/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include #include #include "qemu.h" #include "qemu-common.h" #include "target_signal.h" #include "trace.h" static struct target_sigaltstack target_sigaltstack_used = { .ss_sp = 0, .ss_size = 0, .ss_flags = TARGET_SS_DISABLE, }; static struct target_sigaction sigact_table[TARGET_NSIG]; static void host_signal_handler(int host_signum, siginfo_t *info, void *puc); static uint8_t host_to_target_signal_table[_NSIG] = { [SIGHUP] = TARGET_SIGHUP, [SIGINT] = TARGET_SIGINT, [SIGQUIT] = TARGET_SIGQUIT, [SIGILL] = TARGET_SIGILL, [SIGTRAP] = TARGET_SIGTRAP, [SIGABRT] = TARGET_SIGABRT, /* [SIGIOT] = TARGET_SIGIOT,*/ [SIGBUS] = TARGET_SIGBUS, [SIGFPE] = TARGET_SIGFPE, [SIGKILL] = TARGET_SIGKILL, [SIGUSR1] = TARGET_SIGUSR1, [SIGSEGV] = TARGET_SIGSEGV, [SIGUSR2] = TARGET_SIGUSR2, [SIGPIPE] = TARGET_SIGPIPE, [SIGALRM] = TARGET_SIGALRM, [SIGTERM] = TARGET_SIGTERM, #ifdef SIGSTKFLT [SIGSTKFLT] = TARGET_SIGSTKFLT, #endif [SIGCHLD] = TARGET_SIGCHLD, [SIGCONT] = TARGET_SIGCONT, [SIGSTOP] = TARGET_SIGSTOP, [SIGTSTP] = TARGET_SIGTSTP, [SIGTTIN] = TARGET_SIGTTIN, [SIGTTOU] = TARGET_SIGTTOU, [SIGURG] = TARGET_SIGURG, [SIGXCPU] = TARGET_SIGXCPU, [SIGXFSZ] = TARGET_SIGXFSZ, [SIGVTALRM] = TARGET_SIGVTALRM, [SIGPROF] = TARGET_SIGPROF, [SIGWINCH] = TARGET_SIGWINCH, [SIGIO] = TARGET_SIGIO, [SIGPWR] = TARGET_SIGPWR, [SIGSYS] = TARGET_SIGSYS, /* next signals stay the same */ /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with host libpthread signals. This assumes no one actually uses SIGRTMAX :-/ To fix this properly we need to do manual signal delivery multiplexed over a single host signal. */ [__SIGRTMIN] = __SIGRTMAX, [__SIGRTMAX] = __SIGRTMIN, }; static uint8_t target_to_host_signal_table[_NSIG]; static inline int on_sig_stack(unsigned long sp) { return (sp - target_sigaltstack_used.ss_sp < target_sigaltstack_used.ss_size); } static inline int sas_ss_flags(unsigned long sp) { return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } int host_to_target_signal(int sig) { if (sig < 0 || sig >= _NSIG) return sig; return host_to_target_signal_table[sig]; } int target_to_host_signal(int sig) { if (sig < 0 || sig >= _NSIG) return sig; return target_to_host_signal_table[sig]; } static inline void target_sigemptyset(target_sigset_t *set) { memset(set, 0, sizeof(*set)); } static inline void target_sigaddset(target_sigset_t *set, int signum) { signum--; abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); set->sig[signum / TARGET_NSIG_BPW] |= mask; } static inline int target_sigismember(const target_sigset_t *set, int signum) { signum--; abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); } static void host_to_target_sigset_internal(target_sigset_t *d, const sigset_t *s) { int i; target_sigemptyset(d); for (i = 1; i <= TARGET_NSIG; i++) { if (sigismember(s, i)) { target_sigaddset(d, host_to_target_signal(i)); } } } void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) { target_sigset_t d1; int i; host_to_target_sigset_internal(&d1, s); for(i = 0;i < TARGET_NSIG_WORDS; i++) d->sig[i] = tswapal(d1.sig[i]); } static void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s) { int i; sigemptyset(d); for (i = 1; i <= TARGET_NSIG; i++) { if (target_sigismember(s, i)) { sigaddset(d, target_to_host_signal(i)); } } } void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) { target_sigset_t s1; int i; for(i = 0;i < TARGET_NSIG_WORDS; i++) s1.sig[i] = tswapal(s->sig[i]); target_to_host_sigset_internal(d, &s1); } void host_to_target_old_sigset(abi_ulong *old_sigset, const sigset_t *sigset) { target_sigset_t d; host_to_target_sigset(&d, sigset); *old_sigset = d.sig[0]; } void target_to_host_old_sigset(sigset_t *sigset, const abi_ulong *old_sigset) { target_sigset_t d; int i; d.sig[0] = *old_sigset; for(i = 1;i < TARGET_NSIG_WORDS; i++) d.sig[i] = 0; target_to_host_sigset(sigset, &d); } int block_signals(void) { TaskState *ts = (TaskState *)thread_cpu->opaque; sigset_t set; /* It's OK to block everything including SIGSEGV, because we won't * run any further guest code before unblocking signals in * process_pending_signals(). */ sigfillset(&set); sigprocmask(SIG_SETMASK, &set, 0); return atomic_xchg(&ts->signal_pending, 1); } /* Wrapper for sigprocmask function * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if * a signal was already pending and the syscall must be restarted, or * 0 on success. * If set is NULL, this is guaranteed not to fail. */ int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) { TaskState *ts = (TaskState *)thread_cpu->opaque; if (oldset) { *oldset = ts->signal_mask; } if (set) { int i; if (block_signals()) { return -TARGET_ERESTARTSYS; } switch (how) { case SIG_BLOCK: sigorset(&ts->signal_mask, &ts->signal_mask, set); break; case SIG_UNBLOCK: for (i = 1; i <= NSIG; ++i) { if (sigismember(set, i)) { sigdelset(&ts->signal_mask, i); } } break; case SIG_SETMASK: ts->signal_mask = *set; break; default: g_assert_not_reached(); } /* Silently ignore attempts to change blocking status of KILL or STOP */ sigdelset(&ts->signal_mask, SIGKILL); sigdelset(&ts->signal_mask, SIGSTOP); } return 0; } #if !defined(TARGET_OPENRISC) && !defined(TARGET_UNICORE32) && \ !defined(TARGET_NIOS2) /* Just set the guest's signal mask to the specified value; the * caller is assumed to have called block_signals() already. */ static void set_sigmask(const sigset_t *set) { TaskState *ts = (TaskState *)thread_cpu->opaque; ts->signal_mask = *set; } #endif /* siginfo conversion */ static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, const siginfo_t *info) { int sig = host_to_target_signal(info->si_signo); int si_code = info->si_code; int si_type; tinfo->si_signo = sig; tinfo->si_errno = 0; tinfo->si_code = info->si_code; /* This memset serves two purposes: * (1) ensure we don't leak random junk to the guest later * (2) placate false positives from gcc about fields * being used uninitialized if it chooses to inline both this * function and tswap_siginfo() into host_to_target_siginfo(). */ memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); /* This is awkward, because we have to use a combination of * the si_code and si_signo to figure out which of the union's * members are valid. (Within the host kernel it is always possible * to tell, but the kernel carefully avoids giving userspace the * high 16 bits of si_code, so we don't have the information to * do this the easy way...) We therefore make our best guess, * bearing in mind that a guest can spoof most of the si_codes * via rt_sigqueueinfo() if it likes. * * Once we have made our guess, we record it in the top 16 bits of * the si_code, so that tswap_siginfo() later can use it. * tswap_siginfo() will strip these top bits out before writing * si_code to the guest (sign-extending the lower bits). */ switch (si_code) { case SI_USER: case SI_TKILL: case SI_KERNEL: /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. * These are the only unspoofable si_code values. */ tinfo->_sifields._kill._pid = info->si_pid; tinfo->_sifields._kill._uid = info->si_uid; si_type = QEMU_SI_KILL; break; default: /* Everything else is spoofable. Make best guess based on signal */ switch (sig) { case TARGET_SIGCHLD: tinfo->_sifields._sigchld._pid = info->si_pid; tinfo->_sifields._sigchld._uid = info->si_uid; tinfo->_sifields._sigchld._status = host_to_target_waitstatus(info->si_status); tinfo->_sifields._sigchld._utime = info->si_utime; tinfo->_sifields._sigchld._stime = info->si_stime; si_type = QEMU_SI_CHLD; break; case TARGET_SIGIO: tinfo->_sifields._sigpoll._band = info->si_band; tinfo->_sifields._sigpoll._fd = info->si_fd; si_type = QEMU_SI_POLL; break; default: /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ tinfo->_sifields._rt._pid = info->si_pid; tinfo->_sifields._rt._uid = info->si_uid; /* XXX: potential problem if 64 bit */ tinfo->_sifields._rt._sigval.sival_ptr = (abi_ulong)(unsigned long)info->si_value.sival_ptr; si_type = QEMU_SI_RT; break; } break; } tinfo->si_code = deposit32(si_code, 16, 16, si_type); } static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) { int si_type = extract32(info->si_code, 16, 16); int si_code = sextract32(info->si_code, 0, 16); __put_user(info->si_signo, &tinfo->si_signo); __put_user(info->si_errno, &tinfo->si_errno); __put_user(si_code, &tinfo->si_code); /* We can use our internal marker of which fields in the structure * are valid, rather than duplicating the guesswork of * host_to_target_siginfo_noswap() here. */ switch (si_type) { case QEMU_SI_KILL: __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); break; case QEMU_SI_TIMER: __put_user(info->_sifields._timer._timer1, &tinfo->_sifields._timer._timer1); __put_user(info->_sifields._timer._timer2, &tinfo->_sifields._timer._timer2); break; case QEMU_SI_POLL: __put_user(info->_sifields._sigpoll._band, &tinfo->_sifields._sigpoll._band); __put_user(info->_sifields._sigpoll._fd, &tinfo->_sifields._sigpoll._fd); break; case QEMU_SI_FAULT: __put_user(info->_sifields._sigfault._addr, &tinfo->_sifields._sigfault._addr); break; case QEMU_SI_CHLD: __put_user(info->_sifields._sigchld._pid, &tinfo->_sifields._sigchld._pid); __put_user(info->_sifields._sigchld._uid, &tinfo->_sifields._sigchld._uid); __put_user(info->_sifields._sigchld._status, &tinfo->_sifields._sigchld._status); __put_user(info->_sifields._sigchld._utime, &tinfo->_sifields._sigchld._utime); __put_user(info->_sifields._sigchld._stime, &tinfo->_sifields._sigchld._stime); break; case QEMU_SI_RT: __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); __put_user(info->_sifields._rt._sigval.sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); break; default: g_assert_not_reached(); } } void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) { target_siginfo_t tgt_tmp; host_to_target_siginfo_noswap(&tgt_tmp, info); tswap_siginfo(tinfo, &tgt_tmp); } /* XXX: we support only POSIX RT signals are used. */ /* XXX: find a solution for 64 bit (additional malloced data is needed) */ void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) { /* This conversion is used only for the rt_sigqueueinfo syscall, * and so we know that the _rt fields are the valid ones. */ abi_ulong sival_ptr; __get_user(info->si_signo, &tinfo->si_signo); __get_user(info->si_errno, &tinfo->si_errno); __get_user(info->si_code, &tinfo->si_code); __get_user(info->si_pid, &tinfo->_sifields._rt._pid); __get_user(info->si_uid, &tinfo->_sifields._rt._uid); __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); info->si_value.sival_ptr = (void *)(long)sival_ptr; } static int fatal_signal (int sig) { switch (sig) { case TARGET_SIGCHLD: case TARGET_SIGURG: case TARGET_SIGWINCH: /* Ignored by default. */ return 0; case TARGET_SIGCONT: case TARGET_SIGSTOP: case TARGET_SIGTSTP: case TARGET_SIGTTIN: case TARGET_SIGTTOU: /* Job control signals. */ return 0; default: return 1; } } /* returns 1 if given signal should dump core if not handled */ static int core_dump_signal(int sig) { switch (sig) { case TARGET_SIGABRT: case TARGET_SIGFPE: case TARGET_SIGILL: case TARGET_SIGQUIT: case TARGET_SIGSEGV: case TARGET_SIGTRAP: case TARGET_SIGBUS: return (1); default: return (0); } } void signal_init(void) { TaskState *ts = (TaskState *)thread_cpu->opaque; struct sigaction act; struct sigaction oact; int i, j; int host_sig; /* generate signal conversion tables */ for(i = 1; i < _NSIG; i++) { if (host_to_target_signal_table[i] == 0) host_to_target_signal_table[i] = i; } for(i = 1; i < _NSIG; i++) { j = host_to_target_signal_table[i]; target_to_host_signal_table[j] = i; } /* Set the signal mask from the host mask. */ sigprocmask(0, 0, &ts->signal_mask); /* set all host signal handlers. ALL signals are blocked during the handlers to serialize them. */ memset(sigact_table, 0, sizeof(sigact_table)); sigfillset(&act.sa_mask); act.sa_flags = SA_SIGINFO; act.sa_sigaction = host_signal_handler; for(i = 1; i <= TARGET_NSIG; i++) { host_sig = target_to_host_signal(i); sigaction(host_sig, NULL, &oact); if (oact.sa_sigaction == (void *)SIG_IGN) { sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; } else if (oact.sa_sigaction == (void *)SIG_DFL) { sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; } /* If there's already a handler installed then something has gone horribly wrong, so don't even try to handle that case. */ /* Install some handlers for our own use. We need at least SIGSEGV and SIGBUS, to detect exceptions. We can not just trap all signals because it affects syscall interrupt behavior. But do trap all default-fatal signals. */ if (fatal_signal (i)) sigaction(host_sig, &act, NULL); } } #ifndef TARGET_UNICORE32 /* Force a synchronously taken signal. The kernel force_sig() function * also forces the signal to "not blocked, not ignored", but for QEMU * that work is done in process_pending_signals(). */ static void force_sig(int sig) { CPUState *cpu = thread_cpu; CPUArchState *env = cpu->env_ptr; target_siginfo_t info; info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._kill._pid = 0; info._sifields._kill._uid = 0; queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); } /* Force a SIGSEGV if we couldn't write to memory trying to set * up the signal frame. oldsig is the signal we were trying to handle * at the point of failure. */ static void force_sigsegv(int oldsig) { if (oldsig == SIGSEGV) { /* Make sure we don't try to deliver the signal again; this will * end up with handle_pending_signal() calling dump_core_and_abort(). */ sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; } force_sig(TARGET_SIGSEGV); } #endif /* abort execution with signal */ static void QEMU_NORETURN dump_core_and_abort(int target_sig) { CPUState *cpu = thread_cpu; CPUArchState *env = cpu->env_ptr; TaskState *ts = (TaskState *)cpu->opaque; int host_sig, core_dumped = 0; struct sigaction act; host_sig = target_to_host_signal(target_sig); trace_user_force_sig(env, target_sig, host_sig); gdb_signalled(env, target_sig); /* dump core if supported by target binary format */ if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { stop_all_tasks(); core_dumped = ((*ts->bprm->core_dump)(target_sig, env) == 0); } if (core_dumped) { /* we already dumped the core of target process, we don't want * a coredump of qemu itself */ struct rlimit nodump; getrlimit(RLIMIT_CORE, &nodump); nodump.rlim_cur=0; setrlimit(RLIMIT_CORE, &nodump); (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", target_sig, strsignal(host_sig), "core dumped" ); } /* The proper exit code for dying from an uncaught signal is * -. The kernel doesn't allow exit() or _exit() to pass * a negative value. To get the proper exit code we need to * actually die from an uncaught signal. Here the default signal * handler is installed, we send ourself a signal and we wait for * it to arrive. */ sigfillset(&act.sa_mask); act.sa_handler = SIG_DFL; act.sa_flags = 0; sigaction(host_sig, &act, NULL); /* For some reason raise(host_sig) doesn't send the signal when * statically linked on x86-64. */ kill(getpid(), host_sig); /* Make sure the signal isn't masked (just reuse the mask inside of act) */ sigdelset(&act.sa_mask, host_sig); sigsuspend(&act.sa_mask); /* unreachable */ abort(); } /* queue a signal so that it will be send to the virtual CPU as soon as possible */ int queue_signal(CPUArchState *env, int sig, int si_type, target_siginfo_t *info) { CPUState *cpu = ENV_GET_CPU(env); TaskState *ts = cpu->opaque; trace_user_queue_signal(env, sig); info->si_code = deposit32(info->si_code, 16, 16, si_type); ts->sync_signal.info = *info; ts->sync_signal.pending = sig; /* signal that a new signal is pending */ atomic_set(&ts->signal_pending, 1); return 1; /* indicates that the signal was queued */ } #ifndef HAVE_SAFE_SYSCALL static inline void rewind_if_in_safe_syscall(void *puc) { /* Default version: never rewind */ } #endif static void host_signal_handler(int host_signum, siginfo_t *info, void *puc) { CPUArchState *env = thread_cpu->env_ptr; CPUState *cpu = ENV_GET_CPU(env); TaskState *ts = cpu->opaque; int sig; target_siginfo_t tinfo; ucontext_t *uc = puc; struct emulated_sigtable *k; /* the CPU emulator uses some host signals to detect exceptions, we forward to it some signals */ if ((host_signum == SIGSEGV || host_signum == SIGBUS) && info->si_code > 0) { if (cpu_signal_handler(host_signum, info, puc)) return; } /* get target signal number */ sig = host_to_target_signal(host_signum); if (sig < 1 || sig > TARGET_NSIG) return; trace_user_host_signal(env, host_signum, sig); rewind_if_in_safe_syscall(puc); host_to_target_siginfo_noswap(&tinfo, info); k = &ts->sigtab[sig - 1]; k->info = tinfo; k->pending = sig; ts->signal_pending = 1; /* Block host signals until target signal handler entered. We * can't block SIGSEGV or SIGBUS while we're executing guest * code in case the guest code provokes one in the window between * now and it getting out to the main loop. Signals will be * unblocked again in process_pending_signals(). * * WARNING: we cannot use sigfillset() here because the uc_sigmask * field is a kernel sigset_t, which is much smaller than the * libc sigset_t which sigfillset() operates on. Using sigfillset() * would write 0xff bytes off the end of the structure and trash * data on the struct. * We can't use sizeof(uc->uc_sigmask) either, because the libc * headers define the struct field with the wrong (too large) type. */ memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); sigdelset(&uc->uc_sigmask, SIGSEGV); sigdelset(&uc->uc_sigmask, SIGBUS); /* interrupt the virtual CPU as soon as possible */ cpu_exit(thread_cpu); } /* do_sigaltstack() returns target values and errnos. */ /* compare linux/kernel/signal.c:do_sigaltstack() */ abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) { int ret; struct target_sigaltstack oss; /* XXX: test errors */ if(uoss_addr) { __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp); __put_user(target_sigaltstack_used.ss_size, &oss.ss_size); __put_user(sas_ss_flags(sp), &oss.ss_flags); } if(uss_addr) { struct target_sigaltstack *uss; struct target_sigaltstack ss; size_t minstacksize = TARGET_MINSIGSTKSZ; #if defined(TARGET_PPC64) /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; if (get_ppc64_abi(image) > 1) { minstacksize = 4096; } #endif ret = -TARGET_EFAULT; if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { goto out; } __get_user(ss.ss_sp, &uss->ss_sp); __get_user(ss.ss_size, &uss->ss_size); __get_user(ss.ss_flags, &uss->ss_flags); unlock_user_struct(uss, uss_addr, 0); ret = -TARGET_EPERM; if (on_sig_stack(sp)) goto out; ret = -TARGET_EINVAL; if (ss.ss_flags != TARGET_SS_DISABLE && ss.ss_flags != TARGET_SS_ONSTACK && ss.ss_flags != 0) goto out; if (ss.ss_flags == TARGET_SS_DISABLE) { ss.ss_size = 0; ss.ss_sp = 0; } else { ret = -TARGET_ENOMEM; if (ss.ss_size < minstacksize) { goto out; } } target_sigaltstack_used.ss_sp = ss.ss_sp; target_sigaltstack_used.ss_size = ss.ss_size; } if (uoss_addr) { ret = -TARGET_EFAULT; if (copy_to_user(uoss_addr, &oss, sizeof(oss))) goto out; } ret = 0; out: return ret; } /* do_sigaction() return target values and host errnos */ int do_sigaction(int sig, const struct target_sigaction *act, struct target_sigaction *oact) { struct target_sigaction *k; struct sigaction act1; int host_sig; int ret = 0; if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) { return -TARGET_EINVAL; } if (block_signals()) { return -TARGET_ERESTARTSYS; } k = &sigact_table[sig - 1]; if (oact) { __put_user(k->_sa_handler, &oact->_sa_handler); __put_user(k->sa_flags, &oact->sa_flags); #ifdef TARGET_ARCH_HAS_SA_RESTORER __put_user(k->sa_restorer, &oact->sa_restorer); #endif /* Not swapped. */ oact->sa_mask = k->sa_mask; } if (act) { /* FIXME: This is not threadsafe. */ __get_user(k->_sa_handler, &act->_sa_handler); __get_user(k->sa_flags, &act->sa_flags); #ifdef TARGET_ARCH_HAS_SA_RESTORER __get_user(k->sa_restorer, &act->sa_restorer); #endif /* To be swapped in target_to_host_sigset. */ k->sa_mask = act->sa_mask; /* we update the host linux signal state */ host_sig = target_to_host_signal(sig); if (host_sig != SIGSEGV && host_sig != SIGBUS) { sigfillset(&act1.sa_mask); act1.sa_flags = SA_SIGINFO; if (k->sa_flags & TARGET_SA_RESTART) act1.sa_flags |= SA_RESTART; /* NOTE: it is important to update the host kernel signal ignore state to avoid getting unexpected interrupted syscalls */ if (k->_sa_handler == TARGET_SIG_IGN) { act1.sa_sigaction = (void *)SIG_IGN; } else if (k->_sa_handler == TARGET_SIG_DFL) { if (fatal_signal (sig)) act1.sa_sigaction = host_signal_handler; else act1.sa_sigaction = (void *)SIG_DFL; } else { act1.sa_sigaction = host_signal_handler; } ret = sigaction(host_sig, &act1, NULL); } } return ret; } #if defined(TARGET_I386) /* from the Linux kernel - /arch/x86/include/uapi/asm/sigcontext.h */ struct target_fpreg { uint16_t significand[4]; uint16_t exponent; }; struct target_fpxreg { uint16_t significand[4]; uint16_t exponent; uint16_t padding[3]; }; struct target_xmmreg { uint32_t element[4]; }; struct target_fpstate_32 { /* Regular FPU environment */ uint32_t cw; uint32_t sw; uint32_t tag; uint32_t ipoff; uint32_t cssel; uint32_t dataoff; uint32_t datasel; struct target_fpreg st[8]; uint16_t status; uint16_t magic; /* 0xffff = regular FPU data only */ /* FXSR FPU environment */ uint32_t _fxsr_env[6]; /* FXSR FPU env is ignored */ uint32_t mxcsr; uint32_t reserved; struct target_fpxreg fxsr_st[8]; /* FXSR FPU reg data is ignored */ struct target_xmmreg xmm[8]; uint32_t padding[56]; }; struct target_fpstate_64 { /* FXSAVE format */ uint16_t cw; uint16_t sw; uint16_t twd; uint16_t fop; uint64_t rip; uint64_t rdp; uint32_t mxcsr; uint32_t mxcsr_mask; uint32_t st_space[32]; uint32_t xmm_space[64]; uint32_t reserved[24]; }; #ifndef TARGET_X86_64 # define target_fpstate target_fpstate_32 #else # define target_fpstate target_fpstate_64 #endif struct target_sigcontext_32 { uint16_t gs, __gsh; uint16_t fs, __fsh; uint16_t es, __esh; uint16_t ds, __dsh; uint32_t edi; uint32_t esi; uint32_t ebp; uint32_t esp; uint32_t ebx; uint32_t edx; uint32_t ecx; uint32_t eax; uint32_t trapno; uint32_t err; uint32_t eip; uint16_t cs, __csh; uint32_t eflags; uint32_t esp_at_signal; uint16_t ss, __ssh; uint32_t fpstate; /* pointer */ uint32_t oldmask; uint32_t cr2; }; struct target_sigcontext_64 { uint64_t r8; uint64_t r9; uint64_t r10; uint64_t r11; uint64_t r12; uint64_t r13; uint64_t r14; uint64_t r15; uint64_t rdi; uint64_t rsi; uint64_t rbp; uint64_t rbx; uint64_t rdx; uint64_t rax; uint64_t rcx; uint64_t rsp; uint64_t rip; uint64_t eflags; uint16_t cs; uint16_t gs; uint16_t fs; uint16_t ss; uint64_t err; uint64_t trapno; uint64_t oldmask; uint64_t cr2; uint64_t fpstate; /* pointer */ uint64_t padding[8]; }; #ifndef TARGET_X86_64 # define target_sigcontext target_sigcontext_32 #else # define target_sigcontext target_sigcontext_64 #endif /* see Linux/include/uapi/asm-generic/ucontext.h */ struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; #ifndef TARGET_X86_64 struct sigframe { abi_ulong pretcode; int sig; struct target_sigcontext sc; struct target_fpstate fpstate; abi_ulong extramask[TARGET_NSIG_WORDS-1]; char retcode[8]; }; struct rt_sigframe { abi_ulong pretcode; int sig; abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext uc; struct target_fpstate fpstate; char retcode[8]; }; #else struct rt_sigframe { abi_ulong pretcode; struct target_ucontext uc; struct target_siginfo info; struct target_fpstate fpstate; }; #endif /* * Set up a signal frame. */ /* XXX: save x87 state */ static void setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate, CPUX86State *env, abi_ulong mask, abi_ulong fpstate_addr) { CPUState *cs = CPU(x86_env_get_cpu(env)); #ifndef TARGET_X86_64 uint16_t magic; /* already locked in setup_frame() */ __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); __put_user(env->regs[R_EDI], &sc->edi); __put_user(env->regs[R_ESI], &sc->esi); __put_user(env->regs[R_EBP], &sc->ebp); __put_user(env->regs[R_ESP], &sc->esp); __put_user(env->regs[R_EBX], &sc->ebx); __put_user(env->regs[R_EDX], &sc->edx); __put_user(env->regs[R_ECX], &sc->ecx); __put_user(env->regs[R_EAX], &sc->eax); __put_user(cs->exception_index, &sc->trapno); __put_user(env->error_code, &sc->err); __put_user(env->eip, &sc->eip); __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); __put_user(env->eflags, &sc->eflags); __put_user(env->regs[R_ESP], &sc->esp_at_signal); __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); cpu_x86_fsave(env, fpstate_addr, 1); fpstate->status = fpstate->sw; magic = 0xffff; __put_user(magic, &fpstate->magic); __put_user(fpstate_addr, &sc->fpstate); /* non-iBCS2 extensions.. */ __put_user(mask, &sc->oldmask); __put_user(env->cr[2], &sc->cr2); #else __put_user(env->regs[R_EDI], &sc->rdi); __put_user(env->regs[R_ESI], &sc->rsi); __put_user(env->regs[R_EBP], &sc->rbp); __put_user(env->regs[R_ESP], &sc->rsp); __put_user(env->regs[R_EBX], &sc->rbx); __put_user(env->regs[R_EDX], &sc->rdx); __put_user(env->regs[R_ECX], &sc->rcx); __put_user(env->regs[R_EAX], &sc->rax); __put_user(env->regs[8], &sc->r8); __put_user(env->regs[9], &sc->r9); __put_user(env->regs[10], &sc->r10); __put_user(env->regs[11], &sc->r11); __put_user(env->regs[12], &sc->r12); __put_user(env->regs[13], &sc->r13); __put_user(env->regs[14], &sc->r14); __put_user(env->regs[15], &sc->r15); __put_user(cs->exception_index, &sc->trapno); __put_user(env->error_code, &sc->err); __put_user(env->eip, &sc->rip); __put_user(env->eflags, &sc->eflags); __put_user(env->segs[R_CS].selector, &sc->cs); __put_user((uint16_t)0, &sc->gs); __put_user((uint16_t)0, &sc->fs); __put_user(env->segs[R_SS].selector, &sc->ss); __put_user(mask, &sc->oldmask); __put_user(env->cr[2], &sc->cr2); /* fpstate_addr must be 16 byte aligned for fxsave */ assert(!(fpstate_addr & 0xf)); cpu_x86_fxsave(env, fpstate_addr); __put_user(fpstate_addr, &sc->fpstate); #endif } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUX86State *env, size_t frame_size) { unsigned long esp; /* Default to using normal stack */ esp = env->regs[R_ESP]; #ifdef TARGET_X86_64 esp -= 128; /* this is the redzone */ #endif /* This is the X/Open sanctioned signal stack switching. */ if (ka->sa_flags & TARGET_SA_ONSTACK) { if (sas_ss_flags(esp) == 0) { esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } } else { #ifndef TARGET_X86_64 /* This is the legacy signal stack switching. */ if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && !(ka->sa_flags & TARGET_SA_RESTORER) && ka->sa_restorer) { esp = (unsigned long) ka->sa_restorer; } #endif } #ifndef TARGET_X86_64 return (esp - frame_size) & -8ul; #else return ((esp - frame_size) & (~15ul)) - 8; #endif } #ifndef TARGET_X86_64 /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr; struct sigframe *frame; int i; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; __put_user(sig, &frame->sig); setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct sigframe, fpstate)); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->extramask[i - 1]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { __put_user(ka->sa_restorer, &frame->pretcode); } else { uint16_t val16; abi_ulong retcode_addr; retcode_addr = frame_addr + offsetof(struct sigframe, retcode); __put_user(retcode_addr, &frame->pretcode); /* This is popl %eax ; movl $,%eax ; int $0x80 */ val16 = 0xb858; __put_user(val16, (uint16_t *)(frame->retcode+0)); __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); val16 = 0x80cd; __put_user(val16, (uint16_t *)(frame->retcode+6)); } /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } #endif /* compare linux/arch/x86/kernel/signal.c:setup_rt_frame() */ static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr; #ifndef TARGET_X86_64 abi_ulong addr; #endif struct rt_sigframe *frame; int i; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; /* These fields are only in rt_sigframe on 32 bit */ #ifndef TARGET_X86_64 __put_user(sig, &frame->sig); addr = frame_addr + offsetof(struct rt_sigframe, info); __put_user(addr, &frame->pinfo); addr = frame_addr + offsetof(struct rt_sigframe, uc); __put_user(addr, &frame->puc); #endif if (ka->sa_flags & TARGET_SA_SIGINFO) { tswap_siginfo(&frame->info, info); } /* Create the ucontext. */ __put_user(0, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct rt_sigframe, fpstate)); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ #ifndef TARGET_X86_64 if (ka->sa_flags & TARGET_SA_RESTORER) { __put_user(ka->sa_restorer, &frame->pretcode); } else { uint16_t val16; addr = frame_addr + offsetof(struct rt_sigframe, retcode); __put_user(addr, &frame->pretcode); /* This is movl $,%eax ; int $0x80 */ __put_user(0xb8, (char *)(frame->retcode+0)); __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); val16 = 0x80cd; __put_user(val16, (uint16_t *)(frame->retcode+5)); } #else /* XXX: Would be slightly better to return -EFAULT here if test fails assert(ka->sa_flags & TARGET_SA_RESTORER); */ __put_user(ka->sa_restorer, &frame->pretcode); #endif /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->_sa_handler; #ifndef TARGET_X86_64 env->regs[R_EAX] = sig; env->regs[R_EDX] = (unsigned long)&frame->info; env->regs[R_ECX] = (unsigned long)&frame->uc; #else env->regs[R_EAX] = 0; env->regs[R_EDI] = sig; env->regs[R_ESI] = (unsigned long)&frame->info; env->regs[R_EDX] = (unsigned long)&frame->uc; #endif cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_SS, __USER_DS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } static int restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc) { unsigned int err = 0; abi_ulong fpstate_addr; unsigned int tmpflags; #ifndef TARGET_X86_64 cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); env->regs[R_EDI] = tswapl(sc->edi); env->regs[R_ESI] = tswapl(sc->esi); env->regs[R_EBP] = tswapl(sc->ebp); env->regs[R_ESP] = tswapl(sc->esp); env->regs[R_EBX] = tswapl(sc->ebx); env->regs[R_EDX] = tswapl(sc->edx); env->regs[R_ECX] = tswapl(sc->ecx); env->regs[R_EAX] = tswapl(sc->eax); env->eip = tswapl(sc->eip); #else env->regs[8] = tswapl(sc->r8); env->regs[9] = tswapl(sc->r9); env->regs[10] = tswapl(sc->r10); env->regs[11] = tswapl(sc->r11); env->regs[12] = tswapl(sc->r12); env->regs[13] = tswapl(sc->r13); env->regs[14] = tswapl(sc->r14); env->regs[15] = tswapl(sc->r15); env->regs[R_EDI] = tswapl(sc->rdi); env->regs[R_ESI] = tswapl(sc->rsi); env->regs[R_EBP] = tswapl(sc->rbp); env->regs[R_EBX] = tswapl(sc->rbx); env->regs[R_EDX] = tswapl(sc->rdx); env->regs[R_EAX] = tswapl(sc->rax); env->regs[R_ECX] = tswapl(sc->rcx); env->regs[R_ESP] = tswapl(sc->rsp); env->eip = tswapl(sc->rip); #endif cpu_x86_load_seg(env, R_CS, lduw_p(&sc->cs) | 3); cpu_x86_load_seg(env, R_SS, lduw_p(&sc->ss) | 3); tmpflags = tswapl(sc->eflags); env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); // regs->orig_eax = -1; /* disable syscall checks */ fpstate_addr = tswapl(sc->fpstate); if (fpstate_addr != 0) { if (!access_ok(VERIFY_READ, fpstate_addr, sizeof(struct target_fpstate))) goto badframe; #ifndef TARGET_X86_64 cpu_x86_frstor(env, fpstate_addr, 1); #else cpu_x86_fxrstor(env, fpstate_addr); #endif } return err; badframe: return 1; } /* Note: there is no sigreturn on x86_64, there is only rt_sigreturn */ #ifndef TARGET_X86_64 long do_sigreturn(CPUX86State *env) { struct sigframe *frame; abi_ulong frame_addr = env->regs[R_ESP] - 8; target_sigset_t target_set; sigset_t set; int i; trace_user_do_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; /* set blocked signals */ __get_user(target_set.sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); /* restore registers */ if (restore_sigcontext(env, &frame->sc)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #endif long do_rt_sigreturn(CPUX86State *env) { abi_ulong frame_addr; struct rt_sigframe *frame; sigset_t set; frame_addr = env->regs[R_ESP] - sizeof(abi_ulong); trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { goto badframe; } if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_AARCH64) struct target_sigcontext { uint64_t fault_address; /* AArch64 registers */ uint64_t regs[31]; uint64_t sp; uint64_t pc; uint64_t pstate; /* 4K reserved for FP/SIMD state and future expansion */ char __reserved[4096] __attribute__((__aligned__(16))); }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; target_sigset_t tuc_sigmask; /* glibc uses a 1024-bit sigset_t */ char __unused[1024 / 8 - sizeof(target_sigset_t)]; /* last for future expansion */ struct target_sigcontext tuc_mcontext; }; /* * Header to be used at the beginning of structures extending the user * context. Such structures must be placed after the rt_sigframe on the stack * and be 16-byte aligned. The last structure must be a dummy one with the * magic and size set to 0. */ struct target_aarch64_ctx { uint32_t magic; uint32_t size; }; #define TARGET_FPSIMD_MAGIC 0x46508001 struct target_fpsimd_context { struct target_aarch64_ctx head; uint32_t fpsr; uint32_t fpcr; uint64_t vregs[32 * 2]; /* really uint128_t vregs[32] */ }; /* * Auxiliary context saved in the sigcontext.__reserved array. Not exported to * user space as it will change with the addition of new context. User space * should check the magic/size information. */ struct target_aux_context { struct target_fpsimd_context fpsimd; /* additional context to be added before "end" */ struct target_aarch64_ctx end; }; struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; uint64_t fp; uint64_t lr; uint32_t tramp[2]; }; static int target_setup_sigframe(struct target_rt_sigframe *sf, CPUARMState *env, target_sigset_t *set) { int i; struct target_aux_context *aux = (struct target_aux_context *)sf->uc.tuc_mcontext.__reserved; /* set up the stack frame for unwinding */ __put_user(env->xregs[29], &sf->fp); __put_user(env->xregs[30], &sf->lr); for (i = 0; i < 31; i++) { __put_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); } __put_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); __put_user(env->pc, &sf->uc.tuc_mcontext.pc); __put_user(pstate_read(env), &sf->uc.tuc_mcontext.pstate); __put_user(env->exception.vaddress, &sf->uc.tuc_mcontext.fault_address); for (i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &sf->uc.tuc_sigmask.sig[i]); } for (i = 0; i < 32; i++) { uint64_t *q = aa64_vfp_qreg(env, i); #ifdef TARGET_WORDS_BIGENDIAN __put_user(q[0], &aux->fpsimd.vregs[i * 2 + 1]); __put_user(q[1], &aux->fpsimd.vregs[i * 2]); #else __put_user(q[0], &aux->fpsimd.vregs[i * 2]); __put_user(q[1], &aux->fpsimd.vregs[i * 2 + 1]); #endif } __put_user(vfp_get_fpsr(env), &aux->fpsimd.fpsr); __put_user(vfp_get_fpcr(env), &aux->fpsimd.fpcr); __put_user(TARGET_FPSIMD_MAGIC, &aux->fpsimd.head.magic); __put_user(sizeof(struct target_fpsimd_context), &aux->fpsimd.head.size); /* set the "end" magic */ __put_user(0, &aux->end.magic); __put_user(0, &aux->end.size); return 0; } static int target_restore_sigframe(CPUARMState *env, struct target_rt_sigframe *sf) { sigset_t set; int i; struct target_aux_context *aux = (struct target_aux_context *)sf->uc.tuc_mcontext.__reserved; uint32_t magic, size, fpsr, fpcr; uint64_t pstate; target_to_host_sigset(&set, &sf->uc.tuc_sigmask); set_sigmask(&set); for (i = 0; i < 31; i++) { __get_user(env->xregs[i], &sf->uc.tuc_mcontext.regs[i]); } __get_user(env->xregs[31], &sf->uc.tuc_mcontext.sp); __get_user(env->pc, &sf->uc.tuc_mcontext.pc); __get_user(pstate, &sf->uc.tuc_mcontext.pstate); pstate_write(env, pstate); __get_user(magic, &aux->fpsimd.head.magic); __get_user(size, &aux->fpsimd.head.size); if (magic != TARGET_FPSIMD_MAGIC || size != sizeof(struct target_fpsimd_context)) { return 1; } for (i = 0; i < 32; i++) { uint64_t *q = aa64_vfp_qreg(env, i); #ifdef TARGET_WORDS_BIGENDIAN __get_user(q[0], &aux->fpsimd.vregs[i * 2 + 1]); __get_user(q[1], &aux->fpsimd.vregs[i * 2]); #else __get_user(q[0], &aux->fpsimd.vregs[i * 2]); __get_user(q[1], &aux->fpsimd.vregs[i * 2 + 1]); #endif } __get_user(fpsr, &aux->fpsimd.fpsr); vfp_set_fpsr(env, fpsr); __get_user(fpcr, &aux->fpsimd.fpcr); vfp_set_fpcr(env, fpcr); return 0; } static abi_ulong get_sigframe(struct target_sigaction *ka, CPUARMState *env) { abi_ulong sp; sp = env->xregs[31]; /* * This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } sp = (sp - sizeof(struct target_rt_sigframe)) & ~15; return sp; } static void target_setup_frame(int usig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUARMState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr, return_addr; frame_addr = get_sigframe(ka, env); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } __put_user(0, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(env->xregs[31]), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); target_setup_sigframe(frame, env, set); if (ka->sa_flags & TARGET_SA_RESTORER) { return_addr = ka->sa_restorer; } else { /* * mov x8,#__NR_rt_sigreturn; svc #0 * Since these are instructions they need to be put as little-endian * regardless of target default or current CPU endianness. */ __put_user_e(0xd2801168, &frame->tramp[0], le); __put_user_e(0xd4000001, &frame->tramp[1], le); return_addr = frame_addr + offsetof(struct target_rt_sigframe, tramp); } env->xregs[0] = usig; env->xregs[31] = frame_addr; env->xregs[29] = env->xregs[31] + offsetof(struct target_rt_sigframe, fp); env->pc = ka->_sa_handler; env->xregs[30] = return_addr; if (info) { tswap_siginfo(&frame->info, info); env->xregs[1] = frame_addr + offsetof(struct target_rt_sigframe, info); env->xregs[2] = frame_addr + offsetof(struct target_rt_sigframe, uc); } unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(usig); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUARMState *env) { target_setup_frame(sig, ka, info, set, env); } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUARMState *env) { target_setup_frame(sig, ka, 0, set, env); } long do_rt_sigreturn(CPUARMState *env) { struct target_rt_sigframe *frame = NULL; abi_ulong frame_addr = env->xregs[31]; trace_user_do_rt_sigreturn(env, frame_addr); if (frame_addr & 15) { goto badframe; } if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } if (target_restore_sigframe(env, frame)) { goto badframe; } if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_sigreturn(CPUARMState *env) { return do_rt_sigreturn(env); } #elif defined(TARGET_ARM) struct target_sigcontext { abi_ulong trap_no; abi_ulong error_code; abi_ulong oldmask; abi_ulong arm_r0; abi_ulong arm_r1; abi_ulong arm_r2; abi_ulong arm_r3; abi_ulong arm_r4; abi_ulong arm_r5; abi_ulong arm_r6; abi_ulong arm_r7; abi_ulong arm_r8; abi_ulong arm_r9; abi_ulong arm_r10; abi_ulong arm_fp; abi_ulong arm_ip; abi_ulong arm_sp; abi_ulong arm_lr; abi_ulong arm_pc; abi_ulong arm_cpsr; abi_ulong fault_address; }; struct target_ucontext_v1 { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct target_ucontext_v2 { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ char __unused[128 - sizeof(target_sigset_t)]; abi_ulong tuc_regspace[128] __attribute__((__aligned__(8))); }; struct target_user_vfp { uint64_t fpregs[32]; abi_ulong fpscr; }; struct target_user_vfp_exc { abi_ulong fpexc; abi_ulong fpinst; abi_ulong fpinst2; }; struct target_vfp_sigframe { abi_ulong magic; abi_ulong size; struct target_user_vfp ufp; struct target_user_vfp_exc ufp_exc; } __attribute__((__aligned__(8))); struct target_iwmmxt_sigframe { abi_ulong magic; abi_ulong size; uint64_t regs[16]; /* Note that not all the coprocessor control registers are stored here */ uint32_t wcssf; uint32_t wcasf; uint32_t wcgr0; uint32_t wcgr1; uint32_t wcgr2; uint32_t wcgr3; } __attribute__((__aligned__(8))); #define TARGET_VFP_MAGIC 0x56465001 #define TARGET_IWMMXT_MAGIC 0x12ef842a struct sigframe_v1 { struct target_sigcontext sc; abi_ulong extramask[TARGET_NSIG_WORDS-1]; abi_ulong retcode; }; struct sigframe_v2 { struct target_ucontext_v2 uc; abi_ulong retcode; }; struct rt_sigframe_v1 { abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext_v1 uc; abi_ulong retcode; }; struct rt_sigframe_v2 { struct target_siginfo info; struct target_ucontext_v2 uc; abi_ulong retcode; }; #define TARGET_CONFIG_CPU_32 1 /* * For ARM syscalls, we encode the syscall number into the instruction. */ #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) /* * For Thumb syscalls, we pass the syscall number via r7. We therefore * need two 16-bit instructions. */ #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) static const abi_ulong retcodes[4] = { SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN }; static inline int valid_user_regs(CPUARMState *regs) { return 1; } static void setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUARMState *env, abi_ulong mask) { __put_user(env->regs[0], &sc->arm_r0); __put_user(env->regs[1], &sc->arm_r1); __put_user(env->regs[2], &sc->arm_r2); __put_user(env->regs[3], &sc->arm_r3); __put_user(env->regs[4], &sc->arm_r4); __put_user(env->regs[5], &sc->arm_r5); __put_user(env->regs[6], &sc->arm_r6); __put_user(env->regs[7], &sc->arm_r7); __put_user(env->regs[8], &sc->arm_r8); __put_user(env->regs[9], &sc->arm_r9); __put_user(env->regs[10], &sc->arm_r10); __put_user(env->regs[11], &sc->arm_fp); __put_user(env->regs[12], &sc->arm_ip); __put_user(env->regs[13], &sc->arm_sp); __put_user(env->regs[14], &sc->arm_lr); __put_user(env->regs[15], &sc->arm_pc); #ifdef TARGET_CONFIG_CPU_32 __put_user(cpsr_read(env), &sc->arm_cpsr); #endif __put_user(/* current->thread.trap_no */ 0, &sc->trap_no); __put_user(/* current->thread.error_code */ 0, &sc->error_code); __put_user(/* current->thread.address */ 0, &sc->fault_address); __put_user(mask, &sc->oldmask); } static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUARMState *regs, int framesize) { unsigned long sp = regs->regs[13]; /* * This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } /* * ATPCS B01 mandates 8-byte alignment */ return (sp - framesize) & ~7; } static void setup_return(CPUARMState *env, struct target_sigaction *ka, abi_ulong *rc, abi_ulong frame_addr, int usig, abi_ulong rc_addr) { abi_ulong handler = ka->_sa_handler; abi_ulong retcode; int thumb = handler & 1; uint32_t cpsr = cpsr_read(env); cpsr &= ~CPSR_IT; if (thumb) { cpsr |= CPSR_T; } else { cpsr &= ~CPSR_T; } if (ka->sa_flags & TARGET_SA_RESTORER) { retcode = ka->sa_restorer; } else { unsigned int idx = thumb; if (ka->sa_flags & TARGET_SA_SIGINFO) { idx += 2; } __put_user(retcodes[idx], rc); retcode = rc_addr + thumb; } env->regs[0] = usig; env->regs[13] = frame_addr; env->regs[14] = retcode; env->regs[15] = handler & (thumb ? ~1 : ~3); cpsr_write(env, cpsr, CPSR_IT | CPSR_T, CPSRWriteByInstr); } static abi_ulong *setup_sigframe_v2_vfp(abi_ulong *regspace, CPUARMState *env) { int i; struct target_vfp_sigframe *vfpframe; vfpframe = (struct target_vfp_sigframe *)regspace; __put_user(TARGET_VFP_MAGIC, &vfpframe->magic); __put_user(sizeof(*vfpframe), &vfpframe->size); for (i = 0; i < 32; i++) { __put_user(*aa32_vfp_dreg(env, i), &vfpframe->ufp.fpregs[i]); } __put_user(vfp_get_fpscr(env), &vfpframe->ufp.fpscr); __put_user(env->vfp.xregs[ARM_VFP_FPEXC], &vfpframe->ufp_exc.fpexc); __put_user(env->vfp.xregs[ARM_VFP_FPINST], &vfpframe->ufp_exc.fpinst); __put_user(env->vfp.xregs[ARM_VFP_FPINST2], &vfpframe->ufp_exc.fpinst2); return (abi_ulong*)(vfpframe+1); } static abi_ulong *setup_sigframe_v2_iwmmxt(abi_ulong *regspace, CPUARMState *env) { int i; struct target_iwmmxt_sigframe *iwmmxtframe; iwmmxtframe = (struct target_iwmmxt_sigframe *)regspace; __put_user(TARGET_IWMMXT_MAGIC, &iwmmxtframe->magic); __put_user(sizeof(*iwmmxtframe), &iwmmxtframe->size); for (i = 0; i < 16; i++) { __put_user(env->iwmmxt.regs[i], &iwmmxtframe->regs[i]); } __put_user(env->vfp.xregs[ARM_IWMMXT_wCSSF], &iwmmxtframe->wcssf); __put_user(env->vfp.xregs[ARM_IWMMXT_wCASF], &iwmmxtframe->wcssf); __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR0], &iwmmxtframe->wcgr0); __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR1], &iwmmxtframe->wcgr1); __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR2], &iwmmxtframe->wcgr2); __put_user(env->vfp.xregs[ARM_IWMMXT_wCGR3], &iwmmxtframe->wcgr3); return (abi_ulong*)(iwmmxtframe+1); } static void setup_sigframe_v2(struct target_ucontext_v2 *uc, target_sigset_t *set, CPUARMState *env) { struct target_sigaltstack stack; int i; abi_ulong *regspace; /* Clear all the bits of the ucontext we don't use. */ memset(uc, 0, offsetof(struct target_ucontext_v2, tuc_mcontext)); memset(&stack, 0, sizeof(stack)); __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); memcpy(&uc->tuc_stack, &stack, sizeof(stack)); setup_sigcontext(&uc->tuc_mcontext, env, set->sig[0]); /* Save coprocessor signal frame. */ regspace = uc->tuc_regspace; if (arm_feature(env, ARM_FEATURE_VFP)) { regspace = setup_sigframe_v2_vfp(regspace, env); } if (arm_feature(env, ARM_FEATURE_IWMMXT)) { regspace = setup_sigframe_v2_iwmmxt(regspace, env); } /* Write terminating magic word */ __put_user(0, regspace); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &uc->tuc_sigmask.sig[i]); } } /* compare linux/arch/arm/kernel/signal.c:setup_frame() */ static void setup_frame_v1(int usig, struct target_sigaction *ka, target_sigset_t *set, CPUARMState *regs) { struct sigframe_v1 *frame; abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); int i; trace_user_setup_frame(regs, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto sigsegv; } setup_sigcontext(&frame->sc, regs, set->sig[0]); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->extramask[i - 1]); } setup_return(regs, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct sigframe_v1, retcode)); unlock_user_struct(frame, frame_addr, 1); return; sigsegv: force_sigsegv(usig); } static void setup_frame_v2(int usig, struct target_sigaction *ka, target_sigset_t *set, CPUARMState *regs) { struct sigframe_v2 *frame; abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); trace_user_setup_frame(regs, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto sigsegv; } setup_sigframe_v2(&frame->uc, set, regs); setup_return(regs, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct sigframe_v2, retcode)); unlock_user_struct(frame, frame_addr, 1); return; sigsegv: force_sigsegv(usig); } static void setup_frame(int usig, struct target_sigaction *ka, target_sigset_t *set, CPUARMState *regs) { if (get_osversion() >= 0x020612) { setup_frame_v2(usig, ka, set, regs); } else { setup_frame_v1(usig, ka, set, regs); } } /* compare linux/arch/arm/kernel/signal.c:setup_rt_frame() */ static void setup_rt_frame_v1(int usig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUARMState *env) { struct rt_sigframe_v1 *frame; abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); struct target_sigaltstack stack; int i; abi_ulong info_addr, uc_addr; trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto sigsegv; } info_addr = frame_addr + offsetof(struct rt_sigframe_v1, info); __put_user(info_addr, &frame->pinfo); uc_addr = frame_addr + offsetof(struct rt_sigframe_v1, uc); __put_user(uc_addr, &frame->puc); tswap_siginfo(&frame->info, info); /* Clear all the bits of the ucontext we don't use. */ memset(&frame->uc, 0, offsetof(struct target_ucontext_v1, tuc_mcontext)); memset(&stack, 0, sizeof(stack)); __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack)); setup_sigcontext(&frame->uc.tuc_mcontext, env, set->sig[0]); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } setup_return(env, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct rt_sigframe_v1, retcode)); env->regs[1] = info_addr; env->regs[2] = uc_addr; unlock_user_struct(frame, frame_addr, 1); return; sigsegv: force_sigsegv(usig); } static void setup_rt_frame_v2(int usig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUARMState *env) { struct rt_sigframe_v2 *frame; abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); abi_ulong info_addr, uc_addr; trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto sigsegv; } info_addr = frame_addr + offsetof(struct rt_sigframe_v2, info); uc_addr = frame_addr + offsetof(struct rt_sigframe_v2, uc); tswap_siginfo(&frame->info, info); setup_sigframe_v2(&frame->uc, set, env); setup_return(env, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct rt_sigframe_v2, retcode)); env->regs[1] = info_addr; env->regs[2] = uc_addr; unlock_user_struct(frame, frame_addr, 1); return; sigsegv: force_sigsegv(usig); } static void setup_rt_frame(int usig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUARMState *env) { if (get_osversion() >= 0x020612) { setup_rt_frame_v2(usig, ka, info, set, env); } else { setup_rt_frame_v1(usig, ka, info, set, env); } } static int restore_sigcontext(CPUARMState *env, struct target_sigcontext *sc) { int err = 0; uint32_t cpsr; __get_user(env->regs[0], &sc->arm_r0); __get_user(env->regs[1], &sc->arm_r1); __get_user(env->regs[2], &sc->arm_r2); __get_user(env->regs[3], &sc->arm_r3); __get_user(env->regs[4], &sc->arm_r4); __get_user(env->regs[5], &sc->arm_r5); __get_user(env->regs[6], &sc->arm_r6); __get_user(env->regs[7], &sc->arm_r7); __get_user(env->regs[8], &sc->arm_r8); __get_user(env->regs[9], &sc->arm_r9); __get_user(env->regs[10], &sc->arm_r10); __get_user(env->regs[11], &sc->arm_fp); __get_user(env->regs[12], &sc->arm_ip); __get_user(env->regs[13], &sc->arm_sp); __get_user(env->regs[14], &sc->arm_lr); __get_user(env->regs[15], &sc->arm_pc); #ifdef TARGET_CONFIG_CPU_32 __get_user(cpsr, &sc->arm_cpsr); cpsr_write(env, cpsr, CPSR_USER | CPSR_EXEC, CPSRWriteByInstr); #endif err |= !valid_user_regs(env); return err; } static long do_sigreturn_v1(CPUARMState *env) { abi_ulong frame_addr; struct sigframe_v1 *frame = NULL; target_sigset_t set; sigset_t host_set; int i; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ frame_addr = env->regs[13]; trace_user_do_sigreturn(env, frame_addr); if (frame_addr & 7) { goto badframe; } if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } __get_user(set.sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&host_set, &set); set_sigmask(&host_set); if (restore_sigcontext(env, &frame->sc)) { goto badframe; } #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } static abi_ulong *restore_sigframe_v2_vfp(CPUARMState *env, abi_ulong *regspace) { int i; abi_ulong magic, sz; uint32_t fpscr, fpexc; struct target_vfp_sigframe *vfpframe; vfpframe = (struct target_vfp_sigframe *)regspace; __get_user(magic, &vfpframe->magic); __get_user(sz, &vfpframe->size); if (magic != TARGET_VFP_MAGIC || sz != sizeof(*vfpframe)) { return 0; } for (i = 0; i < 32; i++) { __get_user(*aa32_vfp_dreg(env, i), &vfpframe->ufp.fpregs[i]); } __get_user(fpscr, &vfpframe->ufp.fpscr); vfp_set_fpscr(env, fpscr); __get_user(fpexc, &vfpframe->ufp_exc.fpexc); /* Sanitise FPEXC: ensure VFP is enabled, FPINST2 is invalid * and the exception flag is cleared */ fpexc |= (1 << 30); fpexc &= ~((1 << 31) | (1 << 28)); env->vfp.xregs[ARM_VFP_FPEXC] = fpexc; __get_user(env->vfp.xregs[ARM_VFP_FPINST], &vfpframe->ufp_exc.fpinst); __get_user(env->vfp.xregs[ARM_VFP_FPINST2], &vfpframe->ufp_exc.fpinst2); return (abi_ulong*)(vfpframe + 1); } static abi_ulong *restore_sigframe_v2_iwmmxt(CPUARMState *env, abi_ulong *regspace) { int i; abi_ulong magic, sz; struct target_iwmmxt_sigframe *iwmmxtframe; iwmmxtframe = (struct target_iwmmxt_sigframe *)regspace; __get_user(magic, &iwmmxtframe->magic); __get_user(sz, &iwmmxtframe->size); if (magic != TARGET_IWMMXT_MAGIC || sz != sizeof(*iwmmxtframe)) { return 0; } for (i = 0; i < 16; i++) { __get_user(env->iwmmxt.regs[i], &iwmmxtframe->regs[i]); } __get_user(env->vfp.xregs[ARM_IWMMXT_wCSSF], &iwmmxtframe->wcssf); __get_user(env->vfp.xregs[ARM_IWMMXT_wCASF], &iwmmxtframe->wcssf); __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR0], &iwmmxtframe->wcgr0); __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR1], &iwmmxtframe->wcgr1); __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR2], &iwmmxtframe->wcgr2); __get_user(env->vfp.xregs[ARM_IWMMXT_wCGR3], &iwmmxtframe->wcgr3); return (abi_ulong*)(iwmmxtframe + 1); } static int do_sigframe_return_v2(CPUARMState *env, target_ulong context_addr, struct target_ucontext_v2 *uc) { sigset_t host_set; abi_ulong *regspace; target_to_host_sigset(&host_set, &uc->tuc_sigmask); set_sigmask(&host_set); if (restore_sigcontext(env, &uc->tuc_mcontext)) return 1; /* Restore coprocessor signal frame */ regspace = uc->tuc_regspace; if (arm_feature(env, ARM_FEATURE_VFP)) { regspace = restore_sigframe_v2_vfp(env, regspace); if (!regspace) { return 1; } } if (arm_feature(env, ARM_FEATURE_IWMMXT)) { regspace = restore_sigframe_v2_iwmmxt(env, regspace); if (!regspace) { return 1; } } if (do_sigaltstack(context_addr + offsetof(struct target_ucontext_v2, tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) { return 1; } #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif return 0; } static long do_sigreturn_v2(CPUARMState *env) { abi_ulong frame_addr; struct sigframe_v2 *frame = NULL; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ frame_addr = env->regs[13]; trace_user_do_sigreturn(env, frame_addr); if (frame_addr & 7) { goto badframe; } if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } if (do_sigframe_return_v2(env, frame_addr + offsetof(struct sigframe_v2, uc), &frame->uc)) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_sigreturn(CPUARMState *env) { if (get_osversion() >= 0x020612) { return do_sigreturn_v2(env); } else { return do_sigreturn_v1(env); } } static long do_rt_sigreturn_v1(CPUARMState *env) { abi_ulong frame_addr; struct rt_sigframe_v1 *frame = NULL; sigset_t host_set; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ frame_addr = env->regs[13]; trace_user_do_rt_sigreturn(env, frame_addr); if (frame_addr & 7) { goto badframe; } if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask); set_sigmask(&host_set); if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) { goto badframe; } if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe_v1, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } static long do_rt_sigreturn_v2(CPUARMState *env) { abi_ulong frame_addr; struct rt_sigframe_v2 *frame = NULL; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ frame_addr = env->regs[13]; trace_user_do_rt_sigreturn(env, frame_addr); if (frame_addr & 7) { goto badframe; } if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } if (do_sigframe_return_v2(env, frame_addr + offsetof(struct rt_sigframe_v2, uc), &frame->uc)) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUARMState *env) { if (get_osversion() >= 0x020612) { return do_rt_sigreturn_v2(env); } else { return do_rt_sigreturn_v1(env); } } #elif defined(TARGET_SPARC) #define __SUNOS_MAXWIN 31 /* This is what SunOS does, so shall I. */ struct target_sigcontext { abi_ulong sigc_onstack; /* state to restore */ abi_ulong sigc_mask; /* sigmask to restore */ abi_ulong sigc_sp; /* stack pointer */ abi_ulong sigc_pc; /* program counter */ abi_ulong sigc_npc; /* next program counter */ abi_ulong sigc_psr; /* for condition codes etc */ abi_ulong sigc_g1; /* User uses these two registers */ abi_ulong sigc_o0; /* within the trampoline code. */ /* Now comes information regarding the users window set * at the time of the signal. */ abi_ulong sigc_oswins; /* outstanding windows */ /* stack ptrs for each regwin buf */ char *sigc_spbuf[__SUNOS_MAXWIN]; /* Windows to restore after signal */ struct { abi_ulong locals[8]; abi_ulong ins[8]; } sigc_wbuf[__SUNOS_MAXWIN]; }; /* A Sparc stack frame */ struct sparc_stackf { abi_ulong locals[8]; abi_ulong ins[8]; /* It's simpler to treat fp and callers_pc as elements of ins[] * since we never need to access them ourselves. */ char *structptr; abi_ulong xargs[6]; abi_ulong xxargs[1]; }; typedef struct { struct { abi_ulong psr; abi_ulong pc; abi_ulong npc; abi_ulong y; abi_ulong u_regs[16]; /* globals and ins */ } si_regs; int si_mask; } __siginfo_t; typedef struct { abi_ulong si_float_regs[32]; unsigned long si_fsr; unsigned long si_fpqdepth; struct { unsigned long *insn_addr; unsigned long insn; } si_fpqueue [16]; } qemu_siginfo_fpu_t; struct target_signal_frame { struct sparc_stackf ss; __siginfo_t info; abi_ulong fpu_save; abi_ulong insns[2] __attribute__ ((aligned (8))); abi_ulong extramask[TARGET_NSIG_WORDS - 1]; abi_ulong extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; struct target_rt_signal_frame { struct sparc_stackf ss; siginfo_t info; abi_ulong regs[20]; sigset_t mask; abi_ulong fpu_save; unsigned int insns[2]; stack_t stack; unsigned int extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; #define UREG_O0 16 #define UREG_O6 22 #define UREG_I0 0 #define UREG_I1 1 #define UREG_I2 2 #define UREG_I3 3 #define UREG_I4 4 #define UREG_I5 5 #define UREG_I6 6 #define UREG_I7 7 #define UREG_L0 8 #define UREG_FP UREG_I6 #define UREG_SP UREG_O6 static inline abi_ulong get_sigframe(struct target_sigaction *sa, CPUSPARCState *env, unsigned long framesize) { abi_ulong sp; sp = env->regwptr[UREG_FP]; /* This is the X/Open sanctioned signal stack switching. */ if (sa->sa_flags & TARGET_SA_ONSTACK) { if (!on_sig_stack(sp) && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } } return sp - framesize; } static int setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask) { int err = 0, i; __put_user(env->psr, &si->si_regs.psr); __put_user(env->pc, &si->si_regs.pc); __put_user(env->npc, &si->si_regs.npc); __put_user(env->y, &si->si_regs.y); for (i=0; i < 8; i++) { __put_user(env->gregs[i], &si->si_regs.u_regs[i]); } for (i=0; i < 8; i++) { __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); } __put_user(mask, &si->si_mask); return err; } #if 0 static int setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUSPARCState *env, unsigned long mask) { int err = 0; __put_user(mask, &sc->sigc_mask); __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); __put_user(env->pc, &sc->sigc_pc); __put_user(env->npc, &sc->sigc_npc); __put_user(env->psr, &sc->sigc_psr); __put_user(env->gregs[1], &sc->sigc_g1); __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); return err; } #endif #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUSPARCState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; int sigframe_size, err, i; /* 1. Make sure everything is clean */ //synchronize_user_stack(); sigframe_size = NF_ALIGNEDSZ; sf_addr = get_sigframe(ka, env, sigframe_size); trace_user_setup_frame(env, sf_addr); sf = lock_user(VERIFY_WRITE, sf_addr, sizeof(struct target_signal_frame), 0); if (!sf) { goto sigsegv; } #if 0 if (invalid_frame_pointer(sf, sigframe_size)) goto sigill_and_return; #endif /* 2. Save the current process state */ err = setup___siginfo(&sf->info, env, set->sig[0]); __put_user(0, &sf->extra_size); //save_fpu_state(regs, &sf->fpu_state); //__put_user(&sf->fpu_state, &sf->fpu_save); __put_user(set->sig[0], &sf->info.si_mask); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { __put_user(set->sig[i + 1], &sf->extramask[i]); } for (i = 0; i < 8; i++) { __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); } for (i = 0; i < 8; i++) { __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); } if (err) goto sigsegv; /* 3. signal handler back-trampoline and parameters */ env->regwptr[UREG_FP] = sf_addr; env->regwptr[UREG_I0] = sig; env->regwptr[UREG_I1] = sf_addr + offsetof(struct target_signal_frame, info); env->regwptr[UREG_I2] = sf_addr + offsetof(struct target_signal_frame, info); /* 4. signal handler */ env->pc = ka->_sa_handler; env->npc = (env->pc + 4); /* 5. return to kernel instructions */ if (ka->sa_restorer) { env->regwptr[UREG_I7] = ka->sa_restorer; } else { uint32_t val32; env->regwptr[UREG_I7] = sf_addr + offsetof(struct target_signal_frame, insns) - 2 * 4; /* mov __NR_sigreturn, %g1 */ val32 = 0x821020d8; __put_user(val32, &sf->insns[0]); /* t 0x10 */ val32 = 0x91d02010; __put_user(val32, &sf->insns[1]); if (err) goto sigsegv; /* Flush instruction space. */ // flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); // tb_flush(env); } unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); return; #if 0 sigill_and_return: force_sig(TARGET_SIGILL); #endif sigsegv: unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); force_sigsegv(sig); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUSPARCState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUSPARCState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; uint32_t up_psr, pc, npc; target_sigset_t set; sigset_t host_set; int err=0, i; sf_addr = env->regwptr[UREG_FP]; trace_user_do_sigreturn(env, sf_addr); if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { goto segv_and_exit; } /* 1. Make sure we are not getting garbage from the user */ if (sf_addr & 3) goto segv_and_exit; __get_user(pc, &sf->info.si_regs.pc); __get_user(npc, &sf->info.si_regs.npc); if ((pc | npc) & 3) { goto segv_and_exit; } /* 2. Restore the state */ __get_user(up_psr, &sf->info.si_regs.psr); /* User can only change condition codes and FPU enabling in %psr. */ env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) | (env->psr & ~(PSR_ICC /* | PSR_EF */)); env->pc = pc; env->npc = npc; __get_user(env->y, &sf->info.si_regs.y); for (i=0; i < 8; i++) { __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); } for (i=0; i < 8; i++) { __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); } /* FIXME: implement FPU save/restore: * __get_user(fpu_save, &sf->fpu_save); * if (fpu_save) * err |= restore_fpu_state(env, fpu_save); */ /* This is pretty much atomic, no amount locking would prevent * the races which exist anyways. */ __get_user(set.sig[0], &sf->info.si_mask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(set.sig[i], &sf->extramask[i - 1]); } target_to_host_sigset_internal(&host_set, &set); set_sigmask(&host_set); if (err) { goto segv_and_exit; } unlock_user_struct(sf, sf_addr, 0); return -TARGET_QEMU_ESIGRETURN; segv_and_exit: unlock_user_struct(sf, sf_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUSPARCState *env) { trace_user_do_rt_sigreturn(env, 0); fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) #define SPARC_MC_TSTATE 0 #define SPARC_MC_PC 1 #define SPARC_MC_NPC 2 #define SPARC_MC_Y 3 #define SPARC_MC_G1 4 #define SPARC_MC_G2 5 #define SPARC_MC_G3 6 #define SPARC_MC_G4 7 #define SPARC_MC_G5 8 #define SPARC_MC_G6 9 #define SPARC_MC_G7 10 #define SPARC_MC_O0 11 #define SPARC_MC_O1 12 #define SPARC_MC_O2 13 #define SPARC_MC_O3 14 #define SPARC_MC_O4 15 #define SPARC_MC_O5 16 #define SPARC_MC_O6 17 #define SPARC_MC_O7 18 #define SPARC_MC_NGREG 19 typedef abi_ulong target_mc_greg_t; typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; struct target_mc_fq { abi_ulong *mcfq_addr; uint32_t mcfq_insn; }; struct target_mc_fpu { union { uint32_t sregs[32]; uint64_t dregs[32]; //uint128_t qregs[16]; } mcfpu_fregs; abi_ulong mcfpu_fsr; abi_ulong mcfpu_fprs; abi_ulong mcfpu_gsr; struct target_mc_fq *mcfpu_fq; unsigned char mcfpu_qcnt; unsigned char mcfpu_qentsz; unsigned char mcfpu_enab; }; typedef struct target_mc_fpu target_mc_fpu_t; typedef struct { target_mc_gregset_t mc_gregs; target_mc_greg_t mc_fp; target_mc_greg_t mc_i7; target_mc_fpu_t mc_fpregs; } target_mcontext_t; struct target_ucontext { struct target_ucontext *tuc_link; abi_ulong tuc_flags; target_sigset_t tuc_sigmask; target_mcontext_t tuc_mcontext; }; /* A V9 register window */ struct target_reg_window { abi_ulong locals[8]; abi_ulong ins[8]; }; #define TARGET_STACK_BIAS 2047 /* {set, get}context() needed for 64-bit SparcLinux userland. */ void sparc64_set_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; abi_ulong pc, npc, tstate; abi_ulong fp, i7, w_addr; unsigned int i; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { goto do_sigsegv; } grp = &ucp->tuc_mcontext.mc_gregs; __get_user(pc, &((*grp)[SPARC_MC_PC])); __get_user(npc, &((*grp)[SPARC_MC_NPC])); if ((pc | npc) & 3) { goto do_sigsegv; } if (env->regwptr[UREG_I1]) { target_sigset_t target_set; sigset_t set; if (TARGET_NSIG_WORDS == 1) { __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); } else { abi_ulong *src, *dst; src = ucp->tuc_sigmask.sig; dst = target_set.sig; for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { __get_user(*dst, src); } } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); } env->pc = pc; env->npc = npc; __get_user(env->y, &((*grp)[SPARC_MC_Y])); __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); env->asi = (tstate >> 24) & 0xff; cpu_put_ccr(env, tstate >> 32); cpu_put_cwp64(env, tstate & 0x1f); __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); __get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7])); __get_user(env->regwptr[UREG_I0], (&(*grp)[SPARC_MC_O0])); __get_user(env->regwptr[UREG_I1], (&(*grp)[SPARC_MC_O1])); __get_user(env->regwptr[UREG_I2], (&(*grp)[SPARC_MC_O2])); __get_user(env->regwptr[UREG_I3], (&(*grp)[SPARC_MC_O3])); __get_user(env->regwptr[UREG_I4], (&(*grp)[SPARC_MC_O4])); __get_user(env->regwptr[UREG_I5], (&(*grp)[SPARC_MC_O5])); __get_user(env->regwptr[UREG_I6], (&(*grp)[SPARC_MC_O6])); __get_user(env->regwptr[UREG_I7], (&(*grp)[SPARC_MC_O7])); __get_user(fp, &(ucp->tuc_mcontext.mc_fp)); __get_user(i7, &(ucp->tuc_mcontext.mc_i7)); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) { goto do_sigsegv; } if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) { goto do_sigsegv; } /* FIXME this does not match how the kernel handles the FPU in * its sparc64_set_context implementation. In particular the FPU * is only restored if fenab is non-zero in: * __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab)); */ __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs)); { uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; for (i = 0; i < 64; i++, src++) { if (i & 1) { __get_user(env->fpr[i/2].l.lower, src); } else { __get_user(env->fpr[i/2].l.upper, src); } } } __get_user(env->fsr, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr)); __get_user(env->gsr, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr)); unlock_user_struct(ucp, ucp_addr, 0); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 0); force_sig(TARGET_SIGSEGV); } void sparc64_get_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; target_mcontext_t *mcp; abi_ulong fp, i7, w_addr; int err; unsigned int i; target_sigset_t target_set; sigset_t set; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { goto do_sigsegv; } mcp = &ucp->tuc_mcontext; grp = &mcp->mc_gregs; /* Skip over the trap instruction, first. */ env->pc = env->npc; env->npc += 4; /* If we're only reading the signal mask then do_sigprocmask() * is guaranteed not to fail, which is important because we don't * have any way to signal a failure or restart this operation since * this is not a normal syscall. */ err = do_sigprocmask(0, NULL, &set); assert(err == 0); host_to_target_sigset_internal(&target_set, &set); if (TARGET_NSIG_WORDS == 1) { __put_user(target_set.sig[0], (abi_ulong *)&ucp->tuc_sigmask); } else { abi_ulong *src, *dst; src = target_set.sig; dst = ucp->tuc_sigmask.sig; for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { __put_user(*src, dst); } if (err) goto do_sigsegv; } /* XXX: tstate must be saved properly */ // __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE])); __put_user(env->pc, &((*grp)[SPARC_MC_PC])); __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); __put_user(env->y, &((*grp)[SPARC_MC_Y])); __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); __put_user(env->regwptr[UREG_I0], &((*grp)[SPARC_MC_O0])); __put_user(env->regwptr[UREG_I1], &((*grp)[SPARC_MC_O1])); __put_user(env->regwptr[UREG_I2], &((*grp)[SPARC_MC_O2])); __put_user(env->regwptr[UREG_I3], &((*grp)[SPARC_MC_O3])); __put_user(env->regwptr[UREG_I4], &((*grp)[SPARC_MC_O4])); __put_user(env->regwptr[UREG_I5], &((*grp)[SPARC_MC_O5])); __put_user(env->regwptr[UREG_I6], &((*grp)[SPARC_MC_O6])); __put_user(env->regwptr[UREG_I7], &((*grp)[SPARC_MC_O7])); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; fp = i7 = 0; if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) { goto do_sigsegv; } if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) { goto do_sigsegv; } __put_user(fp, &(mcp->mc_fp)); __put_user(i7, &(mcp->mc_i7)); { uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; for (i = 0; i < 64; i++, dst++) { if (i & 1) { __put_user(env->fpr[i/2].l.lower, dst); } else { __put_user(env->fpr[i/2].l.upper, dst); } } } __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); if (err) goto do_sigsegv; unlock_user_struct(ucp, ucp_addr, 1); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 1); force_sig(TARGET_SIGSEGV); } #endif #elif defined(TARGET_MIPS) || defined(TARGET_MIPS64) # if defined(TARGET_ABI_MIPSO32) struct target_sigcontext { uint32_t sc_regmask; /* Unused */ uint32_t sc_status; uint64_t sc_pc; uint64_t sc_regs[32]; uint64_t sc_fpregs[32]; uint32_t sc_ownedfp; /* Unused */ uint32_t sc_fpc_csr; uint32_t sc_fpc_eir; /* Unused */ uint32_t sc_used_math; uint32_t sc_dsp; /* dsp status, was sc_ssflags */ uint32_t pad0; uint64_t sc_mdhi; uint64_t sc_mdlo; target_ulong sc_hi1; /* Was sc_cause */ target_ulong sc_lo1; /* Was sc_badvaddr */ target_ulong sc_hi2; /* Was sc_sigset[4] */ target_ulong sc_lo2; target_ulong sc_hi3; target_ulong sc_lo3; }; # else /* N32 || N64 */ struct target_sigcontext { uint64_t sc_regs[32]; uint64_t sc_fpregs[32]; uint64_t sc_mdhi; uint64_t sc_hi1; uint64_t sc_hi2; uint64_t sc_hi3; uint64_t sc_mdlo; uint64_t sc_lo1; uint64_t sc_lo2; uint64_t sc_lo3; uint64_t sc_pc; uint32_t sc_fpc_csr; uint32_t sc_used_math; uint32_t sc_dsp; uint32_t sc_reserved; }; # endif /* O32 */ struct sigframe { uint32_t sf_ass[4]; /* argument save space for o32 */ uint32_t sf_code[2]; /* signal trampoline */ struct target_sigcontext sf_sc; target_sigset_t sf_mask; }; struct target_ucontext { target_ulong tuc_flags; target_ulong tuc_link; target_stack_t tuc_stack; target_ulong pad0; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; }; struct target_rt_sigframe { uint32_t rs_ass[4]; /* argument save space for o32 */ uint32_t rs_code[2]; /* signal trampoline */ struct target_siginfo rs_info; struct target_ucontext rs_uc; }; /* Install trampoline to jump back from signal handler */ static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall) { int err = 0; /* * Set up the return code ... * * li v0, __NR__foo_sigreturn * syscall */ __put_user(0x24020000 + syscall, tramp + 0); __put_user(0x0000000c , tramp + 1); return err; } static inline void setup_sigcontext(CPUMIPSState *regs, struct target_sigcontext *sc) { int i; __put_user(exception_resume_pc(regs), &sc->sc_pc); regs->hflags &= ~MIPS_HFLAG_BMASK; __put_user(0, &sc->sc_regs[0]); for (i = 1; i < 32; ++i) { __put_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); } __put_user(regs->active_tc.HI[0], &sc->sc_mdhi); __put_user(regs->active_tc.LO[0], &sc->sc_mdlo); /* Rather than checking for dsp existence, always copy. The storage would just be garbage otherwise. */ __put_user(regs->active_tc.HI[1], &sc->sc_hi1); __put_user(regs->active_tc.HI[2], &sc->sc_hi2); __put_user(regs->active_tc.HI[3], &sc->sc_hi3); __put_user(regs->active_tc.LO[1], &sc->sc_lo1); __put_user(regs->active_tc.LO[2], &sc->sc_lo2); __put_user(regs->active_tc.LO[3], &sc->sc_lo3); { uint32_t dsp = cpu_rddsp(0x3ff, regs); __put_user(dsp, &sc->sc_dsp); } __put_user(1, &sc->sc_used_math); for (i = 0; i < 32; ++i) { __put_user(regs->active_fpu.fpr[i].d, &sc->sc_fpregs[i]); } } static inline void restore_sigcontext(CPUMIPSState *regs, struct target_sigcontext *sc) { int i; __get_user(regs->CP0_EPC, &sc->sc_pc); __get_user(regs->active_tc.HI[0], &sc->sc_mdhi); __get_user(regs->active_tc.LO[0], &sc->sc_mdlo); for (i = 1; i < 32; ++i) { __get_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); } __get_user(regs->active_tc.HI[1], &sc->sc_hi1); __get_user(regs->active_tc.HI[2], &sc->sc_hi2); __get_user(regs->active_tc.HI[3], &sc->sc_hi3); __get_user(regs->active_tc.LO[1], &sc->sc_lo1); __get_user(regs->active_tc.LO[2], &sc->sc_lo2); __get_user(regs->active_tc.LO[3], &sc->sc_lo3); { uint32_t dsp; __get_user(dsp, &sc->sc_dsp); cpu_wrdsp(dsp, 0x3ff, regs); } for (i = 0; i < 32; ++i) { __get_user(regs->active_fpu.fpr[i].d, &sc->sc_fpregs[i]); } } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUMIPSState *regs, size_t frame_size) { unsigned long sp; /* Default to using normal stack */ sp = regs->active_tc.gpr[29]; /* * FPU emulator may have its own trampoline active just * above the user stack, 16-bytes before the next lowest * 16 byte boundary. Try to avoid trashing it. */ sp -= 32; /* This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - frame_size) & ~7; } static void mips_set_hflags_isa_mode_from_pc(CPUMIPSState *env) { if (env->insn_flags & (ASE_MIPS16 | ASE_MICROMIPS)) { env->hflags &= ~MIPS_HFLAG_M16; env->hflags |= (env->active_tc.PC & 1) << MIPS_HFLAG_M16_SHIFT; env->active_tc.PC &= ~(target_ulong) 1; } } # if defined(TARGET_ABI_MIPSO32) /* compare linux/arch/mips/kernel/signal.c:setup_frame() */ static void setup_frame(int sig, struct target_sigaction * ka, target_sigset_t *set, CPUMIPSState *regs) { struct sigframe *frame; abi_ulong frame_addr; int i; frame_addr = get_sigframe(ka, regs, sizeof(*frame)); trace_user_setup_frame(regs, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } install_sigtramp(frame->sf_code, TARGET_NR_sigreturn); setup_sigcontext(regs, &frame->sf_sc); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->sf_mask.sig[i]); } /* * Arguments to signal handler: * * a0 = signal number * a1 = 0 (should be cause) * a2 = pointer to struct sigcontext * * $25 and PC point to the signal handler, $29 points to the * struct sigframe. */ regs->active_tc.gpr[ 4] = sig; regs->active_tc.gpr[ 5] = 0; regs->active_tc.gpr[ 6] = frame_addr + offsetof(struct sigframe, sf_sc); regs->active_tc.gpr[29] = frame_addr; regs->active_tc.gpr[31] = frame_addr + offsetof(struct sigframe, sf_code); /* The original kernel code sets CP0_EPC to the handler * since it returns to userland using eret * we cannot do this here, and we must set PC directly */ regs->active_tc.PC = regs->active_tc.gpr[25] = ka->_sa_handler; mips_set_hflags_isa_mode_from_pc(regs); unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } long do_sigreturn(CPUMIPSState *regs) { struct sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_sigset_t target_set; int i; frame_addr = regs->active_tc.gpr[29]; trace_user_do_sigreturn(regs, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; for(i = 0; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->sf_mask.sig[i]); } target_to_host_sigset_internal(&blocked, &target_set); set_sigmask(&blocked); restore_sigcontext(regs, &frame->sf_sc); #if 0 /* * Don't let your children do this ... */ __asm__ __volatile__( "move\t$29, %0\n\t" "j\tsyscall_exit" :/* no outputs */ :"r" (®s)); /* Unreached */ #endif regs->active_tc.PC = regs->CP0_EPC; mips_set_hflags_isa_mode_from_pc(regs); /* I am not sure this is right, but it seems to work * maybe a problem with nested signals ? */ regs->CP0_EPC = 0; return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } # endif /* O32 */ static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUMIPSState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr; int i; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } install_sigtramp(frame->rs_code, TARGET_NR_rt_sigreturn); tswap_siginfo(&frame->rs_info, info); __put_user(0, &frame->rs_uc.tuc_flags); __put_user(0, &frame->rs_uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->rs_uc.tuc_stack.ss_sp); __put_user(target_sigaltstack_used.ss_size, &frame->rs_uc.tuc_stack.ss_size); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->rs_uc.tuc_stack.ss_flags); setup_sigcontext(env, &frame->rs_uc.tuc_mcontext); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->rs_uc.tuc_sigmask.sig[i]); } /* * Arguments to signal handler: * * a0 = signal number * a1 = pointer to siginfo_t * a2 = pointer to ucontext_t * * $25 and PC point to the signal handler, $29 points to the * struct sigframe. */ env->active_tc.gpr[ 4] = sig; env->active_tc.gpr[ 5] = frame_addr + offsetof(struct target_rt_sigframe, rs_info); env->active_tc.gpr[ 6] = frame_addr + offsetof(struct target_rt_sigframe, rs_uc); env->active_tc.gpr[29] = frame_addr; env->active_tc.gpr[31] = frame_addr + offsetof(struct target_rt_sigframe, rs_code); /* The original kernel code sets CP0_EPC to the handler * since it returns to userland using eret * we cannot do this here, and we must set PC directly */ env->active_tc.PC = env->active_tc.gpr[25] = ka->_sa_handler; mips_set_hflags_isa_mode_from_pc(env); unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(sig); } long do_rt_sigreturn(CPUMIPSState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; frame_addr = env->active_tc.gpr[29]; trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&blocked, &frame->rs_uc.tuc_sigmask); set_sigmask(&blocked); restore_sigcontext(env, &frame->rs_uc.tuc_mcontext); if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, rs_uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; env->active_tc.PC = env->CP0_EPC; mips_set_hflags_isa_mode_from_pc(env); /* I am not sure this is right, but it seems to work * maybe a problem with nested signals ? */ env->CP0_EPC = 0; return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_SH4) /* * code and data structures from linux kernel: * include/asm-sh/sigcontext.h * arch/sh/kernel/signal.c */ struct target_sigcontext { target_ulong oldmask; /* CPU registers */ target_ulong sc_gregs[16]; target_ulong sc_pc; target_ulong sc_pr; target_ulong sc_sr; target_ulong sc_gbr; target_ulong sc_mach; target_ulong sc_macl; /* FPU registers */ target_ulong sc_fpregs[16]; target_ulong sc_xfpregs[16]; unsigned int sc_fpscr; unsigned int