/* * Physical memory management API * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity <avi@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #ifndef MEMORY_H #define MEMORY_H #ifndef CONFIG_USER_ONLY #include "exec/cpu-common.h" #include "exec/hwaddr.h" #include "exec/memattrs.h" #include "exec/memop.h" #include "exec/ramlist.h" #include "qemu/bswap.h" #include "qemu/queue.h" #include "qemu/int128.h" #include "qemu/range.h" #include "qemu/notify.h" #include "qom/object.h" #include "qemu/rcu.h" #define RAM_ADDR_INVALID (~(ram_addr_t)0) #define MAX_PHYS_ADDR_SPACE_BITS 62 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1) #define TYPE_MEMORY_REGION "memory-region" DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION, TYPE_MEMORY_REGION) #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region" typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass; DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass, IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION) #define TYPE_RAM_DISCARD_MANAGER "ram-discard-manager" typedef struct RamDiscardManagerClass RamDiscardManagerClass; typedef struct RamDiscardManager RamDiscardManager; DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass, RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER); #ifdef CONFIG_FUZZ void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr); #else static inline void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr) { /* Do Nothing */ } #endif /* Possible bits for global_dirty_log_{start|stop} */ /* Dirty tracking enabled because migration is running */ #define GLOBAL_DIRTY_MIGRATION (1U << 0) /* Dirty tracking enabled because measuring dirty rate */ #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1) /* Dirty tracking enabled because dirty limit */ #define GLOBAL_DIRTY_LIMIT (1U << 2) #define GLOBAL_DIRTY_MASK (0x7) extern unsigned int global_dirty_tracking; typedef struct MemoryRegionOps MemoryRegionOps; struct ReservedRegion { Range range; unsigned type; }; /** * struct MemoryRegionSection: describes a fragment of a #MemoryRegion * * @mr: the region, or %NULL if empty * @fv: the flat view of the address space the region is mapped in * @offset_within_region: the beginning of the section, relative to @mr's start * @size: the size of the section; will not exceed @mr's boundaries * @offset_within_address_space: the address of the first byte of the section * relative to the region's address space * @readonly: writes to this section are ignored * @nonvolatile: this section is non-volatile * @unmergeable: this section should not get merged with adjacent sections */ struct MemoryRegionSection { Int128 size; MemoryRegion *mr; FlatView *fv; hwaddr offset_within_region; hwaddr offset_within_address_space; bool readonly; bool nonvolatile; bool unmergeable; }; typedef struct IOMMUTLBEntry IOMMUTLBEntry; /* See address_space_translate: bit 0 is read, bit 1 is write. */ typedef enum { IOMMU_NONE = 0, IOMMU_RO = 1, IOMMU_WO = 2, IOMMU_RW = 3, } IOMMUAccessFlags; #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0)) struct IOMMUTLBEntry { AddressSpace *target_as; hwaddr iova; hwaddr translated_addr; hwaddr addr_mask; /* 0xfff = 4k translation */ IOMMUAccessFlags perm; }; /* * Bitmap for different IOMMUNotifier capabilities. Each notifier can * register with one or multiple IOMMU Notifier capability bit(s). * * Normally there're two use cases for the notifiers: * * (1) When the device needs accurate synchronizations of the vIOMMU page * tables, it needs to register with both MAP|UNMAP notifies (which * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below). * * Regarding to accurate synchronization, it's when the notified * device maintains a shadow page table and must be notified on each * guest MAP (page table entry creation) and UNMAP (invalidation) * events (e.g. VFIO). Both notifications must be accurate so that * the shadow page table is fully in sync with the guest view. * * (2) When the device doesn't need accurate synchronizations of the * vIOMMU page tables, it needs to register only with UNMAP or * DEVIOTLB_UNMAP notifies. * * It's when the device maintains a cache of IOMMU translations * (IOTLB) and is able to fill that cache by requesting translations * from the vIOMMU through a protocol similar to ATS (Address * Translation Service). * * Note that in this mode the vIOMMU will not maintain a shadowed * page table for the address space, and the UNMAP messages can cover * more than the pages that used to get mapped. The IOMMU notifiee * should be able to take care of over-sized invalidations. */ typedef enum { IOMMU_NOTIFIER_NONE = 0, /* Notify cache invalidations */ IOMMU_NOTIFIER_UNMAP = 0x1, /* Notify entry changes (newly created entries) */ IOMMU_NOTIFIER_MAP = 0x2, /* Notify changes on device IOTLB entries */ IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04, } IOMMUNotifierFlag; #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP) #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \ IOMMU_NOTIFIER_DEVIOTLB_EVENTS) struct IOMMUNotifier; typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data); struct IOMMUNotifier { IOMMUNotify notify; IOMMUNotifierFlag notifier_flags; /* Notify for address space range start <= addr <= end */ hwaddr start; hwaddr end; int iommu_idx; QLIST_ENTRY(IOMMUNotifier) node; }; typedef struct IOMMUNotifier IOMMUNotifier; typedef struct IOMMUTLBEvent { IOMMUNotifierFlag type; IOMMUTLBEntry entry; } IOMMUTLBEvent; /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ #define RAM_PREALLOC (1 << 0) /* RAM is mmap-ed with MAP_SHARED */ #define RAM_SHARED (1 << 1) /* Only a portion of RAM (used_length) is actually used, and migrated. * Resizing RAM while migrating can result in the migration being canceled. */ #define RAM_RESIZEABLE (1 << 2) /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically * zero the page and wake waiting processes. * (Set during postcopy) */ #define RAM_UF_ZEROPAGE (1 << 3) /* RAM can be migrated */ #define RAM_MIGRATABLE (1 << 4) /* RAM is a persistent kind memory */ #define RAM_PMEM (1 << 5) /* * UFFDIO_WRITEPROTECT is used on this RAMBlock to * support 'write-tracking' migration type. * Implies ram_state->ram_wt_enabled. */ #define RAM_UF_WRITEPROTECT (1 << 6) /* * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge * pages if applicable) is skipped: will bail out if not supported. When not * set, the OS will do the reservation, if supported for the memory type. */ #define RAM_NORESERVE (1 << 7) /* RAM that isn't accessible through normal means. */ #define RAM_PROTECTED (1 << 8) /* RAM is an mmap-ed named file */ #define RAM_NAMED_FILE (1 << 9) /* RAM is mmap-ed read-only */ #define RAM_READONLY (1 << 10) /* RAM FD is opened read-only */ #define RAM_READONLY_FD (1 << 11) /* RAM can be private that has kvm guest memfd backend */ #define RAM_GUEST_MEMFD (1 << 12) static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn, IOMMUNotifierFlag flags, hwaddr start, hwaddr end, int iommu_idx) { n->notify = fn; n->notifier_flags = flags; n->start = start; n->end = end; n->iommu_idx = iommu_idx; } /* * Memory region callbacks */ struct MemoryRegionOps { /* Read from the memory region. @addr is relative to @mr; @size is * in bytes. */ uint64_t (*read)(void *opaque, hwaddr addr, unsigned size); /* Write to the memory region. @addr is relative to @mr; @size is * in bytes. */ void (*write)(void *opaque, hwaddr addr, uint64_t data, unsigned size); MemTxResult (*read_with_attrs)(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs); MemTxResult (*write_with_attrs)(void *opaque, hwaddr addr, uint64_t data, unsigned size, MemTxAttrs attrs); enum device_endian endianness; /* Guest-visible constraints: */ struct { /* If nonzero, specify bounds on access sizes beyond which a machine * check is thrown. */ unsigned min_access_size; unsigned max_access_size; /* If true, unaligned accesses are supported. Otherwise unaligned * accesses throw machine checks. */ bool unaligned; /* * If present, and returns #false, the transaction is not accepted * by the device (and results in machine