmp = addrrange_make(base, mr->size); if (!addrrange_intersects(tmp, clip)) { return; } clip = addrrange_intersection(tmp, clip); if (mr->alias) { int128_subfrom(&base, int128_make64(mr->alias->addr)); int128_subfrom(&base, int128_make64(mr->alias_offset)); render_memory_region(view, mr->alias, base, clip, readonly); return; } /* Render subregions in priority order. */ QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) { render_memory_region(view, subregion, base, clip, readonly); } if (!mr->terminates) { return; } offset_in_region = int128_get64(int128_sub(clip.start, base)); base = clip.start; remain = clip.size; /* Render the region itself into any gaps left by the current view. */ for (i = 0; i < view->nr && int128_nz(remain); ++i) { if (int128_ge(base, addrrange_end(view->ranges[i].addr))) { continue; } if (int128_lt(base, view->ranges[i].addr.start)) { now = int128_min(remain, int128_sub(view->ranges[i].addr.start, base)); fr.mr = mr; fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, now); fr.dirty_log_mask = mr->dirty_log_mask; fr.readable = mr->readable; fr.readonly = readonly; flatview_insert(view, i, &fr); ++i; int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } if (int128_eq(base, view->ranges[i].addr.start)) { now = int128_min(remain, view->ranges[i].addr.size); int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } } if (int128_nz(remain)) { fr.mr = mr; fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, remain); fr.dirty_log_mask = mr->dirty_log_mask; fr.readable = mr->readable; fr.readonly = readonly; flatview_insert(view, i, &fr); } } /* Render a memory topology into a list of disjoint absolute ranges. */ static FlatView generate_memory_topology(MemoryRegion *mr) { FlatView view; flatview_init(&view); render_memory_region(&view, mr, int128_zero(), addrrange_make(int128_zero(), int128_2_64()), false); flatview_simplify(&view); return view; } static void address_space_add_del_ioeventfds(AddressSpace *as, MemoryRegionIoeventfd *fds_new, unsigned fds_new_nb, MemoryRegionIoeventfd *fds_old, unsigned fds_old_nb) { unsigned iold, inew; /* Generate a symmetric difference of the old and new fd sets, adding * and deleting as necessary. */ iold = inew = 0; while (iold < fds_old_nb || inew < fds_new_nb) { if (iold < fds_old_nb && (inew == fds_new_nb || memory_region_ioeventfd_before(fds_old[iold], fds_new[inew]))) { as->ops->ioeventfd_del(as, &fds_old[iold]); ++iold; } else if (inew < fds_new_nb && (iold == fds_old_nb || memory_region_ioeventfd_before(fds_new[inew], fds_old[iold]))) { as->ops->ioeventfd_add(as, &fds_new[inew]); ++inew; } else { ++iold; ++inew; } } } static void address_space_update_ioeventfds(AddressSpace *as) { FlatRange *fr; unsigned ioeventfd_nb = 0; MemoryRegionIoeventfd *ioeventfds = NULL; AddrRange tmp; unsigned i; FOR_EACH_FLAT_RANGE(fr, &as->current_map) { for (i = 0; i < fr->mr->ioeventfd_nb; ++i) { tmp = addrrange_shift(fr->mr->ioeventfds[i].addr, int128_sub(fr->addr.start, int128_make64(fr->offset_in_region))); if (addrrange_intersects(fr->addr, tmp)) { ++ioeventfd_nb; ioeventfds = g_realloc(ioeventfds, ioeventfd_nb * sizeof(*ioeventfds)); ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i]; ioeventfds[ioeventfd_nb-1].addr = tmp; } } } address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb, as->ioeventfds, as->ioeventfd_nb); g_free(as->ioeventfds); as->ioeventfds = ioeventfds; as->ioeventfd_nb = ioeventfd_nb; } static void address_space_update_topology_pass(AddressSpace *as, FlatView old_view, FlatView new_view, bool adding) { unsigned iold, inew; FlatRange *frold, *frnew; /* Generate a symmetric difference of the old and new memory maps. * Kill ranges in the old map, and instantiate ranges in the new map. */ iold = inew = 0; while (iold < old_view.nr || inew < new_view.nr) { if (iold < old_view.nr) { frold = &old_view.ranges[iold]; } else { frold = NULL; } if (inew < new_view.nr) { frnew = &new_view.ranges[inew]; } else { frnew = NULL; } if (frold && (!frnew || int128_lt(frold->addr.start, frnew->addr.start) || (int128_eq(frold->addr.start, frnew->addr.start) && !flatrange_equal(frold, frnew)))) { /* In