/* * Declarations for cpu physical memory functions * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2 or * later. See the COPYING file in the top-level directory. * */ /* * This header is for use by exec.c and memory.c ONLY. Do not include it. * The functions declared here will be removed soon. */ #ifndef RAM_ADDR_H #define RAM_ADDR_H #ifndef CONFIG_USER_ONLY #include "cpu.h" #include "sysemu/xen.h" #include "sysemu/tcg.h" #include "exec/ramlist.h" #include "exec/ramblock.h" #include "exec/exec-all.h" extern uint64_t total_dirty_pages; /** * clear_bmap_size: calculate clear bitmap size * * @pages: number of guest pages * @shift: guest page number shift * * Returns: number of bits for the clear bitmap */ static inline long clear_bmap_size(uint64_t pages, uint8_t shift) { return DIV_ROUND_UP(pages, 1UL << shift); } /** * clear_bmap_set: set clear bitmap for the page range. Must be with * bitmap_mutex held. * * @rb: the ramblock to operate on * @start: the start page number * @size: number of pages to set in the bitmap * * Returns: None */ static inline void clear_bmap_set(RAMBlock *rb, uint64_t start, uint64_t npages) { uint8_t shift = rb->clear_bmap_shift; bitmap_set(rb->clear_bmap, start >> shift, clear_bmap_size(npages, shift)); } /** * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set. * Must be with bitmap_mutex held. * * @rb: the ramblock to operate on * @page: the page number to check * * Returns: true if the bit was set, false otherwise */ static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page) { uint8_t shift = rb->clear_bmap_shift; return bitmap_test_and_clear(rb->clear_bmap, page >> shift, 1); } static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset) { return (b && b->host && offset < b->used_length) ? true : false; } static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset) { assert(offset_in_ramblock(block, offset)); return (char *)block->host + offset; } static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr, RAMBlock *rb) { uint64_t host_addr_offset = (uint64_t)(uintptr_t)(host_addr - (void *)rb->host); return host_addr_offset >> TARGET_PAGE_BITS; } bool ramblock_is_pmem(RAMBlock *rb); long qemu_minrampagesize(void); long qemu_maxrampagesize(void); /** * qemu_ram_alloc_from_file, * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing * file or device * * Parameters: * @size: the size in bytes of the ram block * @mr: the memory region where the ram block is * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, * RAM_READONLY_FD, RAM_GUEST_MEMFD * @mem_path or @fd: specify the backing file or device * @offset: Offset into target file * @errp: pointer to Error*, to store an error if it happens * * Return: * On success, return a pointer to the ram block. * On failure, return NULL. */ RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, uint32_t ram_flags, const char *mem_path, off_t offset, Error **errp); RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, uint32_t ram_flags, int fd, off_t offset, Error **errp); RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, MemoryRegion *mr, Error **errp); RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr, Error **errp); RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size, void (*resized)(const char*, uint64_t length, void *host), MemoryRegion *mr, Error **errp); void qemu_ram_free(RAMBlock *block); int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp); void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length); /* Clear whole block of mem */ static inline void qemu_ram_block_writeback(RAMBlock *block) { qemu_ram_msync(block, 0, block->used_length); } #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1) #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE)) static inline bool cpu_physical_memory_get_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { DirtyMemoryBlocks *blocks; unsigned long end, page; unsigned long idx, offset, base; bool dirty = false; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; WITH_RCU_READ_LOCK_GUARD() { blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; base = page - offset; while (page < end) { unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); unsigned long num = next - base; unsigned long found = find_next_bit(blocks->blocks[idx], num, offset); if (found < num) { dirty = true; break; } page = next; idx++; offset = 0; base += DIRTY_MEMORY_BLOCK_SIZE; } } return dirty; } static inline bool cpu_physical_memory_all_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { DirtyMemoryBlocks *blocks; unsigned long end, page; unsigned long idx, offset, base; bool dirty = true; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; RCU_READ_LOCK_GUARD(); blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; base = page - offset; while (page < end) { unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); unsigned long num = next - base; unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset); if (found < num) { dirty = false; break; } page = next; idx++; offset = 0; base += DIRTY_MEMORY_BLOCK_SIZE; } return dirty; } static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr, unsigned client) { return cpu_physical_memory_get_dirty(addr, 1, client); } static inline bool cpu_physical_memory_is_clean(ram_addr_t addr) { bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA); bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE); bool migration = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); return !(vga && code && migration); } static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start, ram_addr_t length, uint8_t mask) { uint8_t ret = 0; if (mask & (1 << DIRTY_MEMORY_VGA) && !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) { ret |= (1 << DIRTY_MEMORY_VGA); } if (mask & (1 << DIRTY_MEMORY_CODE) && !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) { ret |= (1 << DIRTY_MEMORY_CODE); } if (mask & (1 << DIRTY_MEMORY_MIGRATION) && !