dependent behaviour such * as a machine check exception). */ bool (*accepts)(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs); } valid; /* Internal implementation constraints: */ struct { /* If nonzero, specifies the minimum size implemented. Smaller sizes * will be rounded upwards and a partial result will be returned. */ unsigned min_access_size; /* If nonzero, specifies the maximum size implemented. Larger sizes * will be done as a series of accesses with smaller sizes. */ unsigned max_access_size; /* If true, unaligned accesses are supported. Otherwise all accesses * are converted to (possibly multiple) naturally aligned accesses. */ bool unaligned; } impl; }; typedef struct MemoryRegionClass { /* private */ ObjectClass parent_class; } MemoryRegionClass; enum IOMMUMemoryRegionAttr { IOMMU_ATTR_SPAPR_TCE_FD }; /* * IOMMUMemoryRegionClass: * * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION * and provide an implementation of at least the @translate method here * to handle requests to the memory region. Other methods are optional. * * The IOMMU implementation must use the IOMMU notifier infrastructure * to report whenever mappings are changed, by calling * memory_region_notify_iommu() (or, if necessary, by calling * memory_region_notify_iommu_one() for each registered notifier). * * Conceptually an IOMMU provides a mapping from input address * to an output TLB entry. If the IOMMU is aware of memory transaction * attributes and the output TLB entry depends on the transaction * attributes, we represent this using IOMMU indexes. Each index * selects a particular translation table that the IOMMU has: * * @attrs_to_index returns the IOMMU index for a set of transaction attributes * * @translate takes an input address and an IOMMU index * * and the mapping returned can only depend on the input address and the * IOMMU index. * * Most IOMMUs don't care about the transaction attributes and support * only a single IOMMU index. A more complex IOMMU might have one index * for secure transactions and one for non-secure transactions. */ struct IOMMUMemoryRegionClass { /* private: */ MemoryRegionClass parent_class; /* public: */ /** * @translate: * * Return a TLB entry that contains a given address. * * The IOMMUAccessFlags indicated via @flag are optional and may * be specified as IOMMU_NONE to indicate that the caller needs * the full translation information for both reads and writes. If * the access flags are specified then the IOMMU implementation * may use this as an optimization, to stop doing a page table * walk as soon as it knows that the requested permissions are not * allowed. If IOMMU_NONE is passed then the IOMMU must do the * full page table walk and report the permissions in the returned * IOMMUTLBEntry. (Note that this implies that an IOMMU may not * return different mappings for reads and writes.) * * The returned information remains valid while the caller is * holding the big QEMU lock or is inside an RCU critical section; * if the caller wishes to cache the mapping beyond that it must * register an IOMMU notifier so it can invalidate its cached * information when the IOMMU mapping changes. * * @iommu: the IOMMUMemoryRegion * * @hwaddr: address to be translated within the memory region * * @flag: requested access permission * * @iommu_idx: IOMMU index for the translation */ IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr, IOMMUAccessFlags flag, int iommu_idx); /** * @get_min_page_size: * * Returns minimum supported page size in bytes. * * If this method is not provided then the minimum is assumed to * be TARGET_PAGE_SIZE. * * @iommu: the IOMMUMemoryRegion */ uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu); /** * @notify_flag_changed: * * Called when IOMMU Notifier flag changes (ie when the set of * events which IOMMU users are requesting notification for changes). * Optional method -- need not be provided if the IOMMU does not * need to know exactly which events must be notified. * * @iommu: the IOMMUMemoryRegion * * @old_flags: events which previously needed to be notified * * @new_flags: events which now need to be notified * * Returns 0 on success, or a negative errno; in particular * returns -EINVAL if the new flag bitmap is not supported by the * IOMMU memory region. In case of failure, the error object * must be created */ int (*notify_flag_changed)(IOMMUMemoryRegion *iommu, IOMMUNotifierFlag old_flags, IOMMUNotifierFlag new_flags, Error **errp); /** * @replay: * * Called to handle memory_region_iommu_replay(). * * The default implementation of memory_region_iommu_replay() is to * call the IOMMU translate method for every page in the address space * with flag == IOMMU_NONE and then call the notifier if translate * returns a valid mapping. If this method is implemented then it * overrides the default behaviour, and must provide the full semantics * of memory_region_iommu_replay(), by calling @notifier for every * translation present in the IOMMU. * * Optional method -- an IOMMU only needs to provide this method * if the default is inefficient or produces undesirable side effects. * * Note: this is not related to record-and-replay functionality. */ void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier); /** * @get_attr: * * Get IOMMU misc attributes. This is an optional method that * can be used to allow users of the IOMMU to get implementation-specific * information. The IOMMU implements this method to handle calls * by IOMMU users to memory_region_iommu_get_attr() by filling in * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that * the IOMMU supports. If the method is unimplemented then * memory_region_iommu_get_attr() will always return -EINVAL. * * @iommu: the IOMMUMemoryRegion * * @attr: attribute being queried * * @data: memory to fill in with the attribute data * * Returns 0 on success, or a negative errno; in particular * returns -EINVAL for unrecognized or unimplemented attribute types. */ int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr, void *data); /** * @attrs_to_index: * * Return the IOMMU index to use for a given set of transaction attributes. * * Optional method: if an IOMMU only supports a single IOMMU index then * the default implementation of memory_region_iommu_attrs_to_index() * will return 0. * * The indexes supported by an IOMMU must be contiguous, starting at 0. * * @iommu: the IOMMUMemoryRegion * @attrs: memory transaction attributes */ int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs); /** * @num_indexes: * * Return the number of IOMMU indexes this IOMMU supports. * * Optional method: if this method is not provided, then * memory_region_iommu_num_indexes() will return 1, indicating that * only a single IOMMU index is supported. * * @iommu: the IOMMUMemoryRegion */ int (*num_indexes)(IOMMUMemoryRegion *iommu); /** * @iommu_set_page_size_mask: * * Restrict the page size mask that can be supported with a given IOMMU * memory region. Used for example to propagate host physical IOMMU page * size mask limitations to the virtual IOMMU. * * Optional method: if this method is not provided, then the default global * page mask is used. * * @iommu: the IOMMUMemoryRegion * * @page_size_mask: a bitmask of supported page sizes. At least one bit, * representing the smallest page size, must be set. Additional set bits * represent supported block sizes. For example a host physical IOMMU that * uses page tables with a page size of 4kB, and supports 2MB and 4GB * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate * block sizes is specified with mask 0xfffffffffffff000. * * Returns 0 on success, or a negative error. In case of failure, the error * object must be created. */ int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu, uint64_t page_size_mask, Error **errp); /** * @iommu_set_iova_ranges: * * Propagate information about the usable IOVA ranges for a given IOMMU * memory region. Used for example to propagate host physical device * reserved memory region constraints to the virtual IOMMU. * * Optional method: if this method is not provided, then the default IOVA * aperture is