old, but (not in new, or in new but attributes changed). */ if (!adding) { as->ops->range_del(as, frold); } ++iold; } else if (frold && frnew && flatrange_equal(frold, frnew)) { /* In both (logging may have changed) */ if (adding) { if (frold->dirty_log_mask && !frnew->dirty_log_mask) { as->ops->log_stop(as, frnew); } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) { as->ops->log_start(as, frnew); } } ++iold; ++inew; } else { /* In new */ if (adding) { as->ops->range_add(as, frnew); } ++inew; } } } static void address_space_update_topology(AddressSpace *as) { FlatView old_view = as->current_map; FlatView new_view = generate_memory_topology(as->root); address_space_update_topology_pass(as, old_view, new_view, false); address_space_update_topology_pass(as, old_view, new_view, true); as->current_map = new_view; flatview_destroy(&old_view); address_space_update_ioeventfds(as); } static void memory_region_update_topology(void) { if (memory_region_transaction_depth) { return; } if (address_space_memory.root) { address_space_update_topology(&address_space_memory); } if (address_space_io.root) { address_space_update_topology(&address_space_io); } } void memory_region_transaction_begin(void) { ++memory_region_transaction_depth; } void memory_region_transaction_commit(void) { assert(memory_region_transaction_depth); --memory_region_transaction_depth; memory_region_update_topology(); } static void memory_region_destructor_none(MemoryRegion *mr) { } static void memory_region_destructor_ram(MemoryRegion *mr) { qemu_ram_free(mr->ram_addr); } static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr) { qemu_ram_free_from_ptr(mr->ram_addr); } static void memory_region_destructor_iomem(MemoryRegion *mr) { cpu_unregister_io_memory(mr->ram_addr); } static void memory_region_destructor_rom_device(MemoryRegion *mr) { qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK); cpu_unregister_io_memory(mr->ram_addr & ~(TARGET_PAGE_MASK | IO_MEM_ROMD)); } void memory_region_init(MemoryRegion *mr, const char *name, uint64_t size) { mr->ops = NULL; mr->parent = NULL; mr->size = int128_make64(size); if (size == UINT64_MAX) { mr->size = int128_2_64(); } mr->addr = 0; mr->offset = 0; mr->terminates = false; mr->readable = true; mr->readonly = false; mr->destructor = memory_region_destructor_none; mr->priority = 0; mr->may_overlap = false; mr->alias = NULL; QTAILQ_INIT(&mr->subregions); memset(&mr->subregions_link, 0, sizeof mr->subregions_link); QTAILQ_INIT(&mr->coalesced); mr->name = g_strdup(name); mr->dirty_log_mask = 0; mr->ioeventfd_nb = 0; mr->ioeventfds = NULL; } static bool memory_region_access_valid(MemoryRegion *mr, target_phys_addr_t addr, unsigned size, bool is_write) { if (mr->ops->valid.accepts && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) { return false; } if (!mr->ops->valid.unaligned && (addr & (size - 1))) { return false; } /* Treat zero as compatibility all valid */ if (!mr->ops->valid.max_access_size) { return true; } if (size > mr->ops->valid.max_access_size || size < mr->ops->valid.min_access_size) { return false; } return true; } static uint32_t memory_region_read_thunk_n(void *_mr, target_phys_addr_t addr, unsigned size) { MemoryRegion *mr = _mr; uint64_t data = 0; if (!memory_region_access_valid(mr, addr, size, false)) { return -1U; /* FIXME: better signalling */ } if (!mr->ops->read) { return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr); } /* FIXME: support unaligned access */ access_with_adjusted_size(addr + mr->offset, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_accessor, mr); return data; } static void memory_region_write_thunk_n(void *_mr, target_phys_addr_t addr, unsigned size, uint64_t data) { MemoryRegion *mr = _mr; if (!memory_region_access_valid(mr, addr, size, true)) { return; /* FIXME: better signalling */ } if (!mr->ops->write) { mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data); return; } /* FIXME: support unaligned access */ access_with_adjusted_size(addr + mr->offset, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_accessor, mr); } static uint32_t memory_region_read_thunk_b(void *mr, target_phys_addr_t