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) { ret |= (1 << DIRTY_MEMORY_MIGRATION); } return ret; } static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr, unsigned client) { unsigned long page, idx, offset; DirtyMemoryBlocks *blocks; assert(client < DIRTY_MEMORY_NUM); page = addr >> TARGET_PAGE_BITS; idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; RCU_READ_LOCK_GUARD(); blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); set_bit_atomic(offset, blocks->blocks[idx]); } static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, ram_addr_t length, uint8_t mask) { DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM]; unsigned long end, page; unsigned long idx, offset, base; int i; if (!mask && !xen_enabled()) { return; } end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; WITH_RCU_READ_LOCK_GUARD() { for (i = 0; i < DIRTY_MEMORY_NUM; i++) { blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]); } idx = page / DIRTY_MEMORY_BLOCK_SIZE; offset = page % DIRTY_MEMORY_BLOCK_SIZE; base = page - offset; while (page < end) { unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE); if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) { bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx], offset, next - page); } if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) { bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx], offset, next - page); } if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) { bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx], offset, next - page); } page = next; idx++; offset = 0; base += DIRTY_MEMORY_BLOCK_SIZE; } } xen_hvm_modified_memory(start, length); } #if !defined(_WIN32) /* * Contrary to cpu_physical_memory_sync_dirty_bitmap() this function returns * the number of dirty pages in @bitmap passed as argument. On the other hand, * cpu_physical_memory_sync_dirty_bitmap() returns newly dirtied pages that * weren't set in the global migration bitmap. */ static inline uint64_t cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap, ram_addr_t start, ram_addr_t pages) { unsigned long i, j; unsigned long page_number, c, nbits; hwaddr addr; ram_addr_t ram_addr; uint64_t num_dirty = 0; unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; unsigned long hpratio = qemu_real_host_page_size() / TARGET_PAGE_SIZE; unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); /* start address is aligned at the start of a word? */ if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) && (hpratio == 1)) { unsigned long **blocks[DIRTY_MEMORY_NUM]; unsigned long idx; unsigned long offset; long k; long nr = BITS_TO_LONGS(pages); idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE; offset = BIT_WORD((start >> TARGET_PAGE_BITS) % DIRTY_MEMORY_BLOCK_SIZE); WITH_RCU_READ_LOCK_GUARD() { for (i = 0; i < DIRTY_MEMORY_NUM; i++) { blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks; } for (k = 0; k < nr; k++) { if (bitmap[k]) { unsigned long temp = leul_to_cpu(bitmap[k]); nbits = ctpopl(temp); qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp); if (global_dirty_tracking) { qatomic_or( &blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp); if (unlikely( global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) { total_dirty_pages += nbits; } } num_dirty += nbits; if (tcg_enabled()) { qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp); } } if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { offset = 0; idx++; } } } xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS); } else { uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE; if (!global_dirty_tracking) { clients &= ~(1 << DIRTY_MEMORY_MIGRATION); } /* * bitmap-traveling is faster than memory-traveling (for addr...) * especially when most of the memory is not dirty. */ for (i = 0; i < len; i++) { if (bitmap[i] != 0) { c = leul_to_cpu(bitmap[i]); nbits = ctpopl(c); if (unlikely(global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) { total_dirty_pages += nbits; } num_dirty += nbits; do { j = ctzl(c); c &= ~(1ul << j); page_number = (i * HOST_LONG_BITS + j) * hpratio; addr = page_number * TARGET_PAGE_SIZE; ram_addr = start + addr; cpu_physical_memory_set_dirty_range(ram_addr, TARGET_PAGE_SIZE * hpratio, clients); } while (c != 0); } } } return num_dirty; } #endif /* not _WIN32 */ static inline void cpu_physical_memory_dirty_bits_cleared(ram_addr_t start, ram_addr_t length) { if (tcg_enabled()) { tlb_reset_dirty_range_all(start, length); } } bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, ram_addr_t length, unsigned client); DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client); bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, ram_addr_t start, ram_addr_t length); static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start, ram_addr_t length) { cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION); cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA); cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE); } /* Called with RCU critical section */ static inline uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb, ram_addr_t start, ram_addr_t length) { ram_addr_t addr; unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS); uint64_t num_dirty = 0; unsigned long *dest = rb->bmap; /* start address and length is aligned at the start of a word? */ if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) == (start + rb->offset) && !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) { int k; int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); unsigned long * const *src; unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE; unsigned long offset = BIT_WORD((word * BITS_PER_LONG) % DIRTY_MEMORY_BLOCK_SIZE); unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); src = qatomic_rcu_read( &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks; for (k = page; k < page + nr; k++) { if (src[idx][offset]) { unsigned long bits = qatomic_xchg(&src[idx][offset], 0); unsigned long new_dirty; new_dirty = ~dest[k]; dest[k] |= bits; new_dirty &= bits; num_dirty += ctpopl(new_dirty); } if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) { offset = 0; idx++; } } if (num_dirty) { cpu_physical_memory_dirty_bits_cleared(start, length); } if (rb->clear_bmap) { /* * Postpone the dirty bitmap clear to the point before we * really send the pages, also we will split the clear * dirty procedure into smaller chunks. */ clear_bmap_set(rb, start >> TARGET_PAGE_BITS, length >> TARGET_PAGE_BITS); } else { /* Slow path - still do that in a huge chunk */ memory_region_clear_dirty_bitmap(rb->mr, start, length); } } else { ram_addr_t offset = rb->offset; for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { if (cpu_physical_memory_test_and_clear_dirty( start + addr + offset, TARGET_PAGE_SIZE, DIRTY_MEMORY_MIGRATION)) { long k = (start + addr) >> TARGET_PAGE_BITS; if (!test_and_set_bit(k, dest)) { num_dirty++; } } } } return num_dirty; } #endif #endif