used. * * @iommu: the IOMMUMemoryRegion * * @iova_ranges: list of ordered IOVA ranges (at least one range) * * Returns 0 on success, or a negative error. In case of failure, the error * object must be created. */ int (*iommu_set_iova_ranges)(IOMMUMemoryRegion *iommu, GList *iova_ranges, Error **errp); }; typedef struct RamDiscardListener RamDiscardListener; typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl, MemoryRegionSection *section); typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl, MemoryRegionSection *section); struct RamDiscardListener { /* * @notify_populate: * * Notification that previously discarded memory is about to get populated. * Listeners are able to object. If any listener objects, already * successfully notified listeners are notified about a discard again. * * @rdl: the #RamDiscardListener getting notified * @section: the #MemoryRegionSection to get populated. The section * is aligned within the memory region to the minimum granularity * unless it would exceed the registered section. * * Returns 0 on success. If the notification is rejected by the listener, * an error is returned. */ NotifyRamPopulate notify_populate; /* * @notify_discard: * * Notification that previously populated memory was discarded successfully * and listeners should drop all references to such memory and prevent * new population (e.g., unmap). * * @rdl: the #RamDiscardListener getting notified * @section: the #MemoryRegionSection to get populated. The section * is aligned within the memory region to the minimum granularity * unless it would exceed the registered section. */ NotifyRamDiscard notify_discard; /* * @double_discard_supported: * * The listener suppors getting @notify_discard notifications that span * already discarded parts. */ bool double_discard_supported; MemoryRegionSection *section; QLIST_ENTRY(RamDiscardListener) next; }; static inline void ram_discard_listener_init(RamDiscardListener *rdl, NotifyRamPopulate populate_fn, NotifyRamDiscard discard_fn, bool double_discard_supported) { rdl->notify_populate = populate_fn; rdl->notify_discard = discard_fn; rdl->double_discard_supported = double_discard_supported; } typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque); typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque); /* * RamDiscardManagerClass: * * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion * regions are currently populated to be used/accessed by the VM, notifying * after parts were discarded (freeing up memory) and before parts will be * populated (consuming memory), to be used/accessed by the VM. * * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the * #MemoryRegion isn't mapped into an address space yet (either directly * or via an alias); it cannot change while the #MemoryRegion is * mapped into an address space. * * The #RamDiscardManager is intended to be used by technologies that are * incompatible with discarding of RAM (e.g., VFIO, which may pin all * memory inside a #MemoryRegion), and require proper coordination to only * map the currently populated parts, to hinder parts that are expected to * remain discarded from silently getting populated and consuming memory. * Technologies that support discarding of RAM don't have to bother and can * simply map the whole #MemoryRegion. * * An example #RamDiscardManager is virtio-mem, which logically (un)plugs * memory within an assigned RAM #MemoryRegion, coordinated with the VM. * Logically unplugging memory consists of discarding RAM. The VM agreed to not * access unplugged (discarded) memory - especially via DMA. virtio-mem will * properly coordinate with listeners before memory is plugged (populated), * and after memory is unplugged (discarded). * * Listeners are called in multiples of the minimum granularity (unless it * would exceed the registered range) and changes are aligned to the minimum * granularity within the #MemoryRegion. Listeners have to prepare for memory * becoming discarded in a different granularity than it was populated and the * other way around. */ struct RamDiscardManagerClass { /* private */ InterfaceClass parent_class; /* public */ /** * @get_min_granularity: * * Get the minimum granularity in which listeners will get notified * about changes within the #MemoryRegion via the #RamDiscardManager. * * @rdm: the #RamDiscardManager * @mr: the #MemoryRegion * * Returns the minimum granularity. */ uint64_t (*get_min_granularity)(const RamDiscardManager *rdm, const MemoryRegion *mr); /** * @is_populated: * * Check whether the given #MemoryRegionSection is completely populated * (i.e., no parts are currently discarded) via the #RamDiscardManager. * There are no alignment requirements. * * @rdm: the #RamDiscardManager * @section: the #MemoryRegionSection * * Returns whether the given range is completely populated. */ bool (*is_populated)(const RamDiscardManager *rdm, const MemoryRegionSection *section); /** * @replay_populated: * * Call the #ReplayRamPopulate callback for all populated parts within the * #MemoryRegionSection via the #RamDiscardManager. * * In case any call fails, no further calls are made. * * @rdm: the #RamDiscardManager * @section: the #MemoryRegionSection * @replay_fn: the #ReplayRamPopulate callback * @opaque: pointer to forward to the callback * * Returns 0 on success, or a negative error if any notification failed. */ int (*replay_populated)(const RamDiscardManager *rdm, MemoryRegionSection *section, ReplayRamPopulate replay_fn, void *opaque); /** * @replay_discarded: * * Call the #ReplayRamDiscard callback for all discarded parts within the * #MemoryRegionSection via the #RamDiscardManager. * * @rdm: the #RamDiscardManager * @section: the #MemoryRegionSection * @replay_fn: the #ReplayRamDiscard callback * @opaque: pointer to forward to the callback */ void (*replay_discarded)(const RamDiscardManager *rdm, MemoryRegionSection *section, ReplayRamDiscard replay_fn, void *opaque); /** * @register_listener: * * Register a #RamDiscardListener for the given #MemoryRegionSection and * immediately notify the #RamDiscardListener about all populated parts * within the #MemoryRegionSection via the #RamDiscardManager. * * In case any notification fails, no further notifications are triggered * and an error is logged. * * @rdm: the #RamDiscardManager * @rdl: the #RamDiscardListener * @section: the #MemoryRegionSection */ void (*register_listener)(RamDiscardManager *rdm, RamDiscardListener *rdl, MemoryRegionSection *section); /** * @unregister_listener: * * Unregister a previously registered #RamDiscardListener via the * #RamDiscardManager after notifying the #RamDiscardListener about all * populated parts becoming unpopulated within the registered * #MemoryRegionSection. * * @rdm: the #RamDiscardManager * @rdl: the #RamDiscardListener */ void (*unregister_listener)(RamDiscardManager *rdm, RamDiscardListener *rdl); }; uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, const MemoryRegion *mr); bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, const MemoryRegionSection *section); int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, MemoryRegionSection *section, ReplayRamPopulate replay_fn, void *opaque); void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, MemoryRegionSection *section, ReplayRamDiscard replay_fn, void *opaque); void ram_discard_manager_register_listener(RamDiscardManager *rdm, RamDiscardListener *rdl, MemoryRegionSection *section); void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, RamDiscardListener *rdl); bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr, ram_addr_t *ram_addr, bool *read_only, bool *mr_has_discard_manager); typedef struct CoalescedMemoryRange CoalescedMemoryRange; typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd; /** MemoryRegion: * * A struct representing a memory region. */ struct MemoryRegion { Object parent_obj; /* private: */ /* The following fields should fit in a cache line */ bool romd_mode; bool ram; bool subpage; bool readonly; /* For RAM regions */ bool nonvolatile; bool rom_device; bool flush_coalesced_mmio; bool unmergeable; uint8_t