addr) { return memory_region_read_thunk_n(mr, addr, 1); } static uint32_t memory_region_read_thunk_w(void *mr, target_phys_addr_t addr) { return memory_region_read_thunk_n(mr, addr, 2); } static uint32_t memory_region_read_thunk_l(void *mr, target_phys_addr_t addr) { return memory_region_read_thunk_n(mr, addr, 4); } static void memory_region_write_thunk_b(void *mr, target_phys_addr_t addr, uint32_t data) { memory_region_write_thunk_n(mr, addr, 1, data); } static void memory_region_write_thunk_w(void *mr, target_phys_addr_t addr, uint32_t data) { memory_region_write_thunk_n(mr, addr, 2, data); } static void memory_region_write_thunk_l(void *mr, target_phys_addr_t addr, uint32_t data) { memory_region_write_thunk_n(mr, addr, 4, data); } static CPUReadMemoryFunc * const memory_region_read_thunk[] = { memory_region_read_thunk_b, memory_region_read_thunk_w, memory_region_read_thunk_l, }; static CPUWriteMemoryFunc * const memory_region_write_thunk[] = { memory_region_write_thunk_b, memory_region_write_thunk_w, memory_region_write_thunk_l, }; static void memory_region_prepare_ram_addr(MemoryRegion *mr) { if (mr->backend_registered) { return; } mr->destructor = memory_region_destructor_iomem; mr->ram_addr = cpu_register_io_memory(memory_region_read_thunk, memory_region_write_thunk, mr, mr->ops->endianness); mr->backend_registered = true; } void memory_region_init_io(MemoryRegion *mr, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size) { memory_region_init(mr, name, size); mr->ops = ops; mr->opaque = opaque; mr->terminates = true; mr->backend_registered = false; } void memory_region_init_ram(MemoryRegion *mr, DeviceState *dev, const char *name, uint64_t size) { memory_region_init(mr, name, size); mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_addr = qemu_ram_alloc(dev, name, size, mr); mr->backend_registered = true; } void memory_region_init_ram_ptr(MemoryRegion *mr, DeviceState *dev, const char *name, uint64_t size, void *ptr) { memory_region_init(mr, name, size); mr->terminates = true; mr->destructor = memory_region_destructor_ram_from_ptr; mr->ram_addr = qemu_ram_alloc_from_ptr(dev, name, size, ptr, mr); mr->backend_registered = true; } void memory_region_init_alias(MemoryRegion *mr, const char *name, MemoryRegion *orig, target_phys_addr_t offset, uint64_t size) { memory_region_init(mr, name, size); mr->alias = orig; mr->alias_offset = offset; } void memory_region_init_rom_device(MemoryRegion *mr, const MemoryRegionOps *ops, void *opaque, DeviceState *dev, const char *name, uint64_t size) { memory_region_init(mr, name, size); mr->ops = ops; mr->opaque = opaque; mr->terminates = true; mr->destructor = memory_region_destructor_rom_device; mr->ram_addr = qemu_ram_alloc(dev, name, size, mr); mr->ram_addr |= cpu_register_io_memory(memory_region_read_thunk, memory_region_write_thunk, mr, mr->ops->endianness); mr->ram_addr |= IO_MEM_ROMD; mr->backend_registered = true; } void memory_region_destroy(MemoryRegion *mr) { assert(QTAILQ_EMPTY(&mr->subregions)); mr->destructor(mr); memory_region_clear_coalescing(mr); g_free((char *)mr->name); g_free(mr->ioeventfds); } uint64_t memory_region_size(MemoryRegion *mr) { if (int128_eq(mr->size, int128_2_64())) { return UINT64_MAX; } return int128_get64(mr->size); } void memory_region_set_offset(MemoryRegion *mr, target_phys_addr_t offset) { mr->offset = offset; } void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client) { uint8_t mask = 1 << client; mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask); memory_region_update_topology(); } bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr, unsigned client) { assert(mr->terminates); return cpu_physical_memory_get_dirty(mr->ram_addr + addr, 1 << client); } void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr) { assert(mr->terminates); return cpu_physical_memory_set_dirty(mr->ram_addr + addr); } void memory_region_sync_dirty_bitmap(MemoryRegion *mr) { FlatRange *fr; FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) { if (fr->mr == mr) { cpu_physical_sync_dirty_bitmap(int128_get64(fr->addr.start), int128_get64(addrrange_end(fr->addr))); } } } void