sc_fpul; unsigned int sc_ownedfp; }; struct target_sigframe { struct target_sigcontext sc; target_ulong extramask[TARGET_NSIG_WORDS-1]; uint16_t retcode[3]; }; struct target_ucontext { target_ulong tuc_flags; struct target_ucontext *tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; uint16_t retcode[3]; }; #define MOVW(n) (0x9300|((n)-2)) /* Move mem word at PC+n to R3 */ #define TRAP_NOARG 0xc310 /* Syscall w/no args (NR in R3) SH3/4 */ static abi_ulong get_sigframe(struct target_sigaction *ka, unsigned long sp, size_t frame_size) { if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - frame_size) & -8ul; } /* Notice when we're in the middle of a gUSA region and reset. Note that this will only occur for !parallel_cpus, as we will translate such sequences differently in a parallel context. */ static void unwind_gusa(CPUSH4State *regs) { /* If the stack pointer is sufficiently negative, and we haven't completed the sequence, then reset to the entry to the region. */ /* ??? The SH4 kernel checks for and address above 0xC0000000. However, the page mappings in qemu linux-user aren't as restricted and we wind up with the normal stack mapped above 0xF0000000. That said, there is no reason why the kernel should be allowing a gUSA region that spans 1GB. Use a tighter check here, for what can actually be enabled by the immediate move. */ if (regs->gregs[15] >= -128u && regs->pc < regs->gregs[0]) { /* Reset the PC to before the gUSA region, as computed from R0 = region end, SP = -(region size), plus one more for the insn that actually initializes SP to the region size. */ regs->pc = regs->gregs[0] + regs->gregs[15] - 2; /* Reset the SP to the saved version in R1. */ regs->gregs[15] = regs->gregs[1]; } } static void setup_sigcontext(struct target_sigcontext *sc, CPUSH4State *regs, unsigned long mask) { int i; #define COPY(x) __put_user(regs->x, &sc->sc_##x) COPY(gregs[0]); COPY(gregs[1]); COPY(gregs[2]); COPY(gregs[3]); COPY(gregs[4]); COPY(gregs[5]); COPY(gregs[6]); COPY(gregs[7]); COPY(gregs[8]); COPY(gregs[9]); COPY(gregs[10]); COPY(gregs[11]); COPY(gregs[12]); COPY(gregs[13]); COPY(gregs[14]); COPY(gregs[15]); COPY(gbr); COPY(mach); COPY(macl); COPY(pr); COPY(sr); COPY(pc); #undef COPY for (i=0; i<16; i++) { __put_user(regs->fregs[i], &sc->sc_fpregs[i]); } __put_user(regs->fpscr, &sc->sc_fpscr); __put_user(regs->fpul, &sc->sc_fpul); /* non-iBCS2 extensions.. */ __put_user(mask, &sc->oldmask); } static void restore_sigcontext(CPUSH4State *regs, struct target_sigcontext *sc) { int i; #define COPY(x) __get_user(regs->x, &sc->sc_##x) COPY(gregs[0]); COPY(gregs[1]); COPY(gregs[2]); COPY(gregs[3]); COPY(gregs[4]); COPY(gregs[5]); COPY(gregs[6]); COPY(gregs[7]); COPY(gregs[8]); COPY(gregs[9]); COPY(gregs[10]); COPY(gregs[11]); COPY(gregs[12]); COPY(gregs[13]); COPY(gregs[14]); COPY(gregs[15]); COPY(gbr); COPY(mach); COPY(macl); COPY(pr); COPY(sr); COPY(pc); #undef COPY for (i=0; i<16; i++) { __get_user(regs->fregs[i], &sc->sc_fpregs[i]); } __get_user(regs->fpscr, &sc->sc_fpscr); __get_user(regs->fpul, &sc->sc_fpul); regs->tra = -1; /* disable syscall checks */ regs->flags &= ~(DELAY_SLOT_MASK | GUSA_MASK); } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUSH4State *regs) { struct target_sigframe *frame; abi_ulong frame_addr; int i; unwind_gusa(regs); frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); trace_user_setup_frame(regs, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } setup_sigcontext(&frame->sc, regs, set->sig[0]); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { __put_user(set->sig[i + 1], &frame->extramask[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { regs->pr = (unsigned long) ka->sa_restorer; } else { /* Generate return code (system call to sigreturn) */ abi_ulong retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); __put_user(MOVW(2), &frame->retcode[0]); __put_user(TRAP_NOARG, &frame->retcode[1]); __put_user((TARGET_NR_sigreturn), &frame->retcode[2]); regs->pr = (unsigned long) retcode_addr; } /* Set up registers for signal handler */ regs->gregs[15] = frame_addr; regs->gregs[4] = sig; /* Arg for signal handler */ regs->gregs[5] = 0; regs->gregs[6] = frame_addr += offsetof(typeof(*frame), sc); regs->pc = (unsigned long) ka->_sa_handler; regs->flags &= ~(DELAY_SLOT_MASK | GUSA_MASK); unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(sig); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUSH4State *regs) { struct target_rt_sigframe *frame; abi_ulong frame_addr; int i; unwind_gusa(regs); frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); trace_user_setup_rt_frame(regs, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } tswap_siginfo(&frame->info, info); /* Create the ucontext. */ __put_user(0, &frame->uc.tuc_flags); __put_user(0, (unsigned long *)&frame->uc.tuc_link); __put_user((unsigned long)target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(regs->gregs[15]), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); setup_sigcontext(&frame->uc.tuc_mcontext, regs, set->sig[0]); for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { regs->pr = (unsigned long) ka->sa_restorer; } else { /* Generate return code (system call to sigreturn) */ abi_ulong retcode_addr = frame_addr + offsetof(struct target_rt_sigframe, retcode); __put_user(MOVW(2), &frame->retcode[0]); __put_user(TRAP_NOARG, &frame->retcode[1]); __put_user((TARGET_NR_rt_sigreturn), &frame->retcode[2]); regs->pr = (unsigned long) retcode_addr; } /* Set up registers for signal handler */ regs->gregs[15] = frame_addr; regs->gregs[4] = sig; /* Arg for signal handler */ regs->gregs[5] = frame_addr + offsetof(typeof(*frame), info); regs->gregs[6] = frame_addr + offsetof(typeof(*frame), uc); regs->pc = (unsigned long) ka->_sa_handler; regs->flags &= ~(DELAY_SLOT_MASK | GUSA_MASK); unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(sig); } long do_sigreturn(CPUSH4State *regs) { struct target_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_sigset_t target_set; int i; int err = 0; frame_addr = regs->gregs[15]; trace_user_do_sigreturn(regs, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } __get_user(target_set.sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } if (err) goto badframe; target_to_host_sigset_internal(&blocked, &target_set); set_sigmask(&blocked); restore_sigcontext(regs, &frame->sc); unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUSH4State *regs) { struct target_rt_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; frame_addr = regs->gregs[15]; trace_user_do_rt_sigreturn(regs, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&blocked, &frame->uc.tuc_sigmask); set_sigmask(&blocked); restore_sigcontext(regs, &frame->uc.tuc_mcontext); if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(regs)) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_MICROBLAZE) struct target_sigcontext { struct target_pt_regs regs; /* needs to be first */ uint32_t oldmask; }; struct target_stack_t { abi_ulong ss_sp; int ss_flags; unsigned int ss_size; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; struct target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; uint32_t tuc_extramask[TARGET_NSIG_WORDS - 1]; }; /* Signal frames. */ struct target_signal_frame { struct target_ucontext uc; uint32_t extramask[TARGET_NSIG_WORDS - 1]; uint32_t tramp[2]; }; struct rt_signal_frame { siginfo_t info; ucontext_t uc; uint32_t tramp[2]; }; static void setup_sigcontext(struct target_sigcontext *sc, CPUMBState *env) { __put_user(env->regs[0], &sc->regs.r0); __put_user(env->regs[1], &sc->regs.r1); __put_user(env->regs[2], &sc->regs.r2); __put_user(env->regs[3], &sc->regs.r3); __put_user(env->regs[4], &sc->regs.r4); __put_user(env->regs[5], &sc->regs.r5); __put_user(env->regs[6], &sc->regs.r6); __put_user(env->regs[7], &sc->regs.r7); __put_user(env->regs[8], &sc->regs.r8); __put_user(env->regs[9], &sc->regs.r9); __put_user(env->regs[10], &sc->regs.r10); __put_user(env->regs[11], &sc->regs.r11); __put_user(env->regs[12], &sc->regs.r12); __put_user(env->regs[13], &sc->regs.r13); __put_user(env->regs[14], &sc->regs.r14); __put_user(env->regs[15], &sc->regs.r15); __put_user(env->regs[16], &sc->regs.r16); __put_user(env->regs[17], &sc->regs.r17); __put_user(env->regs[18], &sc->regs.r18); __put_user(env->regs[19], &sc->regs.r19); __put_user(env->regs[20], &sc->regs.r20); __put_user(env->regs[21], &sc->regs.r21); __put_user(env->regs[22], &sc->regs.r22); __put_user(env->regs[23], &sc->regs.r23); __put_user(env->regs[24], &sc->regs.r24); __put_user(env->regs[25], &sc->regs.r25); __put_user(env->regs[26], &sc->regs.r26); __put_user(env->regs[27], &sc->regs.r27); __put_user(env->regs[28], &sc->regs.r28); __put_user(env->regs[29], &sc->regs.r29); __put_user(env->regs[30], &sc->regs.r30); __put_user(env->regs[31], &sc->regs.r31); __put_user(env->sregs[SR_PC], &sc->regs.pc); } static void restore_sigcontext(struct target_sigcontext *sc, CPUMBState *env) { __get_user(env->regs[0], &sc->regs.r0); __get_user(env->regs[1], &sc->regs.r1); __get_user(env->regs[2], &sc->regs.r2); __get_user(env->regs[3], &sc->regs.r3); __get_user(env->regs[4], &sc->regs.r4); __get_user(env->regs[5], &sc->regs.r5); __get_user(env->regs[6], &sc->regs.r6); __get_user(env->regs[7], &sc->regs.r7); __get_user(env->regs[8], &sc->regs.r8); __get_user(env->regs[9], &sc->regs.r9); __get_user(env->regs[10], &sc->regs.r10); __get_user(env->regs[11], &sc->regs.r11); __get_user(env->regs[12], &sc->regs.r12); __get_user(env->regs[13], &sc->regs.r13); __get_user(env->regs[14], &sc->regs.r14); __get_user(env->regs[15], &sc->regs.r15); __get_user(env->regs[16], &sc->regs.r16); __get_user(env->regs[17], &sc->regs.r17); __get_user(env->regs[18], &sc->regs.r18); __get_user(env->regs[19], &sc->regs.r19); __get_user(env->regs[20], &sc->regs.r20); __get_user(env->regs[21], &sc->regs.r21); __get_user(env->regs[22], &sc->regs.r22); __get_user(env->regs[23], &sc->regs.r23); __get_user(env->regs[24], &sc->regs.r24); __get_user(env->regs[25], &sc->regs.r25); __get_user(env->regs[26], &sc->regs.r26); __get_user(env->regs[27], &sc->regs.r27); __get_user(env->regs[28], &sc->regs.r28); __get_user(env->regs[29], &sc->regs.r29); __get_user(env->regs[30], &sc->regs.r30); __get_user(env->regs[31], &sc->regs.r31); __get_user(env->sregs[SR_PC], &sc->regs.pc); } static abi_ulong get_sigframe(struct target_sigaction *ka, CPUMBState *env, int frame_size) { abi_ulong sp = env->regs[1]; if ((ka->sa_flags & TARGET_SA_ONSTACK) != 0 && !on_sig_stack(sp)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return ((sp - frame_size) & -8UL); } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUMBState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; int i; frame_addr = get_sigframe(ka, env, sizeof *frame); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto badframe; /* Save the mask. */ __put_user(set->sig[0], &frame->uc.tuc_mcontext.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->extramask[i - 1]); } setup_sigcontext(&frame->uc.tuc_mcontext, env); /* Set up to return from userspace. If provided, use a stub already in userspace. */ /* minus 8 is offset to cater for "rtsd r15,8" offset */ if (ka->sa_flags & TARGET_SA_RESTORER) { env->regs[15] = ((unsigned long)ka->sa_restorer)-8; } else { uint32_t t; /* Note, these encodings are _big endian_! */ /* addi r12, r0, __NR_sigreturn */ t = 0x31800000UL | TARGET_NR_sigreturn; __put_user(t, frame->tramp + 0); /* brki r14, 0x8 */ t = 0xb9cc0008UL; __put_user(t, frame->tramp + 1); /* Return from sighandler will jump to the tramp. Negative 8 offset because return is rtsd r15, 8 */ env->regs[15] = frame_addr + offsetof(struct target_signal_frame, tramp) - 8; } /* Set up registers for signal handler */ env->regs[1] = frame_addr; /* Signal handler args: */ env->regs[5] = sig; /* Arg 0: signum */ env->regs[6] = 0; /* arg 1: sigcontext */ env->regs[7] = frame_addr += offsetof(typeof(*frame), uc); /* Offset of 4 to handle microblaze rtid r14, 0 */ env->sregs[SR_PC] = (unsigned long)ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; badframe: force_sigsegv(sig); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUMBState *env) { fprintf(stderr, "Microblaze setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUMBState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; target_sigset_t target_set; sigset_t set; int i; frame_addr = env->regs[R_SP]; trace_user_do_sigreturn(env, frame_addr); /* Make sure the guest isn't playing games. */ if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) goto badframe; /* Restore blocked signals */ __get_user(target_set.sig[0], &frame->uc.tuc_mcontext.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); restore_sigcontext(&frame->uc.tuc_mcontext, env); /* We got here through a sigreturn syscall, our path back is via an rtb insn so setup r14 for that. */ env->regs[14] = env->sregs[SR_PC]; unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUMBState *env) { trace_user_do_rt_sigreturn(env, 0); fprintf(stderr, "Microblaze do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_CRIS) struct target_sigcontext { struct target_pt_regs regs; /* needs to be first */ uint32_t oldmask; uint32_t usp; /* usp before stacking this gunk on it */ }; /* Signal frames. */ struct target_signal_frame { struct target_sigcontext sc; uint32_t extramask[TARGET_NSIG_WORDS - 1]; uint16_t retcode[4]; /* Trampoline code. */ }; struct rt_signal_frame { siginfo_t *pinfo; void *puc; siginfo_t info; ucontext_t uc; uint16_t retcode[4]; /* Trampoline code. */ }; static void setup_sigcontext(struct target_sigcontext *sc, CPUCRISState *env) { __put_user(env->regs[0], &sc->regs.r0); __put_user(env->regs[1], &sc->regs.r1); __put_user(env->regs[2], &sc->regs.r2); __put_user(env->regs[3], &sc->regs.r3); __put_user(env->regs[4], &sc->regs.r4); __put_user(env->regs[5], &sc->regs.r5); __put_user(env->regs[6], &sc->regs.r6); __put_user(env->regs[7], &sc->regs.r7); __put_user(env->regs[8], &sc->regs.r8); __put_user(env->regs[9], &sc->regs.r9); __put_user(env->regs[10], &sc->regs.r10); __put_user(env->regs[11], &sc->regs.r11); __put_user(env->regs[12], &sc->regs.r12); __put_user(env->regs[13], &sc->regs.r13); __put_user(env->regs[14], &sc->usp); __put_user(env->regs[15], &sc->regs.acr); __put_user(env->pregs[PR_MOF], &sc->regs.mof); __put_user(env->pregs[PR_SRP], &sc->regs.srp); __put_user(env->pc, &sc->regs.erp); } static void restore_sigcontext(struct target_sigcontext *sc, CPUCRISState *env) { __get_user(env->regs[0], &sc->regs.r0); __get_user(env->regs[1], &sc->regs.r1); __get_user(env->regs[2], &sc->regs.r2); __get_user(env->regs[3], &sc->regs.r3); __get_user(env->regs[4], &sc->regs.r4); __get_user(env->regs[5], &sc->regs.r5); __get_user(env->regs[6], &sc->regs.r6); __get_user(env->regs[7], &sc->regs.r7); __get_user(env->regs[8], &sc->regs.r8); __get_user(env->regs[9], &sc->regs.r9); __get_user(env->regs[10], &sc->regs.r10); __get_user(env->regs[11], &sc->regs.r11); __get_user(env->regs[12], &sc->regs.r12); __get_user(env->regs[13], &sc->regs.r13); __get_user(env->regs[14], &sc->usp); __get_user(env->regs[15], &sc->regs.acr); __get_user(env->pregs[PR_MOF], &sc->regs.mof); __get_user(env->pregs[PR_SRP], &sc->regs.srp); __get_user(env->pc, &sc->regs.erp); } static abi_ulong get_sigframe(CPUCRISState *env, int framesize) { abi_ulong sp; /* Align the stack downwards to 4. */ sp = (env->regs[R_SP] & ~3); return sp - framesize; } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUCRISState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; int i; frame_addr = get_sigframe(env, sizeof *frame); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto badframe; /* * The CRIS signal return trampoline. A real linux/CRIS kernel doesn't * use this trampoline anymore but it sets it up for GDB. * In QEMU, using the trampoline simplifies things a bit so we use it. * * This is movu.w __NR_sigreturn, r9; break 13; */ __put_user(0x9c5f, frame->retcode+0); __put_user(TARGET_NR_sigreturn, frame->retcode + 1); __put_user(0xe93d, frame->retcode + 2); /* Save the mask. */ __put_user(set->sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->extramask[i - 1]); } setup_sigcontext(&frame->sc, env); /* Move the stack and setup the arguments for the handler. */ env->regs[R_SP] = frame_addr; env->regs[10] = sig; env->pc = (unsigned long) ka->_sa_handler; /* Link SRP so the guest returns through the trampoline. */ env->pregs[PR_SRP] = frame_addr + offsetof(typeof(*frame), retcode); unlock_user_struct(frame, frame_addr, 1); return; badframe: force_sigsegv(sig); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUCRISState *env) { fprintf(stderr, "CRIS setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUCRISState *env) { struct target_signal_frame *frame; abi_ulong frame_addr; target_sigset_t target_set; sigset_t set; int i; frame_addr = env->regs[R_SP]; trace_user_do_sigreturn(env, frame_addr); /* Make sure the guest isn't playing games. */ if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) { goto badframe; } /* Restore blocked signals */ __get_user(target_set.sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); restore_sigcontext(&frame->sc, env); unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUCRISState *env) { trace_user_do_rt_sigreturn(env, 0); fprintf(stderr, "CRIS do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_NIOS2) #define MCONTEXT_VERSION 2 struct target_sigcontext { int version; unsigned long gregs[32]; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; }; static unsigned long sigsp(unsigned long sp, struct target_sigaction *ka) { if (unlikely((ka->sa_flags & SA_ONSTACK)) && !sas_ss_flags(sp)) { #ifdef CONFIG_STACK_GROWSUP return target_sigaltstack_used.ss_sp; #else return target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; #endif } return sp; } static int rt_setup_ucontext(struct target_ucontext *uc, CPUNios2State *env) { unsigned long *gregs = uc->tuc_mcontext.gregs; __put_user(MCONTEXT_VERSION, &uc->tuc_mcontext.version); __put_user(env->regs[1], &gregs[0]); __put_user(env->regs[2], &gregs[1]); __put_user(env->regs[3], &gregs[2]); __put_user(env->regs[4], &gregs[3]); __put_user(env->regs[5], &gregs[4]); __put_user(env->regs[6], &gregs[5]); __put_user(env->regs[7], &gregs[6]); __put_user(env->regs[8], &gregs[7]); __put_user(env->regs[9], &gregs[8]); __put_user(env->regs[10], &gregs[9]); __put_user(env->regs[11], &gregs[10]); __put_user(env->regs[12], &gregs[11]); __put_user(env->regs[13], &gregs[12]); __put_user(env->regs[14], &gregs[13]); __put_user(env->regs[15], &gregs[14]); __put_user(env->regs[16], &gregs[15]); __put_user(env->regs[17], &gregs[16]); __put_user(env->regs[18], &gregs[17]); __put_user(env->regs[19], &gregs[18]); __put_user(env->regs[20], &gregs[19]); __put_user(env->regs[21], &gregs[20]); __put_user(env->regs[22], &gregs[21]); __put_user(env->regs[23], &gregs[22]); __put_user(env->regs[R_RA], &gregs[23]); __put_user(env->regs[R_FP], &gregs[24]); __put_user(env->regs[R_GP], &gregs[25]); __put_user(env->regs[R_EA], &gregs[27]); __put_user(env->regs[R_SP], &gregs[28]); return 0; } static int rt_restore_ucontext(CPUNios2State *env, struct target_ucontext *uc, int *pr2) { int temp; abi_ulong off, frame_addr = env->regs[R_SP]; unsigned long *gregs = uc->tuc_mcontext.gregs; int err; /* Always make any pending restarted system calls return -EINTR */ /* current->restart_block.fn = do_no_restart_syscall; */ __get_user(temp, &uc->tuc_mcontext.version); if (temp != MCONTEXT_VERSION) { return 1; } /* restore passed registers */ __get_user(env->regs[1], &gregs[0]); __get_user(env->regs[2], &gregs[1]); __get_user(env->regs[3], &gregs[2]); __get_user(env->regs[4], &gregs[3]); __get_user(env->regs[5], &gregs[4]); __get_user(env->regs[6], &gregs[5]); __get_user(env->regs[7], &gregs[6]); __get_user(env->regs[8], &gregs[7]); __get_user(env->regs[9], &gregs[8]); __get_user(env->regs[10], &gregs[9]); __get_user(env->regs[11], &gregs[10]); __get_user(env->regs[12], &gregs[11]); __get_user(env->regs[13], &gregs[12]); __get_user(env->regs[14], &gregs[13]); __get_user(env->regs[15], &gregs[14]); __get_user(env->regs[16], &gregs[15]); __get_user(env->regs[17], &gregs[16]); __get_user(env->regs[18], &gregs[17]); __get_user(env->regs[19], &gregs[18]); __get_user(env->regs[20], &gregs[19]); __get_user(env->regs[21], &gregs[20]); __get_user(env->regs[22], &gregs[21]); __get_user(env->regs[23], &gregs[22]); /* gregs[23] is handled below */ /* Verify, should this be settable */ __get_user(env->regs[R_FP], &gregs[24]); /* Verify, should this be settable */ __get_user(env->regs[R_GP], &gregs[25]); /* Not really necessary no user settable bits */ __get_user(temp, &gregs[26]); __get_user(env->regs[R_EA], &gregs[27]); __get_user(env->regs[R_RA], &gregs[23]); __get_user(env->regs[R_SP], &gregs[28]); off = offsetof(struct target_rt_sigframe, uc.tuc_stack); err = do_sigaltstack(frame_addr + off, 0, get_sp_from_cpustate(env)); if (err == -EFAULT) { return 1; } *pr2 = env->regs[2]; return 0; } static void *get_sigframe(struct target_sigaction *ka, CPUNios2State *env, size_t frame_size) { unsigned long usp; /* Default to using normal stack. */ usp = env->regs[R_SP]; /* This is the X/Open sanctioned signal stack switching. */ usp = sigsp(usp, ka); /* Verify, is it 32 or 64 bit aligned */ return (void *)((usp - frame_size) & -8UL); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUNios2State *env) { struct target_rt_sigframe *frame; int i, err = 0; frame = get_sigframe(ka, env, sizeof(*frame)); if (ka->sa_flags & SA_SIGINFO) { tswap_siginfo(&frame->info, info); } /* Create the ucontext. */ __put_user(0, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(env->regs[R_SP]), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); err |= rt_setup_ucontext(&frame->uc, env); for (i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user((abi_ulong)set->sig[i], (abi_ulong *)&frame->uc.tuc_sigmask.sig[i]); } if (err) { goto give_sigsegv; } /* Set up to return from userspace; jump to fixed address sigreturn trampoline on kuser page. */ env->regs[R_RA] = (unsigned long) (0x1044); /* Set up registers for signal handler */ env->regs[R_SP] = (unsigned long) frame; env->regs[4] = (unsigned long) sig; env->regs[5] = (unsigned long) &frame->info; env->regs[6] = (unsigned long) &frame->uc; env->regs[R_EA] = (unsigned long) ka->_sa_handler; return; give_sigsegv: if (sig == TARGET_SIGSEGV) { ka->_sa_handler = TARGET_SIG_DFL; } force_sigsegv(sig); return; } long do_sigreturn(CPUNios2State *env) { trace_user_do_sigreturn(env, 0); fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUNios2State *env) { /* Verify, can we follow the stack back */ abi_ulong frame_addr = env->regs[R_SP]; struct target_rt_sigframe *frame; sigset_t set; int rval; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&set, &frame->uc.tuc_sigmask); do_sigprocmask(SIG_SETMASK, &set, NULL); if (rt_restore_ucontext(env, &frame->uc, &rval)) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return rval; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } /* TARGET_NIOS2 */ #elif defined(TARGET_OPENRISC) struct target_sigcontext { struct target_pt_regs regs; abi_ulong oldmask; abi_ulong usp; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct target_rt_sigframe { abi_ulong pinfo; uint64_t puc; struct target_siginfo info; struct target_sigcontext sc; struct target_ucontext uc; unsigned char retcode[16]; /* trampoline code */ }; /* This is the asm-generic/ucontext.h version */ #if 0 static int restore_sigcontext(CPUOpenRISCState *regs, struct target_sigcontext *sc) { unsigned int err = 0; unsigned long old_usp; /* Alwys make any pending restarted system call return -EINTR */ current_thread_info()->restart_block.fn = do_no_restart_syscall; /* restore the regs from &sc->regs (same as sc, since regs is first) * (sc is already checked for VERIFY_READ since the sigframe was * checked in sys_sigreturn previously) */ if (copy_from_user(regs, &sc, sizeof(struct target_pt_regs))) { goto badframe; } /* make sure the U-flag is set so user-mode cannot fool us */ regs->sr &= ~SR_SM; /* restore the old USP as it was before we stacked the sc etc. * (we cannot just pop the sigcontext since we aligned the sp and * stuff after pushing it) */ __get_user(old_usp, &sc->usp); phx_signal("old_usp 0x%lx", old_usp); __PHX__ REALLY /* ??? */ wrusp(old_usp); regs->gpr[1] = old_usp; /* TODO: the other ports use regs->orig_XX to disable syscall checks * after this completes, but we don't use that mechanism. maybe we can * use it now ? */ return err; badframe: return 1; } #endif /* Set up a signal frame. */ static void setup_sigcontext(struct target_sigcontext *sc, CPUOpenRISCState *regs, unsigned long mask) { unsigned long usp = cpu_get_gpr(regs, 1); /* copy the regs. they are first in sc so we can use sc directly */ /*copy_to_user(&sc, regs, sizeof(struct target_pt_regs));*/ /* Set the frametype to CRIS_FRAME_NORMAL for the execution of the signal handler. The frametype will be restored to its previous value in restore_sigcontext. */ /*regs->frametype = CRIS_FRAME_NORMAL;*/ /* then some other stuff */ __put_user(mask, &sc->oldmask); __put_user(usp, &sc->usp); } static inline unsigned long align_sigframe(unsigned long sp) { return sp & ~3UL; } static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUOpenRISCState *regs, size_t frame_size) { unsigned long sp = cpu_get_gpr(regs, 1); int onsigstack = on_sig_stack(sp); /* redzone */ /* This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) != 0 && !onsigstack) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } sp = align_sigframe(sp - frame_size); /* * If we are on the alternate signal stack and would overflow it, don't. * Return an always-bogus address instead so we will die with SIGSEGV. */ if (onsigstack && !likely(on_sig_stack(sp))) { return -1L; } return sp; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUOpenRISCState *env) { int err = 0; abi_ulong frame_addr; unsigned long return_ip; struct target_rt_sigframe *frame; abi_ulong info_addr, uc_addr; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } info_addr = frame_addr + offsetof(struct target_rt_sigframe, info); __put_user(info_addr, &frame->pinfo); uc_addr = frame_addr + offsetof(struct target_rt_sigframe, uc); __put_user(uc_addr, &frame->puc); if (ka->sa_flags & SA_SIGINFO) { tswap_siginfo(&frame->info, info); } /*err |= __clear_user(&frame->uc, offsetof(ucontext_t, uc_mcontext));*/ __put_user(0, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(cpu_get_gpr(env, 1)), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); setup_sigcontext(&frame->sc, env, set->sig[0]); /*err |= copy_to_user(frame->uc.tuc_sigmask, set, sizeof(*set));*/ /* trampoline - the desired return ip is the retcode itself */ return_ip = (unsigned long)&frame->retcode; /* This is l.ori r11,r0,__NR_sigreturn, l.sys 1 */ __put_user(0xa960, (short *)(frame->retcode + 0)); __put_user(TARGET_NR_rt_sigreturn, (short *)(frame->retcode + 2)); __put_user(0x20000001, (unsigned long *)(frame->retcode + 4)); __put_user(0x15000000, (unsigned long *)(frame->retcode + 8)); if (err) { goto give_sigsegv; } /* TODO what is the current->exec_domain stuff and invmap ? */ /* Set up registers for signal handler */ env->pc = (unsigned long)ka->_sa_handler; /* what we enter NOW */ cpu_set_gpr(env, 9, (unsigned long)return_ip); /* what we enter LATER */ cpu_set_gpr(env, 3, (unsigned long)sig); /* arg 1: signo */ cpu_set_gpr(env, 4, (unsigned long)&frame->info); /* arg 2: (siginfo_t*) */ cpu_set_gpr(env, 5, (unsigned long)&frame->uc); /* arg 3: ucontext */ /* actually move the usp to reflect the stacked frame */ cpu_set_gpr(env, 1, (unsigned long)frame); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(sig); } long do_sigreturn(CPUOpenRISCState *env) { trace_user_do_sigreturn(env, 0); fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUOpenRISCState *env) { trace_user_do_rt_sigreturn(env, 0); fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } /* TARGET_OPENRISC */ #elif defined(TARGET_S390X) #define __NUM_GPRS 16 #define __NUM_FPRS 16 #define __NUM_ACRS 16 #define S390_SYSCALL_SIZE 2 #define __SIGNAL_FRAMESIZE 160 /* FIXME: 31-bit mode -> 96 */ #define _SIGCONTEXT_NSIG 64 #define _SIGCONTEXT_NSIG_BPW 64 /* FIXME: 31-bit mode -> 32 */ #define _SIGCONTEXT_NSIG_WORDS (_SIGCONTEXT_NSIG / _SIGCONTEXT_NSIG_BPW) #define _SIGMASK_COPY_SIZE (sizeof(unsigned long)*_SIGCONTEXT_NSIG_WORDS) #define PSW_ADDR_AMODE 0x0000000000000000UL /* 0x80000000UL for 31-bit */ #define S390_SYSCALL_OPCODE ((uint16_t)0x0a00) typedef struct { target_psw_t psw; target_ulong gprs[__NUM_GPRS]; unsigned int acrs[__NUM_ACRS]; } target_s390_regs_common; typedef struct { unsigned int fpc; double fprs[__NUM_FPRS]; } target_s390_fp_regs; typedef struct { target_s390_regs_common regs; target_s390_fp_regs fpregs; } target_sigregs; struct target_sigcontext { target_ulong oldmask[_SIGCONTEXT_NSIG_WORDS]; target_sigregs *sregs; }; typedef struct { uint8_t callee_used_stack[__SIGNAL_FRAMESIZE]; struct target_sigcontext sc; target_sigregs sregs; int signo; uint8_t retcode[S390_SYSCALL_SIZE]; } sigframe; struct target_ucontext { target_ulong tuc_flags; struct target_ucontext *tuc_link; target_stack_t tuc_stack; target_sigregs tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; typedef struct { uint8_t callee_used_stack[__SIGNAL_FRAMESIZE]; uint8_t retcode[S390_SYSCALL_SIZE]; struct target_siginfo info; struct target_ucontext uc; } rt_sigframe; static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUS390XState *env, size_t frame_size) { abi_ulong sp; /* Default to using normal stack */ sp = env->regs[15]; /* This is the X/Open sanctioned signal stack switching. */ if (ka->sa_flags & TARGET_SA_ONSTACK) { if (!sas_ss_flags(sp)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } } /* This is the legacy signal stack switching. */ else if (/* FIXME !user_mode(regs) */ 0 && !(ka->sa_flags & TARGET_SA_RESTORER) && ka->sa_restorer) { sp = (abi_ulong) ka->sa_restorer; } return (sp - frame_size) & -8ul; } static void save_sigregs(CPUS390XState *env, target_sigregs *sregs) { int i; //save_access_regs(current->thread.acrs); FIXME /* Copy a 'clean' PSW mask to the user to avoid leaking information about whether PER is currently on. */ __put_user(env->psw.mask, &sregs->regs.psw.mask); __put_user(env->psw.addr, &sregs->regs.psw.addr); for (i = 0; i < 16; i++) { __put_user(env->regs[i], &sregs->regs.gprs[i]); } for (i = 0; i < 16; i++) { __put_user(env->aregs[i], &sregs->regs.acrs[i]); } /* * We have to store the fp registers to current->thread.fp_regs * to merge them with the emulated registers. */ //save_fp_regs(¤t->thread.fp_regs); FIXME for (i = 0; i < 16; i++) { __put_user(get_freg(env, i)->ll, &sregs->fpregs.fprs[i]); } } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUS390XState *env) { sigframe *frame; abi_ulong frame_addr; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } __put_user(set->sig[0], &frame->sc.oldmask[0]); save_sigregs(env, &frame->sregs); __put_user((abi_ulong)(unsigned long)&frame->sregs, (abi_ulong *)&frame->sc.sregs); /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { env->regs[14] = (unsigned long) ka->sa_restorer | PSW_ADDR_AMODE; } else { env->regs[14] = (frame_addr + offsetof(sigframe, retcode)) | PSW_ADDR_AMODE; __put_user(S390_SYSCALL_OPCODE | TARGET_NR_sigreturn, (uint16_t *)(frame->retcode)); } /* Set up backchain. */ __put_user(env->regs[15], (abi_ulong *) frame); /* Set up registers for signal handler */ env->regs[15] = frame_addr; env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE; env->regs[2] = sig; //map_signal(sig); env->regs[3] = frame_addr += offsetof(typeof(*frame), sc); /* We forgot to include these in the sigcontext. To avoid breaking binary compatibility, they are passed as args. */ env->regs[4] = 0; // FIXME: no clue... current->thread.trap_no; env->regs[5] = 0; // FIXME: no clue... current->thread.prot_addr; /* Place signal number on stack to allow backtrace from handler. */ __put_user(env->regs[2], &frame->signo); unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUS390XState *env) { int i; rt_sigframe *frame; abi_ulong frame_addr; frame_addr = get_sigframe(ka, env, sizeof *frame); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } tswap_siginfo(&frame->info, info); /* Create the ucontext. */ __put_user(0, &frame->uc.tuc_flags); __put_user((abi_ulong)0, (abi_ulong *)&frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); save_sigregs(env, &frame->uc.tuc_mcontext); for (i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user((abi_ulong)set->sig[i], (abi_ulong *)&frame->uc.tuc_sigmask.sig[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa_flags & TARGET_SA_RESTORER) { env->regs[14] = (unsigned long) ka->sa_restorer | PSW_ADDR_AMODE; } else { env->regs[14] = (unsigned long) frame->retcode | PSW_ADDR_AMODE; __put_user(S390_SYSCALL_OPCODE | TARGET_NR_rt_sigreturn, (uint16_t *)(frame->retcode)); } /* Set up backchain. */ __put_user(env->regs[15], (abi_ulong *) frame); /* Set up registers for signal handler */ env->regs[15] = frame_addr; env->psw.addr = (target_ulong) ka->_sa_handler | PSW_ADDR_AMODE; env->regs[2] = sig; //map_signal(sig); env->regs[3] = frame_addr + offsetof(typeof(*frame), info); env->regs[4] = frame_addr + offsetof(typeof(*frame), uc); return; give_sigsegv: force_sigsegv(sig); } static int restore_sigregs(CPUS390XState *env, target_sigregs *sc) { int err = 0; int i; for (i = 0; i < 16; i++) { __get_user(env->regs[i], &sc->regs.gprs[i]); } __get_user(env->psw.mask, &sc->regs.psw.mask); trace_user_s390x_restore_sigregs(env, (unsigned long long)sc->regs.psw.addr, (unsigned long long)env->psw.addr); __get_user(env->psw.addr, &sc->regs.psw.addr); /* FIXME: 31-bit -> | PSW_ADDR_AMODE */ for (i = 0; i < 16; i++) { __get_user(env->aregs[i], &sc->regs.acrs[i]); } for (i = 0; i < 16; i++) { __get_user(get_freg(env, i)->ll, &sc->fpregs.fprs[i]); } return err; } long do_sigreturn(CPUS390XState *env) { sigframe *frame; abi_ulong frame_addr = env->regs[15]; target_sigset_t target_set; sigset_t set; trace_user_do_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } __get_user(target_set.sig[0], &frame->sc.oldmask[0]); target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); /* ~_BLOCKABLE? */ if (restore_sigregs(env, &frame->sregs)) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUS390XState *env) { rt_sigframe *frame; abi_ulong frame_addr = env->regs[15]; sigset_t set; trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); /* ~_BLOCKABLE? */ if (restore_sigregs(env, &frame->uc.tuc_mcontext)) { goto badframe; } if (do_sigaltstack(frame_addr + offsetof(rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_PPC) /* Size of dummy stack frame allocated when calling signal handler. See arch/powerpc/include/asm/ptrace.h. */ #if defined(TARGET_PPC64) #define SIGNAL_FRAMESIZE 128 #else #define SIGNAL_FRAMESIZE 64 #endif /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; on 64-bit PPC, sigcontext and mcontext are one and the same. */ struct target_mcontext { target_ulong mc_gregs[48]; /* Includes fpscr. */ uint64_t mc_fregs[33]; #if defined(TARGET_PPC64) /* Pointer to the vector regs */ target_ulong v_regs; #else target_ulong mc_pad[2]; #endif /* We need to handle Altivec and SPE at the same time, which no kernel needs to do. Fortunately, the kernel defines this bit to be Altivec-register-large all the time, rather than trying to twiddle it based on the specific platform. */ union { /* SPE vector registers. One extra for SPEFSCR. */ uint32_t spe[33]; /* Altivec vector registers. The packing of VSCR and VRSAVE varies depending on whether we're PPC64 or not: PPC64 splits them apart; PPC32 stuffs them together. We also need to account for the VSX registers on PPC64 */ #if defined(TARGET_PPC64) #define QEMU_NVRREG (34 + 16) /* On ppc64, this mcontext structure is naturally *unaligned*, * or rather it is aligned on a 8 bytes boundary but not on * a 16 bytes one. This pad fixes it up. This is also why the * vector regs are referenced by the v_regs pointer above so * any amount of padding can be added here */ target_ulong pad; #else /* On ppc32, we are already aligned to 16 bytes */ #define QEMU_NVRREG 33 #endif /* We cannot use ppc_avr_t here as we do *not* want the implied * 16-bytes alignment that would result from it. This would have * the effect of making the whole struct target_mcontext aligned * which breaks the layout of struct target_ucontext on ppc64. */ uint64_t altivec[QEMU_NVRREG][2]; #undef QEMU_NVRREG } mc_vregs; }; /* See arch/powerpc/include/asm/sigcontext.h. */ struct target_sigcontext { target_ulong _unused[4]; int32_t signal; #if defined(TARGET_PPC64) int32_t pad0; #endif target_ulong handler; target_ulong oldmask; target_ulong regs; /* struct pt_regs __user * */ #if defined(TARGET_PPC64) struct target_mcontext mcontext; #endif }; /* Indices for target_mcontext.mc_gregs, below. See arch/powerpc/include/asm/ptrace.h for details. */ enum { TARGET_PT_R0 = 0, TARGET_PT_R1 = 1, TARGET_PT_R2 = 2, TARGET_PT_R3 = 3, TARGET_PT_R4 = 4, TARGET_PT_R5 = 5, TARGET_PT_R6 = 6, TARGET_PT_R7 = 7, TARGET_PT_R8 = 8, TARGET_PT_R9 = 9, TARGET_PT_R10 = 10, TARGET_PT_R11 = 11, TARGET_PT_R12 = 12, TARGET_PT_R13 = 13, TARGET_PT_R14 = 14, TARGET_PT_R15 = 15, TARGET_PT_R16 = 16, TARGET_PT_R17 = 17, TARGET_PT_R18 = 18, TARGET_PT_R19 = 19, TARGET_PT_R20 = 20, TARGET_PT_R21 = 21, TARGET_PT_R22 = 22, TARGET_PT_R23 = 23, TARGET_PT_R24 = 24, TARGET_PT_R25 = 25, TARGET_PT_R26 = 26, TARGET_PT_R27 = 27, TARGET_PT_R28 = 28, TARGET_PT_R29 = 29, TARGET_PT_R30 = 30, TARGET_PT_R31 = 31, TARGET_PT_NIP = 32, TARGET_PT_MSR = 33, TARGET_PT_ORIG_R3 = 34, TARGET_PT_CTR = 35, TARGET_PT_LNK = 36, TARGET_PT_XER = 37, TARGET_PT_CCR = 38, /* Yes, there are two registers with #39. One is 64-bit only. */ TARGET_PT_MQ = 39, TARGET_PT_SOFTE = 39, TARGET_PT_TRAP = 40, TARGET_PT_DAR = 41, TARGET_PT_DSISR = 42, TARGET_PT_RESULT = 43, TARGET_PT_REGS_COUNT = 44 }; struct target_ucontext { target_ulong tuc_flags; target_ulong tuc_link; /* ucontext_t __user * */ struct target_sigaltstack tuc_stack; #if !defined(TARGET_PPC64) int32_t tuc_pad[7]; target_ulong tuc_regs; /* struct mcontext __user * points to uc_mcontext field */ #endif target_sigset_t tuc_sigmask; #if defined(TARGET_PPC64) target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ struct target_sigcontext tuc_sigcontext; #else int32_t tuc_maskext[30]; int32_t tuc_pad2[3]; struct target_mcontext tuc_mcontext; #endif }; /* See arch/powerpc/kernel/signal_32.c. */ struct target_sigframe { struct target_sigcontext sctx; struct target_mcontext mctx; int32_t abigap[56]; }; #if defined(TARGET_PPC64) #define TARGET_TRAMP_SIZE 6 struct target_rt_sigframe { /* sys_rt_sigreturn requires the ucontext be the first