dirty_log_mask; bool is_iommu; RAMBlock *ram_block; Object *owner; /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */ DeviceState *dev; const MemoryRegionOps *ops; void *opaque; MemoryRegion *container; int mapped_via_alias; /* Mapped via an alias, container might be NULL */ Int128 size; hwaddr addr; void (*destructor)(MemoryRegion *mr); uint64_t align; bool terminates; bool ram_device; bool enabled; bool warning_printed; /* For reservations */ uint8_t vga_logging_count; MemoryRegion *alias; hwaddr alias_offset; int32_t priority; QTAILQ_HEAD(, MemoryRegion) subregions; QTAILQ_ENTRY(MemoryRegion) subregions_link; QTAILQ_HEAD(, CoalescedMemoryRange) coalesced; const char *name; unsigned ioeventfd_nb; MemoryRegionIoeventfd *ioeventfds; RamDiscardManager *rdm; /* Only for RAM */ /* For devices designed to perform re-entrant IO into their own IO MRs */ bool disable_reentrancy_guard; }; struct IOMMUMemoryRegion { MemoryRegion parent_obj; QLIST_HEAD(, IOMMUNotifier) iommu_notify; IOMMUNotifierFlag iommu_notify_flags; }; #define IOMMU_NOTIFIER_FOREACH(n, mr) \ QLIST_FOREACH((n), &(mr)->iommu_notify, node) #define MEMORY_LISTENER_PRIORITY_MIN 0 #define MEMORY_LISTENER_PRIORITY_ACCEL 10 #define MEMORY_LISTENER_PRIORITY_DEV_BACKEND 10 /** * struct MemoryListener: callbacks structure for updates to the physical memory map * * Allows a component to adjust to changes in the guest-visible memory map. * Use with memory_listener_register() and memory_listener_unregister(). */ struct MemoryListener { /** * @begin: * * Called at the beginning of an address space update transaction. * Followed by calls to #MemoryListener.region_add(), * #MemoryListener.region_del(), #MemoryListener.region_nop(), * #MemoryListener.log_start() and #MemoryListener.log_stop() in * increasing address order. * * @listener: The #MemoryListener. */ void (*begin)(MemoryListener *listener); /** * @commit: * * Called at the end of an address space update transaction, * after the last call to #MemoryListener.region_add(), * #MemoryListener.region_del() or #MemoryListener.region_nop(), * #MemoryListener.log_start() and #MemoryListener.log_stop(). * * @listener: The #MemoryListener. */ void (*commit)(MemoryListener *listener); /** * @region_add: * * Called during an address space update transaction, * for a section of the address space that is new in this address space * space since the last transaction. * * @listener: The #MemoryListener. * @section: The new #MemoryRegionSection. */ void (*region_add)(MemoryListener *listener, MemoryRegionSection *section); /** * @region_del: * * Called during an address space update transaction, * for a section of the address space that has disappeared in the address * space since the last transaction. * * @listener: The #MemoryListener. * @section: The old #MemoryRegionSection. */ void (*region_del)(MemoryListener *listener, MemoryRegionSection *section); /** * @region_nop: * * Called during an address space update transaction, * for a section of the address space that is in the same place in the address * space as in the last transaction. * * @listener: The #MemoryListener. * @section: The #MemoryRegionSection. */ void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section); /** * @log_start: * * Called during an address space update transaction, after * one of #MemoryListener.region_add(), #MemoryListener.region_del() or * #MemoryListener.region_nop(), if dirty memory logging clients have * become active since the last transaction. * * @listener: The #MemoryListener. * @section: The #MemoryRegionSection. * @old: A bitmap of dirty memory logging clients that were active in * the previous transaction. * @new: A bitmap of dirty memory logging clients that are active in * the current transaction. */ void (*log_start)(MemoryListener *listener, MemoryRegionSection *section, int old, int new); /** * @log_stop: * * Called during an address space update transaction, after * one of #MemoryListener.region_add(), #MemoryListener.region_del() or * #MemoryListener.region_nop() and possibly after * #MemoryListener.log_start(), if dirty memory logging clients have * become inactive since the last transaction. * * @listener: The #MemoryListener. * @section: The #MemoryRegionSection. * @old: A bitmap of dirty memory logging clients that were active in * the previous transaction. * @new: A bitmap of dirty memory logging clients that are active in * the current transaction. */ void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section, int old, int new); /** * @log_sync: * * Called by memory_region_snapshot_and_clear_dirty() and * memory_global_dirty_log_sync(), before accessing QEMU's "official" * copy of the dirty memory bitmap for a #MemoryRegionSection. * * @listener: The #MemoryListener. * @section: The #MemoryRegionSection. */ void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section); /** * @log_sync_global: * * This is the global version of @log_sync when the listener does * not have a way to synchronize the log with finer granularity. * When the listener registers with @log_sync_global defined, then * its @log_sync must be NULL. Vice versa. * * @listener: The #MemoryListener. * @last_stage: The last stage to synchronize the log during migration. * The caller should guarantee that the synchronization with true for * @last_stage is triggered for once after all VCPUs have been stopped. */ void (*log_sync_global)(MemoryListener *listener, bool last_stage); /** * @log_clear: * * Called before reading the dirty memory bitmap for a * #MemoryRegionSection. * * @listener: The #MemoryListener. * @section: The #MemoryRegionSection. */ void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section); /** * @log_global_start: * * Called by memory_global_dirty_log_start(), which * enables the %DIRTY_LOG_MIGRATION client on all memory regions in * the address space. #MemoryListener.log_global_start() is also * called when a #MemoryListener is added, if global dirty logging is * active at that time. * * @listener: The #MemoryListener. * @errp: pointer to Error*, to store an error if it happens. * * Return: true on success, else false setting @errp with error. */ bool (*log_global_start)(MemoryListener *listener, Error **errp); /** * @log_global_stop: * * Called by memory_global_dirty_log_stop(), which * disables the %DIRTY_LOG_MIGRATION client on all memory regions in * the address space. * * @listener: The #MemoryListener. */ void (*log_global_stop)(MemoryListener *listener); /** * @log_global_after_sync: * * Called after reading the dirty memory bitmap * for any #MemoryRegionSection. * * @listener: The #MemoryListener. */ void (*log_global_after_sync)(MemoryListener *listener); /** * @eventfd_add: * * Called during an address space update transaction, * for a section of the address space that has had a new ioeventfd * registration since the last transaction. * * @listener: The #MemoryListener. * @section: The new #MemoryRegionSection. * @match_data: The @match_data parameter for the new ioeventfd. * @data: The @data parameter for the new ioeventfd. * @e: The #EventNotifier parameter for the new ioeventfd. */ void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e); /** * @eventfd_del: * * Called during an address space update transaction, * for a section of the address space that has dropped an ioeventfd * registration since the last transaction. * * @listener: The #MemoryListener. * @section: The new #MemoryRegionSection. * @match_data: The @match_data parameter for the dropped ioeventfd. * @data: The @data parameter for the dropped ioeventfd. * @e: The #EventNotifier parameter for the dropped ioeventfd. */ void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e); /** * @coalesced_io_add: * * Called during an address space update transaction, * for a section of the address space that has had a new coalesced * MMIO range registration since the last transaction. * * @listener: The #MemoryListener. * @section: The new #MemoryRegionSection. * @addr: The starting address for the coalesced MMIO range. * @len: The length of the coalesced MMIO range. */ void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section, hwaddr addr, hwaddr len); /** * @coalesced_io_del: * * Called during an address space update transaction, * for a section of the address space that has dropped a coalesced * MMIO range since the last transaction. * * @listener: The #MemoryListener. * @section: The new #MemoryRegionSection. * @addr: The starting address for the coalesced MMIO range. * @len: The length of the coalesced MMIO range. */ void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section, hwaddr addr, hwaddr len); /** * @priority: * * Govern the order in which memory listeners are invoked. Lower priorities * are invoked earlier for "add" or "start" callbacks, and later for "delete" * or "stop" callbacks. */ unsigned priority; /** * @name: * * Name of the listener. It can be used in contexts where we'd like to * identify one memory listener with the rest. */ const char *name; /* private: */ AddressSpace *address_space; QTAILQ_ENTRY(MemoryListener) link; QTAILQ_ENTRY(MemoryListener) link_as; }; /** * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects */ struct AddressSpace { /* private: */ struct rcu_head rcu; char *name; MemoryRegion *root; /* Accessed via RCU. */ struct FlatView *current_map; int ioeventfd_nb; int ioeventfd_notifiers; struct MemoryRegionIoeventfd *ioeventfds; QTAILQ_HEAD(, MemoryListener) listeners; QTAILQ_ENTRY(AddressSpace) address_spaces_link; }; typedef struct AddressSpaceDispatch AddressSpaceDispatch; typedef struct FlatRange FlatRange; /* Flattened global view of current active memory hierarchy. Kept in sorted * order. */ struct FlatView { struct rcu_head rcu; unsigned ref; FlatRange *ranges; unsigned nr; unsigned nr_allocated; struct AddressSpaceDispatch *dispatch; MemoryRegion *root; }; static inline FlatView *address_space_to_flatview(AddressSpace *as) { return qatomic_rcu_read(&as->current_map); } /** * typedef flatview_cb: callback for flatview_for_each_range() * * @start: start address of the range within the FlatView * @len: length of the range in bytes * @mr: MemoryRegion covering this range * @offset_in_region: offset of the first byte of the range within @mr * @opaque: data pointer passed to flatview_for_each_range() * * Returns: true to stop the iteration, false to keep going. */ typedef bool (*flatview_cb)(Int128 start, Int128 len, const MemoryRegion *mr, hwaddr offset_in_region, void *opaque); /** * flatview_for_each_range: Iterate through a FlatView * @fv: the FlatView to iterate through * @cb: function to call for each range * @opaque: opaque data pointer to pass to @cb * * A FlatView is made up of a list of non-overlapping ranges, each of * which is a slice of a MemoryRegion. This function iterates through * each range in @fv, calling @cb. The callback function can terminate * iteration early by returning 'true'. */ void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque); static inline bool MemoryRegionSection_eq(MemoryRegionSection *a, MemoryRegionSection *b) { return a->mr == b->mr && a->fv == b->fv && a->offset_within_region == b->offset_within_region && a->offset_within_address_space == b->offset_within_address_space && int128_eq(a->size, b->size) && a->readonly == b->readonly && a->nonvolatile == b->nonvolatile; } /** * memory_region_section_new_copy: Copy a memory region section * * Allocate memory for a new copy, copy the memory region section, and * properly take a reference on all relevant members. * * @s: the #MemoryRegionSection to copy */ MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s); /** * memory_region_section_new_copy: Free a copied memory region section * * Free a copy of a memory section created via memory_region_section_new_copy(). * properly dropping references on all relevant members. * * @s: the #MemoryRegionSection to copy */ void memory_region_section_free_copy(MemoryRegionSection *s); /** * memory_region_init: Initialize a memory region * * The region typically acts as a container for other memory regions. Use * memory_region_add_subregion() to add subregions. * * @mr: the #MemoryRegion to be initialized * @owner: the object that tracks the region's reference count * @name: used for debugging; not visible to the user or ABI * @size: size of the region; any subregions beyond this size will be clipped */ void memory_region_init(MemoryRegion *mr, Object *owner, const char *name, uint64_t size); /** * memory_region_ref: Add 1 to a memory region's reference count * * Whenever memory regions are accessed outside the BQL, they need to be * preserved against hot-unplug. MemoryRegions actually do not have their * own reference count; they piggyback on a QOM object, their "owner". * This function adds a reference to the owner. * * All MemoryRegions must have an owner if they can disappear, even if the * device they belong to operates exclusively under the BQL. This is because * the region could be returned at any time by memory_region_find, and this * is usually under guest control. * * @mr: the #MemoryRegion */ void memory_region_ref(MemoryRegion *mr); /** * memory_region_unref: Remove 1 to a memory region's reference count * * Whenever memory regions are accessed outside the BQL, they need to be * preserved against hot-unplug. MemoryRegions actually do not have their * own reference count; they piggyback on a QOM object, their "owner". * This function removes a reference to the owner and possibly destroys it. * * @mr: the #MemoryRegion */ void memory_region_unref(MemoryRegion *mr); /** * memory_region_init_io: Initialize an I/O memory region. * * Accesses into the region will cause the callbacks in @ops to be called. * if @size is nonzero, subregions will be clipped to @size. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @ops: a structure containing read and write callbacks to be used when * I/O is performed on the region. * @opaque: passed to the read and write callbacks of the @ops structure. * @name: used for debugging; not visible to the user or ABI * @size: size of the region. */ void memory_region_init_io(MemoryRegion *mr, Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size); /** * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses * into the region will modify memory * directly. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @errp: pointer to Error*, to store an error if it happens. * * Note that this function does not do anything to cause the data in the * RAM memory region to be migrated; that is the responsibility of the caller. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_ram_nomigrate(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp); /** * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region. * Accesses into the region will * modify memory directly. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE, * RAM_GUEST_MEMFD. * @errp: pointer to Error*, to store an error if it happens. * * Note that this function does not do anything to cause the data in the * RAM memory region to be migrated; that is the responsibility of the caller. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint32_t ram_flags, Error **errp); /** * memory_region_init_resizeable_ram: Initialize memory region with resizable * RAM. Accesses into the region will * modify memory directly. Only an initial * portion of this RAM is actually used. * Changing the size while migrating * can result in the migration being * canceled. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: used size of the region. * @max_size: max size of the region. * @resized: callback to notify owner about used size change. * @errp: pointer to Error*, to store an error if it happens. * * Note that this function does not do anything to cause the data in the * RAM memory region to be migrated; that is the responsibility of the caller. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_resizeable_ram(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint64_t max_size, void (*resized)(const char*, uint64_t length, void *host), Error **errp); #ifdef CONFIG_POSIX /** * memory_region_init_ram_from_file: Initialize RAM memory region with a * mmap-ed backend. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @align: alignment of the region base address; if 0, the default alignment * (getpagesize()) will be used. * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, * RAM_READONLY_FD, RAM_GUEST_MEMFD * @path: the path in which to allocate the RAM. * @offset: offset within the file referenced by path * @errp: pointer to Error*, to store an error if it happens. * * Note that this function does not do anything to cause the data in the * RAM memory region to be migrated; that is the responsibility of the caller. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_ram_from_file(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint64_t align, uint32_t ram_flags, const char *path, ram_addr_t offset, Error **errp); /** * memory_region_init_ram_from_fd: Initialize RAM memory region with a * mmap-ed backend. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: the name of the region. * @size: size of the region. * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM, * RAM_NORESERVE, RAM_PROTECTED, RAM_NAMED_FILE, RAM_READONLY, * RAM_READONLY_FD, RAM_GUEST_MEMFD * @fd: the fd to mmap. * @offset: offset within the file referenced by fd * @errp: pointer to Error*, to store an error if it happens. * * Note that this function does not do anything to cause the data in the * RAM memory region to be migrated; that is the responsibility of the caller. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_ram_from_fd(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint32_t ram_flags, int fd, ram_addr_t offset, Error **errp); #endif /** * memory_region_init_ram_ptr: Initialize RAM memory region from a * user-provided pointer. Accesses into the * region will modify memory directly. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @ptr: memory to be mapped; must contain at least @size bytes. * * Note that this function does not do anything to cause the data in the * RAM memory region to be migrated; that is the responsibility of the caller. */ void memory_region_init_ram_ptr(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, void *ptr); /** * memory_region_init_ram_device_ptr: Initialize RAM device memory region from * a user-provided pointer. * * A RAM device represents a mapping to a physical device, such as to a PCI * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped * into the VM address space and access to the region will modify memory * directly. However, the memory region should not be included in a memory * dump (device may not be enabled/mapped at the time of the dump), and * operations incompatible with manipulating MMIO should be avoided. Replaces * skip_dump flag. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: the name of the region. * @size: size of the region. * @ptr: memory to be mapped; must contain at least @size bytes. * * Note that this function does not do anything to cause the data in the * RAM memory region to be migrated; that is the responsibility of the caller. * (For RAM device memory regions, migrating the contents rarely makes sense.) */ void memory_region_init_ram_device_ptr(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, void *ptr); /** * memory_region_init_alias: Initialize a memory region that aliases all or a * part of another memory region. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: used for debugging; not visible to the user or ABI * @orig: the region to be referenced; @mr will be equivalent to * @orig between @offset and @offset + @size - 1. * @offset: start of the section in @orig to be referenced. * @size: size of the region. */ void memory_region_init_alias(MemoryRegion *mr, Object *owner, const char *name, MemoryRegion *orig, hwaddr offset, uint64_t size); /** * memory_region_init_rom_nomigrate: Initialize a ROM memory region. * * This has the same effect as calling memory_region_init_ram_nomigrate() * and then marking the resulting region read-only with * memory_region_set_readonly(). * * Note that this function does not do anything to cause the data in the * RAM side of the memory region to be migrated; that is the responsibility * of the caller. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @errp: pointer to Error*, to store an error if it happens. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_rom_nomigrate(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp); /** * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region. * Writes are handled via callbacks. * * Note that this function does not do anything to cause the data in the * RAM side of the memory region to be migrated; that is the responsibility * of the caller. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @ops: callbacks for write access handling (must not be NULL). * @opaque: passed to the read and write callbacks of the @ops structure. * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @errp: pointer to Error*, to store an error if it happens. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr, Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size, Error **errp); /** * memory_region_init_iommu: Initialize a memory region of a custom type * that translates addresses * * An IOMMU region translates addresses and forwards accesses to a target * memory region. * * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION. * @_iommu_mr should be a pointer to enough memory for an instance of * that subclass, @instance_size is the size of that subclass, and * @mrtypename is its name. This function will initialize @_iommu_mr as an * instance of the subclass, and its methods will then be called to handle * accesses to the memory region. See the documentation of * #IOMMUMemoryRegionClass for further details. * * @_iommu_mr: the #IOMMUMemoryRegion to be initialized * @instance_size: the IOMMUMemoryRegion subclass instance size * @mrtypename: the type name of the #IOMMUMemoryRegion * @owner: the object that tracks the region's reference count * @name: used for debugging; not visible to the user or ABI * @size: size of the region. */ void memory_region_init_iommu(void *_iommu_mr, size_t instance_size, const char *mrtypename, Object *owner, const char *name, uint64_t size); /** * memory_region_init_ram - Initialize RAM memory region. Accesses into the * region will modify memory directly. * * @mr: the #MemoryRegion to be initialized * @owner: the object that tracks the region's reference count (must be * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL) * @name: name of the memory region * @size: size of the region in bytes * @errp: pointer to Error*, to store an error if it happens. * * This function allocates RAM for a board model or device, and * arranges for it to be migrated (by calling vmstate_register_ram() * if @owner is a DeviceState, or vmstate_register_ram_global() if * @owner is NULL). * * TODO: Currently we restrict @owner to being either NULL (for * global RAM regions with no owner) or devices, so that we can * give the RAM block a unique name for migration purposes. * We should lift this restriction and allow arbitrary Objects. * If you pass a non-NULL non-device @owner then we will assert. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_ram(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp); /** * memory_region_init_rom: Initialize a ROM memory region. * * This has the same effect as calling memory_region_init_ram() * and then marking the resulting region read-only with * memory_region_set_readonly(). This includes arranging for the * contents to be migrated. * * TODO: Currently we restrict @owner to being either NULL (for * global RAM regions with no owner) or devices, so that we can * give the RAM block a unique name for migration purposes. * We should lift this restriction and allow arbitrary Objects. * If you pass a non-NULL non-device @owner then we will assert. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @errp: pointer to Error*, to store an error if it happens. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_rom(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp); /** * memory_region_init_rom_device: Initialize a ROM memory region. * Writes are handled via callbacks. * * This function initializes a memory region backed by RAM for reads * and callbacks for writes, and arranges for the RAM backing to * be migrated (by calling vmstate_register_ram() * if @owner is a DeviceState, or vmstate_register_ram_global() if * @owner is NULL). * * TODO: Currently we restrict @owner to being either NULL (for * global RAM regions with no owner) or devices, so that we can * give the RAM block a unique name for migration purposes. * We should lift this restriction and allow arbitrary Objects. * If you pass a non-NULL non-device @owner then we will assert. * * @mr: the #MemoryRegion to be initialized. * @owner: the object that tracks the region's reference count * @ops: callbacks for write access handling (must not be NULL). * @opaque: passed to the read and write callbacks of the @ops structure. * @name: Region name, becomes part of RAMBlock name used in migration stream * must be unique within any device * @size: size of the region. * @errp: pointer to Error*, to store an error if it happens. * * Return: true on success, else false setting @errp with error. */ bool memory_region_init_rom_device(MemoryRegion *mr, Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size, Error **errp); /** * memory_region_owner: get a memory region's owner. * * @mr: the memory region being queried. */ Object *memory_region_owner(MemoryRegion *mr); /** * memory_region_size: get a memory region's size. * * @mr: the memory region being queried. */ uint64_t memory_region_size(MemoryRegion *mr); /** * memory_region_is_ram: check whether a memory region is random access * * Returns %true if a memory region is random access. * * @mr: the memory region being queried */ static inline bool memory_region_is_ram(MemoryRegion *mr) { return mr->ram; } /** * memory_region_is_ram_device: check whether a memory region is a ram device * * Returns %true if a memory region is a device backed ram region * * @mr: the memory region being queried */ bool memory_region_is_ram_device(MemoryRegion *mr); /** * memory_region_is_romd: check whether a memory region is in ROMD mode * * Returns %true if a memory region is a ROM device and currently set to allow * direct reads. * * @mr: the memory region being queried */ static inline bool memory_region_is_romd(MemoryRegion *mr) { return mr->rom_device && mr->romd_mode; } /** * memory_region_is_protected: check whether a memory region is protected * * Returns %true if a memory region is protected RAM and cannot be accessed * via standard mechanisms, e.g. DMA. * * @mr: the memory region being queried */ bool memory_region_is_protected(MemoryRegion *mr); /** * memory_region_has_guest_memfd: check whether a memory region has guest_memfd * associated * * Returns %true if a memory region's ram_block has valid guest_memfd assigned. * * @mr: the memory region being queried */ bool memory_region_has_guest_memfd(MemoryRegion *mr); /** * memory_region_get_iommu: check whether a memory region is an iommu * * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu, * otherwise NULL. * * @mr: the memory region being queried */ static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr) { if (mr->alias) { return memory_region_get_iommu(mr->alias); } if (mr->is_iommu) { return (IOMMUMemoryRegion *) mr; } return NULL; } /** * memory_region_get_iommu_class_nocheck: returns iommu memory region class * if an iommu or NULL if not * * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu, * otherwise NULL. This is fast path avoiding QOM checking, use with caution. * * @iommu_mr: the memory region being queried */ static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck( IOMMUMemoryRegion *iommu_mr) { return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class); } #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL) /** * memory_region_iommu_get_min_page_size: get minimum supported page size * for an iommu * * Returns minimum supported page size for an iommu. * * @iommu_mr: the memory region being queried */ uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr); /** * memory_region_notify_iommu: notify a change in an IOMMU translation entry. * * Note: for any IOMMU implementation, an in-place mapping change * should be notified with an UNMAP followed by a MAP. * * @iommu_mr: the memory region that was changed * @iommu_idx: the IOMMU index for the translation table which has changed * @event: TLB event with the new entry in the IOMMU translation table. * The entry replaces all old entries for the same virtual I/O address * range. */ void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, int iommu_idx, IOMMUTLBEvent event); /** * memory_region_notify_iommu_one: notify a change in an IOMMU translation * entry to a single notifier * * This works just like memory_region_notify_iommu(), but it only * notifies a specific notifier, not all of them. * * @notifier: the notifier to be notified * @event: TLB event with the new entry in the IOMMU translation table. * The entry replaces all old entries for the same virtual I/O address * range. */ void memory_region_notify_iommu_one(IOMMUNotifier *notifier, IOMMUTLBEvent *event); /** * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU * translation that covers the * range of a notifier * * @notifier: the notifier to be notified */ void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier); /** * memory_region_register_iommu_notifier: register a notifier for changes to * IOMMU translation entries. * * Returns 0 on success, or a negative errno otherwise. In particular, * -EINVAL indicates that at least one of the attributes of the notifier * is not supported (flag/range) by the IOMMU memory region. In case of error * the error object must be created. * * @mr: the memory region to observe * @n: the IOMMUNotifier to be added; the notify callback receives a * pointer to an #IOMMUTLBEntry as the opaque value; the pointer * ceases to be valid on exit from the notifier. * @errp: pointer to Error*, to store an error if it happens. */ int memory_region_register_iommu_notifier(MemoryRegion *mr, IOMMUNotifier *n, Error **errp); /** * memory_region_iommu_replay: replay existing IOMMU translations to * a notifier with the minimum page granularity returned by * mr->iommu_ops->get_page_size(). * * Note: this is not related to record-and-replay functionality. * * @iommu_mr: the memory region to observe * @n: the notifier to which to replay iommu mappings */ void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n); /** * memory_region_unregister_iommu_notifier: unregister a notifier for * changes to IOMMU translation entries. * * @mr: the memory region which was observed and for which notity_stopped() * needs to be called * @n: the notifier to be removed. */ void memory_region_unregister_iommu_notifier(MemoryRegion *mr, IOMMUNotifier *n); /** * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is * defined on the IOMMU. * * Returns 0 on success, or a negative errno otherwise. In particular, * -EINVAL indicates that the IOMMU does not support the requested * attribute. * * @iommu_mr: the memory region * @attr: the requested attribute * @data: a pointer to the requested attribute data */ int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, enum IOMMUMemoryRegionAttr attr, void *data); /** * memory_region_iommu_attrs_to_index: return the IOMMU index to * use for translations with the given memory transaction attributes. * * @iommu_mr: the memory region * @attrs: the memory transaction attributes */ int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, MemTxAttrs attrs); /** * memory_region_iommu_num_indexes: return the total number of IOMMU * indexes that this IOMMU supports. * * @iommu_mr: the memory region */ int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr); /** * memory_region_iommu_set_page_size_mask: set the supported page * sizes for a given IOMMU memory region * * @iommu_mr: IOMMU memory region * @page_size_mask: supported page size mask * @errp: pointer to Error*, to store an error if it happens. */ int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, uint64_t