memory_region_set_readonly(MemoryRegion *mr, bool readonly) { if (mr->readonly != readonly) { mr->readonly = readonly; memory_region_update_topology(); } } void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable) { if (mr->readable != readable) { mr->readable = readable; memory_region_update_topology(); } } void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr, target_phys_addr_t size, unsigned client) { assert(mr->terminates); cpu_physical_memory_reset_dirty(mr->ram_addr + addr, mr->ram_addr + addr + size, 1 << client); } void *memory_region_get_ram_ptr(MemoryRegion *mr) { if (mr->alias) { return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset; } assert(mr->terminates); return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK); } static void memory_region_update_coalesced_range(MemoryRegion *mr) { FlatRange *fr; CoalescedMemoryRange *cmr; AddrRange tmp; FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) { if (fr->mr == mr) { qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start), int128_get64(fr->addr.size)); QTAILQ_FOREACH(cmr, &mr->coalesced, link) { tmp = addrrange_shift(cmr->addr, int128_sub(fr->addr.start, int128_make64(fr->offset_in_region))); if (!addrrange_intersects(tmp, fr->addr)) { continue; } tmp = addrrange_intersection(tmp, fr->addr); qemu_register_coalesced_mmio(int128_get64(tmp.start), int128_get64(tmp.size)); } } } } void memory_region_set_coalescing(MemoryRegion *mr) { memory_region_clear_coalescing(mr); memory_region_add_coalescing(mr, 0, int128_get64(mr->size)); } void memory_region_add_coalescing(MemoryRegion *mr, target_phys_addr_t offset, uint64_t size) { CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr)); cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size)); QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link); memory_region_update_coalesced_range(mr); } void memory_region_clear_coalescing(MemoryRegion *mr) { CoalescedMemoryRange *cmr; while (!QTAILQ_EMPTY(&mr->coalesced)) { cmr = QTAILQ_FIRST(&mr->coalesced); QTAILQ_REMOVE(&mr->coalesced, cmr, link); g_free(cmr); } memory_region_update_coalesced_range(mr); } void memory_region_add_eventfd(MemoryRegion *mr, target_phys_addr_t addr, unsigned size, bool match_data, uint64_t data, int fd) { MemoryRegionIoeventfd mrfd = { .addr.start = int128_make64(addr), .addr.size = int128_make64(size), .match_data = match_data, .data = data, .fd = fd, }; unsigned i; for (i = 0; i < mr->ioeventfd_nb; ++i) { if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) { break; } } ++mr->ioeventfd_nb; mr->ioeventfds = g_realloc(mr->ioeventfds, sizeof(*mr->ioeventfds) * mr->ioeventfd_nb); memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i], sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i)); mr->ioeventfds[i] = mrfd; memory_region_update_topology(); } void memory_region_del_eventfd(MemoryRegion *mr, target_phys_addr_t addr, unsigned size, bool match_data, uint64_t data, int fd) { MemoryRegionIoeventfd mrfd = { .addr.start = int128_make64(addr), .addr.size = int128_make64(size), .match_data = match_data, .data = data, .fd = fd, }; unsigned i; for (i = 0; i < mr->ioeventfd_nb; ++i) { if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) { break; } } assert(i != mr->ioeventfd_nb); memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1], sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1))); --mr->ioeventfd_nb; mr->ioeventfds = g_realloc(mr->ioeventfds, sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1); memory_region_update_topology(); } static void memory_region_add_subregion_common(MemoryRegion *mr, target_phys_addr_t offset, MemoryRegion *subregion) { MemoryRegion *other; assert(!subregion->parent); subregion->parent = mr; subregion->addr = offset; QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { if (subregion->may_overlap || other->may_overlap) { continue; } if (int128_gt(int128_make64(offset), int128_add(int128_make64(other->addr), other->size)) || int128_le(int128_add(int128_make64(offset), subregion->size), int128_make64(other->addr))) { continue; } #if 0 printf("warning: subregion collision %llx/%llx (%s) " "vs %llx/%llx (%s)\n", (unsigned