field */ struct target_ucontext uc; target_ulong _unused[2]; uint32_t trampoline[TARGET_TRAMP_SIZE]; target_ulong pinfo; /* struct siginfo __user * */ target_ulong puc; /* void __user * */ struct target_siginfo info; /* 64 bit ABI allows for 288 bytes below sp before decrementing it. */ char abigap[288]; } __attribute__((aligned(16))); #else struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; int32_t abigap[56]; }; #endif #if defined(TARGET_PPC64) struct target_func_ptr { target_ulong entry; target_ulong toc; }; #endif /* We use the mc_pad field for the signal return trampoline. */ #define tramp mc_pad /* See arch/powerpc/kernel/signal.c. */ static target_ulong get_sigframe(struct target_sigaction *ka, CPUPPCState *env, int frame_size) { target_ulong oldsp; oldsp = env->gpr[1]; if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(oldsp) == 0)) { oldsp = (target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size); } return (oldsp - frame_size) & ~0xFUL; } #if ((defined(TARGET_WORDS_BIGENDIAN) && defined(HOST_WORDS_BIGENDIAN)) || \ (!defined(HOST_WORDS_BIGENDIAN) && !defined(TARGET_WORDS_BIGENDIAN))) #define PPC_VEC_HI 0 #define PPC_VEC_LO 1 #else #define PPC_VEC_HI 1 #define PPC_VEC_LO 0 #endif static void save_user_regs(CPUPPCState *env, struct target_mcontext *frame) { target_ulong msr = env->msr; int i; target_ulong ccr = 0; /* In general, the kernel attempts to be intelligent about what it needs to save for Altivec/FP/SPE registers. We don't care that much, so we just go ahead and save everything. */ /* Save general registers. */ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { __put_user(env->gpr[i], &frame->mc_gregs[i]); } __put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); for (i = 0; i < ARRAY_SIZE(env->crf); i++) { ccr |= env->crf[i] << (32 - ((i + 1) * 4)); } __put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); /* Save Altivec registers if necessary. */ if (env->insns_flags & PPC_ALTIVEC) { uint32_t *vrsave; for (i = 0; i < ARRAY_SIZE(env->avr); i++) { ppc_avr_t *avr = &env->avr[i]; ppc_avr_t *vreg = (ppc_avr_t *)&frame->mc_vregs.altivec[i]; __put_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); __put_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); } /* Set MSR_VR in the saved MSR value to indicate that frame->mc_vregs contains valid data. */ msr |= MSR_VR; #if defined(TARGET_PPC64) vrsave = (uint32_t *)&frame->mc_vregs.altivec[33]; /* 64-bit needs to put a pointer to the vectors in the frame */ __put_user(h2g(frame->mc_vregs.altivec), &frame->v_regs); #else vrsave = (uint32_t *)&frame->mc_vregs.altivec[32]; #endif __put_user((uint32_t)env->spr[SPR_VRSAVE], vrsave); } /* Save VSX second halves */ if (env->insns_flags2 & PPC2_VSX) { uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; for (i = 0; i < ARRAY_SIZE(env->vsr); i++) { __put_user(env->vsr[i], &vsregs[i]); } } /* Save floating point registers. */ if (env->insns_flags & PPC_FLOAT) { for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { __put_user(env->fpr[i], &frame->mc_fregs[i]); } __put_user((uint64_t) env->fpscr, &frame->mc_fregs[32]); } /* Save SPE registers. The kernel only saves the high half. */ if (env->insns_flags & PPC_SPE) { #if defined(TARGET_PPC64) for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { __put_user(env->gpr[i] >> 32, &frame->mc_vregs.spe[i]); } #else for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { __put_user(env->gprh[i], &frame->mc_vregs.spe[i]); } #endif /* Set MSR_SPE in the saved MSR value to indicate that frame->mc_vregs contains valid data. */ msr |= MSR_SPE; __put_user(env->spe_fscr, &frame->mc_vregs.spe[32]); } /* Store MSR. */ __put_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); } static void encode_trampoline(int sigret, uint32_t *tramp) { /* Set up the sigreturn trampoline: li r0,sigret; sc. */ if (sigret) { __put_user(0x38000000 | sigret, &tramp[0]); __put_user(0x44000002, &tramp[1]); } } static void restore_user_regs(CPUPPCState *env, struct target_mcontext *frame, int sig) { target_ulong save_r2 = 0; target_ulong msr; target_ulong ccr; int i; if (!sig) { save_r2 = env->gpr[2]; } /* Restore general registers. */ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { __get_user(env->gpr[i], &frame->mc_gregs[i]); } __get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]); __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]); __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]); __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER]); __get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR]); for (i = 0; i < ARRAY_SIZE(env->crf); i++) { env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; } if (!sig) { env->gpr[2] = save_r2; } /* Restore MSR. */ __get_user(msr, &frame->mc_gregs[TARGET_PT_MSR]); /* If doing signal return, restore the previous little-endian mode. */ if (sig) env->msr = (env->msr & ~(1ull << MSR_LE)) | (msr & (1ull << MSR_LE)); /* Restore Altivec registers if necessary. */ if (env->insns_flags & PPC_ALTIVEC) { ppc_avr_t *v_regs; uint32_t *vrsave; #if defined(TARGET_PPC64) uint64_t v_addr; /* 64-bit needs to recover the pointer to the vectors from the frame */ __get_user(v_addr, &frame->v_regs); v_regs = g2h(v_addr); #else v_regs = (ppc_avr_t *)frame->mc_vregs.altivec; #endif for (i = 0; i < ARRAY_SIZE(env->avr); i++) { ppc_avr_t *avr = &env->avr[i]; ppc_avr_t *vreg = &v_regs[i]; __get_user(avr->u64[PPC_VEC_HI], &vreg->u64[0]); __get_user(avr->u64[PPC_VEC_LO], &vreg->u64[1]); } /* Set MSR_VEC in the saved MSR value to indicate that frame->mc_vregs contains valid data. */ #if defined(TARGET_PPC64) vrsave = (uint32_t *)&v_regs[33]; #else vrsave = (uint32_t *)&v_regs[32]; #endif __get_user(env->spr[SPR_VRSAVE], vrsave); } /* Restore VSX second halves */ if (env->insns_flags2 & PPC2_VSX) { uint64_t *vsregs = (uint64_t *)&frame->mc_vregs.altivec[34]; for (i = 0; i < ARRAY_SIZE(env->vsr); i++) { __get_user(env->vsr[i], &vsregs[i]); } } /* Restore floating point registers. */ if (env->insns_flags & PPC_FLOAT) { uint64_t fpscr; for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { __get_user(env->fpr[i], &frame->mc_fregs[i]); } __get_user(fpscr, &frame->mc_fregs[32]); env->fpscr = (uint32_t) fpscr; } /* Save SPE registers. The kernel only saves the high half. */ if (env->insns_flags & PPC_SPE) { #if defined(TARGET_PPC64) for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { uint32_t hi; __get_user(hi, &frame->mc_vregs.spe[i]); env->gpr[i] = ((uint64_t)hi << 32) | ((uint32_t) env->gpr[i]); } #else for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { __get_user(env->gprh[i], &frame->mc_vregs.spe[i]); } #endif __get_user(env->spe_fscr, &frame->mc_vregs.spe[32]); } } #if !defined(TARGET_PPC64) static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUPPCState *env) { struct target_sigframe *frame; struct target_sigcontext *sc; target_ulong frame_addr, newsp; int err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) goto sigsegv; sc = &frame->sctx; __put_user(ka->_sa_handler, &sc->handler); __put_user(set->sig[0], &sc->oldmask); __put_user(set->sig[1], &sc->_unused[3]); __put_user(h2g(&frame->mctx), &sc->regs); __put_user(sig, &sc->signal); /* Save user regs. */ save_user_regs(env, &frame->mctx); /* Construct the trampoline code on the stack. */ encode_trampoline(TARGET_NR_sigreturn, (uint32_t *)&frame->mctx.tramp); /* The kernel checks for the presence of a VDSO here. We don't emulate a vdso, so use a sigreturn system call. */ env->lr = (target_ulong) h2g(frame->mctx.tramp); /* Turn off all fp exceptions. */ env->fpscr = 0; /* Create a stack frame for the caller of the handler. */ newsp = frame_addr - SIGNAL_FRAMESIZE; err |= put_user(env->gpr[1], newsp, target_ulong); if (err) goto sigsegv; /* Set up registers for signal handler. */ env->gpr[1] = newsp; env->gpr[3] = sig; env->gpr[4] = frame_addr + offsetof(struct target_sigframe, sctx); env->nip = (target_ulong) ka->_sa_handler; /* Signal handlers are entered in big-endian mode. */ env->msr &= ~(1ull << MSR_LE); unlock_user_struct(frame, frame_addr, 1); return; sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(sig); } #endif /* !defined(TARGET_PPC64) */ static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUPPCState *env) { struct target_rt_sigframe *rt_sf; uint32_t *trampptr = 0; struct target_mcontext *mctx = 0; target_ulong rt_sf_addr, newsp = 0; int i, err = 0; #if defined(TARGET_PPC64) struct target_sigcontext *sc = 0; struct image_info *image = ((TaskState *)thread_cpu->opaque)->info; #endif rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) goto sigsegv; tswap_siginfo(&rt_sf->info, info); __put_user(0, &rt_sf->uc.tuc_flags); __put_user(0, &rt_sf->uc.tuc_link); __put_user((target_ulong)target_sigaltstack_used.ss_sp, &rt_sf->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(env->gpr[1]), &rt_sf->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &rt_sf->uc.tuc_stack.ss_size); #if !defined(TARGET_PPC64) __put_user(h2g (&rt_sf->uc.tuc_mcontext), &rt_sf->uc.tuc_regs); #endif for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &rt_sf->uc.tuc_sigmask.sig[i]); } #if defined(TARGET_PPC64) mctx = &rt_sf->uc.tuc_sigcontext.mcontext; trampptr = &rt_sf->trampoline[0]; sc = &rt_sf->uc.tuc_sigcontext; __put_user(h2g(mctx), &sc->regs); __put_user(sig, &sc->signal); #else mctx = &rt_sf->uc.tuc_mcontext; trampptr = (uint32_t *)&rt_sf->uc.tuc_mcontext.tramp; #endif save_user_regs(env, mctx); encode_trampoline(TARGET_NR_rt_sigreturn, trampptr); /* The kernel checks for the presence of a VDSO here. We don't emulate a vdso, so use a sigreturn system call. */ env->lr = (target_ulong) h2g(trampptr); /* Turn off all fp exceptions. */ env->fpscr = 0; /* Create a stack frame for the caller of the handler. */ newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); err |= put_user(env->gpr[1], newsp, target_ulong); if (err) goto sigsegv; /* Set up registers for signal handler. */ env->gpr[1] = newsp; env->gpr[3] = (target_ulong) sig; env->gpr[4] = (target_ulong) h2g(&rt_sf->info); env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); env->gpr[6] = (target_ulong) h2g(rt_sf); #if defined(TARGET_PPC64) if (get_ppc64_abi(image) < 2) { /* ELFv1 PPC64 function pointers are pointers to OPD entries. */ struct target_func_ptr *handler = (struct target_func_ptr *)g2h(ka->_sa_handler); env->nip = tswapl(handler->entry); env->gpr[2] = tswapl(handler->toc); } else { /* ELFv2 PPC64 function pointers are entry points, but R12 * must also be set */ env->nip = tswapl((target_ulong) ka->_sa_handler); env->gpr[12] = env->nip; } #else env->nip = (target_ulong) ka->_sa_handler; #endif /* Signal handlers are entered in big-endian mode. */ env->msr &= ~(1ull << MSR_LE); unlock_user_struct(rt_sf, rt_sf_addr, 1); return; sigsegv: unlock_user_struct(rt_sf, rt_sf_addr, 1); force_sigsegv(sig); } #if !defined(TARGET_PPC64) long do_sigreturn(CPUPPCState *env) { struct target_sigcontext *sc = NULL; struct target_mcontext *sr = NULL; target_ulong sr_addr = 0, sc_addr; sigset_t blocked; target_sigset_t set; sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) goto sigsegv; #if defined(TARGET_PPC64) set.sig[0] = sc->oldmask + ((uint64_t)(sc->_unused[3]) << 32); #else __get_user(set.sig[0], &sc->oldmask); __get_user(set.sig[1], &sc->_unused[3]); #endif target_to_host_sigset_internal(&blocked, &set); set_sigmask(&blocked); __get_user(sr_addr, &sc->regs); if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) goto sigsegv; restore_user_regs(env, sr, 1); unlock_user_struct(sr, sr_addr, 1); unlock_user_struct(sc, sc_addr, 1); return -TARGET_QEMU_ESIGRETURN; sigsegv: unlock_user_struct(sr, sr_addr, 1); unlock_user_struct(sc, sc_addr, 1); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #endif /* !defined(TARGET_PPC64) */ /* See arch/powerpc/kernel/signal_32.c. */ static int do_setcontext(struct target_ucontext *ucp, CPUPPCState *env, int sig) { struct target_mcontext *mcp; target_ulong mcp_addr; sigset_t blocked; target_sigset_t set; if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, tuc_sigmask), sizeof (set))) return 1; #if defined(TARGET_PPC64) mcp_addr = h2g(ucp) + offsetof(struct target_ucontext, tuc_sigcontext.mcontext); #else __get_user(mcp_addr, &ucp->tuc_regs); #endif if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) return 1; target_to_host_sigset_internal(&blocked, &set); set_sigmask(&blocked); restore_user_regs(env, mcp, sig); unlock_user_struct(mcp, mcp_addr, 1); return 0; } long do_rt_sigreturn(CPUPPCState *env) { struct target_rt_sigframe *rt_sf = NULL; target_ulong rt_sf_addr; rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) goto sigsegv; if (do_setcontext(&rt_sf->uc, env, 1)) goto sigsegv; do_sigaltstack(rt_sf_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, env->gpr[1]); unlock_user_struct(rt_sf, rt_sf_addr, 1); return -TARGET_QEMU_ESIGRETURN; sigsegv: unlock_user_struct(rt_sf, rt_sf_addr, 1); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_M68K) struct target_sigcontext { abi_ulong sc_mask; abi_ulong sc_usp; abi_ulong sc_d0; abi_ulong sc_d1; abi_ulong sc_a0; abi_ulong sc_a1; unsigned short sc_sr; abi_ulong sc_pc; }; struct target_sigframe { abi_ulong pretcode; int sig; int code; abi_ulong psc; char retcode[8]; abi_ulong extramask[TARGET_NSIG_WORDS-1]; struct target_sigcontext sc; }; typedef int target_greg_t; #define TARGET_NGREG 18 typedef target_greg_t target_gregset_t[TARGET_NGREG]; typedef struct target_fpregset { int f_fpcntl[3]; int f_fpregs[8*3]; } target_fpregset_t; struct target_mcontext { int version; target_gregset_t gregs; target_fpregset_t fpregs; }; #define TARGET_MCONTEXT_VERSION 2 struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_mcontext tuc_mcontext; abi_long tuc_filler[80]; target_sigset_t tuc_sigmask; }; struct target_rt_sigframe { abi_ulong pretcode; int sig; abi_ulong pinfo; abi_ulong puc; char retcode[8]; struct target_siginfo info; struct target_ucontext uc; }; static void setup_sigcontext(struct target_sigcontext *sc, CPUM68KState *env, abi_ulong mask) { uint32_t sr = (env->sr & 0xff00) | cpu_m68k_get_ccr(env); __put_user(mask, &sc->sc_mask); __put_user(env->aregs[7], &sc->sc_usp); __put_user(env->dregs[0], &sc->sc_d0); __put_user(env->dregs[1], &sc->sc_d1); __put_user(env->aregs[0], &sc->sc_a0); __put_user(env->aregs[1], &sc->sc_a1); __put_user(sr, &sc->sc_sr); __put_user(env->pc, &sc->sc_pc); } static void restore_sigcontext(CPUM68KState *env, struct target_sigcontext *sc) { int temp; __get_user(env->aregs[7], &sc->sc_usp); __get_user(env->dregs[0], &sc->sc_d0); __get_user(env->dregs[1], &sc->sc_d1); __get_user(env->aregs[0], &sc->sc_a0); __get_user(env->aregs[1], &sc->sc_a1); __get_user(env->pc, &sc->sc_pc); __get_user(temp, &sc->sc_sr); cpu_m68k_set_ccr(env, temp); } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct target_sigaction *ka, CPUM68KState *regs, size_t frame_size) { unsigned long sp; sp = regs->aregs[7]; /* This is the X/Open sanctioned signal stack switching. */ if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return ((sp - frame_size) & -8UL); } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUM68KState *env) { struct target_sigframe *frame; abi_ulong frame_addr; abi_ulong retcode_addr; abi_ulong sc_addr; int i; frame_addr = get_sigframe(ka, env, sizeof *frame); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } __put_user(sig, &frame->sig); sc_addr = frame_addr + offsetof(struct target_sigframe, sc); __put_user(sc_addr, &frame->psc); setup_sigcontext(&frame->sc, env, set->sig[0]); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->extramask[i - 1]); } /* Set up to return from userspace. */ retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); __put_user(retcode_addr, &frame->pretcode); /* moveq #,d0; trap #0 */ __put_user(0x70004e40 + (TARGET_NR_sigreturn << 16), (uint32_t *)(frame->retcode)); /* Set up to return from userspace */ env->aregs[7] = frame_addr; env->pc = ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } static inline void target_rt_save_fpu_state(struct target_ucontext *uc, CPUM68KState *env) { int i; target_fpregset_t *fpregs = &uc->tuc_mcontext.fpregs; __put_user(env->fpcr, &fpregs->f_fpcntl[0]); __put_user(env->fpsr, &fpregs->f_fpcntl[1]); /* fpiar is not emulated */ for (i = 0; i < 8; i++) { uint32_t high = env->fregs[i].d.high << 16; __put_user(high, &fpregs->f_fpregs[i * 3]); __put_user(env->fregs[i].d.low, (uint64_t *)&fpregs->f_fpregs[i * 3 + 1]); } } static inline int target_rt_setup_ucontext(struct target_ucontext *uc, CPUM68KState *env) { target_greg_t *gregs = uc->tuc_mcontext.gregs; uint32_t sr = (env->sr & 0xff00) | cpu_m68k_get_ccr(env); __put_user(TARGET_MCONTEXT_VERSION, &uc->tuc_mcontext.version); __put_user(env->dregs[0], &gregs[0]); __put_user(env->dregs[1], &gregs[1]); __put_user(env->dregs[2], &gregs[2]); __put_user(env->dregs[3], &gregs[3]); __put_user(env->dregs[4], &gregs[4]); __put_user(env->dregs[5], &gregs[5]); __put_user(env->dregs[6], &gregs[6]); __put_user(env->dregs[7], &gregs[7]); __put_user(env->aregs[0], &gregs[8]); __put_user(env->aregs[1], &gregs[9]); __put_user(env->aregs[2], &gregs[10]); __put_user(env->aregs[3], &gregs[11]); __put_user(env->aregs[4], &gregs[12]); __put_user(env->aregs[5], &gregs[13]); __put_user(env->aregs[6], &gregs[14]); __put_user(env->aregs[7], &gregs[15]); __put_user(env->pc, &gregs[16]); __put_user(sr, &gregs[17]); target_rt_save_fpu_state(uc, env); return 0; } static inline void target_rt_restore_fpu_state(CPUM68KState *env, struct target_ucontext *uc) { int i; target_fpregset_t *fpregs = &uc->tuc_mcontext.fpregs; uint32_t fpcr; __get_user(fpcr, &fpregs->f_fpcntl[0]); cpu_m68k_set_fpcr(env, fpcr); __get_user(env->fpsr, &fpregs->f_fpcntl[1]); /* fpiar is not emulated */ for (i = 0; i < 8; i++) { uint32_t high; __get_user(high, &fpregs->f_fpregs[i * 3]); env->fregs[i].d.high = high >> 16; __get_user(env->fregs[i].d.low, (uint64_t *)&fpregs->f_fpregs[i * 3 + 1]); } } static inline int target_rt_restore_ucontext(CPUM68KState *env, struct target_ucontext *uc) { int temp; target_greg_t *gregs = uc->tuc_mcontext.gregs; __get_user(temp, &uc->tuc_mcontext.version); if (temp != TARGET_MCONTEXT_VERSION) goto badframe; /* restore passed registers */ __get_user(env->dregs[0], &gregs[0]); __get_user(env->dregs[1], &gregs[1]); __get_user(env->dregs[2], &gregs[2]); __get_user(env->dregs[3], &gregs[3]); __get_user(env->dregs[4], &gregs[4]); __get_user(env->dregs[5], &gregs[5]); __get_user(env->dregs[6], &gregs[6]); __get_user(env->dregs[7], &gregs[7]); __get_user(env->aregs[0], &gregs[8]); __get_user(env->aregs[1], &gregs[9]); __get_user(env->aregs[2], &gregs[10]); __get_user(env->aregs[3], &gregs[11]); __get_user(env->aregs[4], &gregs[12]); __get_user(env->aregs[5], &gregs[13]); __get_user(env->aregs[6], &gregs[14]); __get_user(env->aregs[7], &gregs[15]); __get_user(env->pc, &gregs[16]); __get_user(temp, &gregs[17]); cpu_m68k_set_ccr(env, temp); target_rt_restore_fpu_state(env, uc); return 0; badframe: return 1; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUM68KState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr; abi_ulong retcode_addr; abi_ulong info_addr; abi_ulong uc_addr; int err = 0; int i; frame_addr = get_sigframe(ka, env, sizeof *frame); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } __put_user(sig, &frame->sig); info_addr = frame_addr + offsetof(struct target_rt_sigframe, info); __put_user(info_addr, &frame->pinfo); uc_addr = frame_addr + offsetof(struct target_rt_sigframe, uc); __put_user(uc_addr, &frame->puc); tswap_siginfo(&frame->info, info); /* Create the ucontext */ __put_user(0, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(env->aregs[7]), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); err |= target_rt_setup_ucontext(&frame->uc, env); if (err) goto give_sigsegv; for(i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } /* Set up to return from userspace. */ retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); __put_user(retcode_addr, &frame->pretcode); /* moveq #,d0; notb d0; trap #0 */ __put_user(0x70004600 + ((TARGET_NR_rt_sigreturn ^ 0xff) << 16), (uint32_t *)(frame->retcode + 0)); __put_user(0x4e40, (uint16_t *)(frame->retcode + 4)); if (err) goto give_sigsegv; /* Set up to return from userspace */ env->aregs[7] = frame_addr; env->pc = ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sigsegv(sig); } long do_sigreturn(CPUM68KState *env) { struct target_sigframe *frame; abi_ulong frame_addr = env->aregs[7] - 4; target_sigset_t target_set; sigset_t set; int i; trace_user_do_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; /* set blocked signals */ __get_user(target_set.sig[0], &frame->sc.sc_mask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(target_set.sig[i], &frame->extramask[i - 1]); } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); /* restore registers */ restore_sigcontext(env, &frame->sc); unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUM68KState *env) { struct target_rt_sigframe *frame; abi_ulong frame_addr = env->aregs[7] - 4; sigset_t set; trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); /* restore registers */ if (target_rt_restore_ucontext(env, &frame->uc)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_ALPHA) struct target_sigcontext { abi_long sc_onstack; abi_long sc_mask; abi_long sc_pc; abi_long sc_ps; abi_long sc_regs[32]; abi_long sc_ownedfp; abi_long sc_fpregs[32]; abi_ulong sc_fpcr; abi_ulong sc_fp_control; abi_ulong sc_reserved1; abi_ulong sc_reserved2; abi_ulong sc_ssize; abi_ulong sc_sbase; abi_ulong sc_traparg_a0; abi_ulong sc_traparg_a1; abi_ulong sc_traparg_a2; abi_ulong sc_fp_trap_pc; abi_ulong sc_fp_trigger_sum; abi_ulong sc_fp_trigger_inst; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; abi_ulong tuc_osf_sigmask; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; }; struct target_sigframe { struct target_sigcontext sc; unsigned int retcode[3]; }; struct target_rt_sigframe { target_siginfo_t info; struct target_ucontext uc; unsigned int retcode[3]; }; #define INSN_MOV_R30_R16 0x47fe0410 #define INSN_LDI_R0 0x201f0000 #define INSN_CALLSYS 0x00000083 static void setup_sigcontext(struct target_sigcontext *sc, CPUAlphaState *env, abi_ulong frame_addr, target_sigset_t *set) { int i; __put_user(on_sig_stack(frame_addr), &sc->sc_onstack); __put_user(set->sig[0], &sc->sc_mask); __put_user(env->pc, &sc->sc_pc); __put_user(8, &sc->sc_ps); for (i = 0; i < 31; ++i) { __put_user(env->ir[i], &sc->sc_regs[i]); } __put_user(0, &sc->sc_regs[31]); for (i = 0; i < 31; ++i) { __put_user(env->fir[i], &sc->sc_fpregs[i]); } __put_user(0, &sc->sc_fpregs[31]); __put_user(cpu_alpha_load_fpcr(env), &sc->sc_fpcr); __put_user(0, &sc->sc_traparg_a0); /* FIXME */ __put_user(0, &sc->sc_traparg_a1); /* FIXME */ __put_user(0, &sc->sc_traparg_a2); /* FIXME */ } static void restore_sigcontext(CPUAlphaState *env, struct target_sigcontext *sc) { uint64_t fpcr; int i; __get_user(env->pc, &sc->sc_pc); for (i = 0; i < 31; ++i) { __get_user(env->ir[i], &sc->sc_regs[i]); } for (i = 0; i < 31; ++i) { __get_user(env->fir[i], &sc->sc_fpregs[i]); } __get_user(fpcr, &sc->sc_fpcr); cpu_alpha_store_fpcr(env, fpcr); } static inline abi_ulong get_sigframe(struct target_sigaction *sa, CPUAlphaState *env, unsigned long framesize) { abi_ulong sp = env->ir[IR_SP]; /* This is the X/Open sanctioned signal stack switching. */ if ((sa->sa_flags & TARGET_SA_ONSTACK) != 0 && !sas_ss_flags(sp)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - framesize) & -32; } static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUAlphaState *env) { abi_ulong frame_addr, r26; struct target_sigframe *frame; int err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } setup_sigcontext(&frame->sc, env, frame_addr, set); if (ka->sa_restorer) { r26 = ka->sa_restorer; } else { __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); __put_user(INSN_LDI_R0 + TARGET_NR_sigreturn, &frame->retcode[1]); __put_user(INSN_CALLSYS, &frame->retcode[2]); /* imb() */ r26 = frame_addr; } unlock_user_struct(frame, frame_addr, 1); if (err) { give_sigsegv: force_sigsegv(sig); return; } env->ir[IR_RA] = r26; env->ir[IR_PV] = env->pc = ka->_sa_handler; env->ir[IR_A0] = sig; env->ir[IR_A1] = 0; env->ir[IR_A2] = frame_addr + offsetof(struct target_sigframe, sc); env->ir[IR_SP] = frame_addr; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUAlphaState *env) { abi_ulong frame_addr, r26; struct target_rt_sigframe *frame; int i, err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } tswap_siginfo(&frame->info, info); __put_user(0, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); __put_user(set->sig[0], &frame->uc.tuc_osf_sigmask); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(env->ir[IR_SP]), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); setup_sigcontext(&frame->uc.tuc_mcontext, env, frame_addr, set); for (i = 0; i < TARGET_NSIG_WORDS; ++i) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } if (ka->sa_restorer) { r26 = ka->sa_restorer; } else { __put_user(INSN_MOV_R30_R16, &frame->retcode[0]); __put_user(INSN_LDI_R0 + TARGET_NR_rt_sigreturn, &frame->retcode[1]); __put_user(INSN_CALLSYS, &frame->retcode[2]); /* imb(); */ r26 = frame_addr; } if (err) { give_sigsegv: force_sigsegv(sig); return; } env->ir[IR_RA] = r26; env->ir[IR_PV] = env->pc = ka->_sa_handler; env->ir[IR_A0] = sig; env->ir[IR_A1] = frame_addr + offsetof(struct target_rt_sigframe, info); env->ir[IR_A2] = frame_addr + offsetof(struct target_rt_sigframe, uc); env->ir[IR_SP] = frame_addr; } long do_sigreturn(CPUAlphaState *env) { struct target_sigcontext *sc; abi_ulong sc_addr = env->ir[IR_A0]; target_sigset_t target_set; sigset_t set; if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) { goto badframe; } target_sigemptyset(&target_set); __get_user(target_set.sig[0], &sc->sc_mask); target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); restore_sigcontext(env, sc); unlock_user_struct(sc, sc_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUAlphaState *env) { abi_ulong frame_addr = env->ir[IR_A0]; struct target_rt_sigframe *frame; sigset_t set; trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); restore_sigcontext(env, &frame->uc.tuc_mcontext); if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, env->ir[IR_SP]) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_TILEGX) struct target_sigcontext { union { /* General-purpose registers. */ abi_ulong gregs[56]; struct { abi_ulong __gregs[53]; abi_ulong tp; /* Aliases gregs[TREG_TP]. */ abi_ulong sp; /* Aliases gregs[TREG_SP]. */ abi_ulong lr; /* Aliases gregs[TREG_LR]. */ }; }; abi_ulong pc; /* Program counter. */ abi_ulong ics; /* In Interrupt Critical Section? */ abi_ulong faultnum; /* Fault number. */ abi_ulong pad[5]; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct target_rt_sigframe { unsigned char save_area[16]; /* caller save area */ struct target_siginfo info; struct target_ucontext uc; abi_ulong retcode[2]; }; #define INSN_MOVELI_R10_139 0x00045fe551483000ULL /* { moveli r10, 139 } */ #define INSN_SWINT1 0x286b180051485000ULL /* { swint1 } */ static void setup_sigcontext(struct target_sigcontext *sc, CPUArchState *env, int signo) { int i; for (i = 0; i < TILEGX_R_COUNT; ++i) { __put_user(env->regs[i], &sc->gregs[i]); } __put_user(env->pc, &sc->pc); __put_user(0, &sc->ics); __put_user(signo, &sc->faultnum); } static void restore_sigcontext(CPUTLGState *env, struct target_sigcontext *sc) { int i; for (i = 0; i < TILEGX_R_COUNT; ++i) { __get_user(env->regs[i], &sc->gregs[i]); } __get_user(env->pc, &sc->pc); } static abi_ulong get_sigframe(struct target_sigaction *ka, CPUArchState *env, size_t frame_size) { unsigned long sp = env->regs[TILEGX_R_SP]; if (on_sig_stack(sp) && !likely(on_sig_stack(sp - frame_size))) { return -1UL; } if ((ka->sa_flags & SA_ONSTACK) && !sas_ss_flags(sp)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } sp -= frame_size; sp &= -16UL; return sp; } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUArchState *env) { abi_ulong frame_addr; struct target_rt_sigframe *frame; unsigned long restorer; frame_addr = get_sigframe(ka, env, sizeof(*frame)); trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } /* Always write at least the signal number for the stack backtracer. */ if (ka->sa_flags & TARGET_SA_SIGINFO) { /* At sigreturn time, restore the callee-save registers too. */ tswap_siginfo(&frame->info, info); /* regs->flags |= PT_FLAGS_RESTORE_REGS; FIXME: we can skip it? */ } else { __put_user(info->si_signo, &frame->info.si_signo); } /* Create the ucontext. */ __put_user(0, &frame->uc.tuc_flags); __put_user(0, &frame->uc.tuc_link); __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(env->regs[TILEGX_R_SP]), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); setup_sigcontext(&frame->uc.tuc_mcontext, env, info->si_signo); if (ka->sa_flags & TARGET_SA_RESTORER) { restorer = (unsigned long) ka->sa_restorer; } else { __put_user(INSN_MOVELI_R10_139, &frame->retcode[0]); __put_user(INSN_SWINT1, &frame->retcode[1]); restorer = frame_addr + offsetof(struct target_rt_sigframe, retcode); } env->pc = (unsigned long) ka->_sa_handler; env->regs[TILEGX_R_SP] = (unsigned long) frame; env->regs[TILEGX_R_LR] = restorer; env->regs[0] = (unsigned long) sig; env->regs[1] = (unsigned long) &frame->info; env->regs[2] = (unsigned long) &frame->uc; /* regs->flags |= PT_FLAGS_CALLER_SAVES; FIXME: we can skip it? */ unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: force_sigsegv(sig); } long do_rt_sigreturn(CPUTLGState *env) { abi_ulong frame_addr = env->regs[TILEGX_R_SP]; struct target_rt_sigframe *frame; sigset_t set; trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); restore_sigcontext(env, &frame->uc.tuc_mcontext); if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, env->regs[TILEGX_R_SP]) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #elif defined(TARGET_HPPA) struct target_sigcontext { abi_ulong sc_flags; abi_ulong sc_gr[32]; uint64_t sc_fr[32]; abi_ulong sc_iasq[2]; abi_ulong sc_iaoq[2]; abi_ulong sc_sar; }; struct target_ucontext { abi_uint tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; abi_uint pad[1]; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; }; struct target_rt_sigframe { abi_uint tramp[9]; target_siginfo_t info; struct target_ucontext uc; /* hidden location of upper halves of pa2.0 64-bit gregs */ }; static void setup_sigcontext(struct target_sigcontext *sc, CPUArchState *env) { int flags = 0; int i; /* ??? if on_sig_stack, flags |= 1 (PARISC_SC_FLAG_ONSTACK). */ if (env->iaoq_f < TARGET_PAGE_SIZE) { /* In the gateway page, executing a syscall. */ flags |= 2; /* PARISC_SC_FLAG_IN_SYSCALL */ __put_user(env->gr[31], &sc->sc_iaoq[0]); __put_user(env->gr[31] + 4, &sc->sc_iaoq[1]); } else { __put_user(env->iaoq_f, &sc->sc_iaoq[0]); __put_user(env->iaoq_b, &sc->sc_iaoq[1]); } __put_user(0, &sc->sc_iasq[0]); __put_user(0, &sc->sc_iasq[1]); __put_user(flags, &sc->sc_flags); __put_user(cpu_hppa_get_psw(env), &sc->sc_gr[0]); for (i = 1; i < 32; ++i) { __put_user(env->gr[i], &sc->sc_gr[i]); } __put_user((uint64_t)env->fr0_shadow << 32, &sc->sc_fr[0]); for (i = 1; i < 32; ++i) { __put_user(env->fr[i], &sc->sc_fr[i]); } __put_user(env->sar, &sc->sc_sar); } static void restore_sigcontext(CPUArchState *env, struct target_sigcontext *sc) { target_ulong psw; int i; __get_user(psw, &sc->sc_gr[0]); cpu_hppa_put_psw(env, psw); for (i = 1; i < 32; ++i) { __get_user(env->gr[i], &sc->sc_gr[i]); } for (i = 0; i < 32; ++i) { __get_user(env->fr[i], &sc->sc_fr[i]); } cpu_hppa_loaded_fr0(env); __get_user(env->iaoq_f, &sc->sc_iaoq[0]); __get_user(env->iaoq_b, &sc->sc_iaoq[1]); __get_user(env->sar, &sc->sc_sar); } /* No, this doesn't look right, but it's copied straight from the kernel. */ #define PARISC_RT_SIGFRAME_SIZE32 \ ((sizeof(struct target_rt_sigframe) + 48 + 64) & -64) static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUArchState *env) { abi_ulong frame_addr, sp, haddr; struct target_rt_sigframe *frame; int i; sp = env->gr[30]; if (ka->sa_flags & TARGET_SA_ONSTACK) { if (sas_ss_flags(sp) == 0) { sp = (target_sigaltstack_used.ss_sp + 0x7f) & ~0x3f; } } frame_addr = QEMU_ALIGN_UP(sp, 64); sp = frame_addr + PARISC_RT_SIGFRAME_SIZE32; trace_user_setup_rt_frame(env, frame_addr); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { goto give_sigsegv; } tswap_siginfo(&frame->info, info); frame->uc.tuc_flags = 0; frame->uc.tuc_link = 0; __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->uc.tuc_stack.ss_flags); __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); for (i = 0; i < TARGET_NSIG_WORDS; i++) { __put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i]); } setup_sigcontext(&frame->uc.tuc_mcontext, env); __put_user(0x34190000, frame->tramp + 0); /* ldi 0,%r25 */ __put_user(0x3414015a, frame->tramp + 1); /* ldi __NR_rt_sigreturn,%r20 */ __put_user(0xe4008200, frame->tramp + 2); /* be,l 0x100(%sr2,%r0) */ __put_user(0x08000240, frame->tramp + 3); /* nop */ unlock_user_struct(frame, frame_addr, 1); env->gr[2] = h2g(frame->tramp); env->gr[30] = sp; env->gr[26] = sig; env->gr[25] = h2g(&frame->info); env->gr[24] = h2g(&frame->uc); haddr = ka->_sa_handler; if (haddr & 2) { /* Function descriptor. */ target_ulong *fdesc, dest; haddr &= -4; if (!lock_user_struct(VERIFY_READ, fdesc, haddr, 1)) { goto give_sigsegv; } __get_user(dest, fdesc); __get_user(env->gr[19], fdesc + 1); unlock_user_struct(fdesc, haddr, 1); haddr = dest; } env->iaoq_f = haddr; env->iaoq_b = haddr + 4; return; give_sigsegv: force_sigsegv(sig); } long do_rt_sigreturn(CPUArchState *env) { abi_ulong frame_addr = env->gr[30] - PARISC_RT_SIGFRAME_SIZE32; struct target_rt_sigframe *frame; sigset_t set; trace_user_do_rt_sigreturn(env, frame_addr); if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) { goto badframe; } target_to_host_sigset(&set, &frame->uc.tuc_sigmask); set_sigmask(&set); restore_sigcontext(env, &frame->uc.tuc_mcontext); unlock_user_struct(frame, frame_addr, 0); if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.tuc_stack), 0, env->gr[30]) == -EFAULT) { goto badframe; } unlock_user_struct(frame, frame_addr, 0); return -TARGET_QEMU_ESIGRETURN; badframe: force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } #else static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUArchState *env) { fprintf(stderr, "setup_frame: not implemented\n"); } static void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUArchState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUArchState *env) { fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUArchState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #endif static void handle_pending_signal(CPUArchState *cpu_env, int sig, struct emulated_sigtable *k) { CPUState *cpu = ENV_GET_CPU(cpu_env); abi_ulong handler; sigset_t set; target_sigset_t target_old_set; struct target_sigaction *sa; TaskState *ts = cpu->opaque; trace_user_handle_signal(cpu_env, sig); /* dequeue signal */ k->pending = 0; sig = gdb_handlesig(cpu, sig); if (!sig) { sa = NULL; handler = TARGET_SIG_IGN; } else { sa = &sigact_table[sig - 1]; handler = sa->_sa_handler; } if (do_strace) { print_taken_signal(sig, &k->info); } if (handler == TARGET_SIG_DFL) { /* default handler : ignore some signal. The other are job control or fatal */ if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { kill(getpid(),SIGSTOP); } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && sig != TARGET_SIGWINCH && sig != TARGET_SIGCONT) { dump_core_and_abort(sig); } } else if (handler == TARGET_SIG_IGN) { /* ignore sig */ } else if (handler == TARGET_SIG_ERR) { dump_core_and_abort(sig); } else { /* compute the blocked signals during the handler execution */ sigset_t *blocked_set; target_to_host_sigset(&set, &sa->sa_mask); /* SA_NODEFER indicates that the current signal should not be blocked during the handler */ if (!(sa->sa_flags & TARGET_SA_NODEFER)) sigaddset(&set, target_to_host_signal(sig)); /* save the previous blocked signal state to restore it at the end of the signal execution (see do_sigreturn) */ host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); /* block signals in the handler */ blocked_set = ts->in_sigsuspend ? &ts->sigsuspend_mask : &ts->signal_mask; sigorset(&ts->signal_mask, blocked_set, &set); ts->in_sigsuspend = 0; /* if the CPU is in VM86 mode, we restore the 32 bit values */ #if defined(TARGET_I386) && !defined(TARGET_X86_64) { CPUX86State *env = cpu_env; if (env->eflags & VM_MASK) save_v86_state(env); } #endif /* prepare the stack frame of the virtual CPU */ #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) \ || defined(TARGET_OPENRISC) || defined(TARGET_TILEGX) \ || defined(TARGET_PPC64) || defined(TARGET_HPPA) \ || defined(TARGET_NIOS2) || defined(TARGET_X86_64) /* These targets do not have traditional signals. */ setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); #else if (sa->sa_flags & TARGET_SA_SIGINFO) setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); else setup_frame(sig, sa, &target_old_set, cpu_env); #endif if (sa->sa_flags & TARGET_SA_RESETHAND) { sa->_sa_handler = TARGET_SIG_DFL; } } } void process_pending_signals(CPUArchState *cpu_env) { CPUState *cpu = ENV_GET_CPU(cpu_env); int sig; TaskState *ts = cpu->opaque; sigset_t set; sigset_t *blocked_set; while (atomic_read(&ts->signal_pending)) { /* FIXME: This is not threadsafe. */ sigfillset(&set); sigprocmask(SIG_SETMASK, &set, 0); restart_scan: sig = ts->sync_signal.pending; if (sig) { /* Synchronous signals are forced, * see force_sig_info() and callers in Linux * Note that not all of our queue_signal() calls in QEMU correspond * to force_sig_info() calls in Linux (some are send_sig_info()). * However it seems like a kernel bug to me to allow the process * to block a synchronous signal since it could then just end up * looping round and round indefinitely. */ if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; } handle_pending_signal(cpu_env, sig, &ts->sync_signal); } for (sig = 1; sig <= TARGET_NSIG; sig++) { blocked_set = ts->in_sigsuspend ? &ts->sigsuspend_mask : &ts->signal_mask; if (ts->sigtab[sig - 1].pending && (!sigismember(blocked_set, target_to_host_signal_table[sig]))) { handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); /* Restart scan from the beginning, as handle_pending_signal * might have resulted in a new synchronous signal (eg SIGSEGV). */ goto restart_scan; } } /* if no signal is pending, unblock signals and recheck (the act * of unblocking might cause us to take another host signal which * will set signal_pending again). */ atomic_set(&ts->signal_pending, 0); ts->in_sigsuspend = 0; set = ts->signal_mask; sigdelset(&set, SIGSEGV); sigdelset(&set, SIGBUS); sigprocmask(SIG_SETMASK, &set, 0); } ts->in_sigsuspend = 0; }