long long)offset, (unsigned long long)int128_get64(subregion->size), subregion->name, (unsigned long long)other->addr, (unsigned long long)int128_get64(other->size), other->name); #endif } QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { if (subregion->priority >= other->priority) { QTAILQ_INSERT_BEFORE(other, subregion, subregions_link); goto done; } } QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link); done: memory_region_update_topology(); } void memory_region_add_subregion(MemoryRegion *mr, target_phys_addr_t offset, MemoryRegion *subregion) { subregion->may_overlap = false; subregion->priority = 0; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_add_subregion_overlap(MemoryRegion *mr, target_phys_addr_t offset, MemoryRegion *subregion, unsigned priority) { subregion->may_overlap = true; subregion->priority = priority; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_del_subregion(MemoryRegion *mr, MemoryRegion *subregion) { assert(subregion->parent == mr); subregion->parent = NULL; QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link); memory_region_update_topology(); } void set_system_memory_map(MemoryRegion *mr) { address_space_memory.root = mr; memory_region_update_topology(); } void set_system_io_map(MemoryRegion *mr) { address_space_io.root = mr; memory_region_update_topology(); } typedef struct MemoryRegionList MemoryRegionList; struct MemoryRegionList { const MemoryRegion *mr; bool printed; QTAILQ_ENTRY(MemoryRegionList) queue; }; typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead; static void mtree_print_mr(fprintf_function mon_printf, void *f, const MemoryRegion *mr, unsigned int level, target_phys_addr_t base, MemoryRegionListHead *alias_print_queue) { MemoryRegionList *new_ml, *ml, *next_ml; MemoryRegionListHead submr_print_queue; const MemoryRegion *submr; unsigned int i; if (!mr) { return; } for (i = 0; i < level; i++) { mon_printf(f, " "); } if (mr->alias) { MemoryRegionList *ml; bool found = false; /* check if the alias is already in the queue */ QTAILQ_FOREACH(ml, alias_print_queue, queue) { if (ml->mr == mr->alias && !ml->printed) { found = true; } } if (!found) { ml = g_new(MemoryRegionList, 1); ml->mr = mr->alias; ml->printed = false; QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue); } mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): alias %s @%s " TARGET_FMT_plx "-" TARGET_FMT_plx "\n", base + mr->addr, base + mr->addr + (target_phys_addr_t)int128_get64(mr->size) - 1, mr->priority, mr->name, mr->alias->name, mr->alias_offset, mr->alias_offset + (target_phys_addr_t)int128_get64(mr->size) - 1); } else { mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d): %s\n", base + mr->addr, base + mr->addr + (target_phys_addr_t)int128_get64(mr->size) - 1, mr->priority, mr->name); } QTAILQ_INIT(&submr_print_queue); QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) { new_ml = g_new(MemoryRegionList, 1); new_ml->mr = submr; QTAILQ_FOREACH(ml, &submr_print_queue, queue) { if (new_ml->mr->addr < ml->mr->addr || (new_ml->mr->addr == ml->mr->addr && new_ml->mr->priority > ml->mr->priority)) { QTAILQ_INSERT_BEFORE(ml, new_ml, queue); new_ml = NULL; break; } } if (new_ml) { QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue); } } QTAILQ_FOREACH(ml, &submr_print_queue, queue) { mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr, alias_print_queue); } QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) { g_free(ml); } } void mtree_info(fprintf_function mon_printf, void *f) { MemoryRegionListHead ml_head; MemoryRegionList *ml, *ml2; QTAILQ_INIT(&ml_head); mon_printf(f, "memory\n"); mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head); /* print aliased regions */ QTAILQ_FOREACH(ml, &ml_head, queue) { if (!ml->printed) { mon_printf(f, "%s\n", ml->mr->name); mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head); } } QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) { g_free(ml); } if (address_space_io.root && !QTAILQ_EMPTY(&address_space_io.root->subregions)) { QTAILQ_INIT(&ml_head); mon_printf(f, "I/O\n"); mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head); } }