page_size_mask, Error **errp); /** * memory_region_iommu_set_iova_ranges - Set the usable IOVA ranges * for a given IOMMU MR region * * @iommu: IOMMU memory region * @iova_ranges: list of ordered IOVA ranges (at least one range) * @errp: pointer to Error*, to store an error if it happens. */ int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu, GList *iova_ranges, Error **errp); /** * memory_region_name: get a memory region's name * * Returns the string that was used to initialize the memory region. * * @mr: the memory region being queried */ const char *memory_region_name(const MemoryRegion *mr); /** * memory_region_is_logging: return whether a memory region is logging writes * * Returns %true if the memory region is logging writes for the given client * * @mr: the memory region being queried * @client: the client being queried */ bool memory_region_is_logging(MemoryRegion *mr, uint8_t client); /** * memory_region_get_dirty_log_mask: return the clients for which a * memory region is logging writes. * * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants * are the bit indices. * * @mr: the memory region being queried */ uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr); /** * memory_region_is_rom: check whether a memory region is ROM * * Returns %true if a memory region is read-only memory. * * @mr: the memory region being queried */ static inline bool memory_region_is_rom(MemoryRegion *mr) { return mr->ram && mr->readonly; } /** * memory_region_is_nonvolatile: check whether a memory region is non-volatile * * Returns %true is a memory region is non-volatile memory. * * @mr: the memory region being queried */ static inline bool memory_region_is_nonvolatile(MemoryRegion *mr) { return mr->nonvolatile; } /** * memory_region_get_fd: Get a file descriptor backing a RAM memory region. * * Returns a file descriptor backing a file-based RAM memory region, * or -1 if the region is not a file-based RAM memory region. * * @mr: the RAM or alias memory region being queried. */ int memory_region_get_fd(MemoryRegion *mr); /** * memory_region_from_host: Convert a pointer into a RAM memory region * and an offset within it. * * Given a host pointer inside a RAM memory region (created with * memory_region_init_ram() or memory_region_init_ram_ptr()), return * the MemoryRegion and the offset within it. * * Use with care; by the time this function returns, the returned pointer is * not protected by RCU anymore. If the caller is not within an RCU critical * section and does not hold the BQL, it must have other means of * protecting the pointer, such as a reference to the region that includes * the incoming ram_addr_t. * * @ptr: the host pointer to be converted * @offset: the offset within memory region */ MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset); /** * memory_region_get_ram_ptr: Get a pointer into a RAM memory region. * * Returns a host pointer to a RAM memory region (created with * memory_region_init_ram() or memory_region_init_ram_ptr()). * * Use with care; by the time this function returns, the returned pointer is * not protected by RCU anymore. If the caller is not within an RCU critical * section and does not hold the BQL, it must have other means of * protecting the pointer, such as a reference to the region that includes * the incoming ram_addr_t. * * @mr: the memory region being queried. */ void *memory_region_get_ram_ptr(MemoryRegion *mr); /* memory_region_ram_resize: Resize a RAM region. * * Resizing RAM while migrating can result in the migration being canceled. * Care has to be taken if the guest might have already detected the memory. * * @mr: a memory region created with @memory_region_init_resizeable_ram. * @newsize: the new size the region * @errp: pointer to Error*, to store an error if it happens. */ void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp); /** * memory_region_msync: Synchronize selected address range of * a memory mapped region * * @mr: the memory region to be msync * @addr: the initial address of the range to be sync * @size: the size of the range to be sync */ void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size); /** * memory_region_writeback: Trigger cache writeback for * selected address range * * @mr: the memory region to be updated * @addr: the initial address of the range to be written back * @size: the size of the range to be written back */ void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size); /** * memory_region_set_log: Turn dirty logging on or off for a region. * * Turns dirty logging on or off for a specified client (display, migration). * Only meaningful for RAM regions. * * @mr: the memory region being updated. * @log: whether dirty logging is to be enabled or disabled. * @client: the user of the logging information; %DIRTY_MEMORY_VGA only. */ void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client); /** * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region. * * Marks a range of bytes as dirty, after it has been dirtied outside * guest code. * * @mr: the memory region being dirtied. * @addr: the address (relative to the start of the region) being dirtied. * @size: size of the range being dirtied. */ void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, hwaddr size); /** * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range * * This function is called when the caller wants to clear the remote * dirty bitmap of a memory range within the memory region. This can * be used by e.g. KVM to manually clear dirty log when * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host * kernel. * * @mr: the memory region to clear the dirty log upon * @start: start address offset within the memory region * @len: length of the memory region to clear dirty bitmap */ void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, hwaddr len); /** * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty * bitmap and clear it. * * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and * returns the snapshot. The snapshot can then be used to query dirty * status, using memory_region_snapshot_get_dirty. Snapshotting allows * querying the same page multiple times, which is especially useful for * display updates where the scanlines often are not page aligned. * * The dirty bitmap region which gets copied into the snapshot (and * cleared afterwards) can be larger than requested. The boundaries * are rounded up/down so complete bitmap longs (covering 64 pages on * 64bit hosts) can be copied over into the bitmap snapshot. Which * isn't a problem for display updates as the extra pages are outside * the visible area, and in case the visible area changes a full * display redraw is due anyway. Should other use cases for this * function emerge we might have to revisit this implementation * detail. * * Use g_free to release DirtyBitmapSnapshot. * * @mr: the memory region being queried. * @addr: the address (relative to the start of the region) being queried. * @size: the size of the range being queried. * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA. */ DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, hwaddr addr, hwaddr size, unsigned client); /** * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty * in the specified dirty bitmap snapshot. * * @mr: the memory region being queried. * @snap: the dirty bitmap snapshot * @addr: the address (relative to the start of the region) being queried. * @size: the size of the range being queried. */ bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap, hwaddr addr, hwaddr size); /** * memory_region_reset_dirty: Mark a range of pages as clean, for a specified * client. * * Marks a range of pages as no longer dirty. * * @mr: the region being updated. * @addr: the start of the subrange being cleaned. * @size: the size of the subrange being cleaned. * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or * %DIRTY_MEMORY_VGA. */ void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, hwaddr size, unsigned client); /** * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate * TBs (for self-modifying code). * * The MemoryRegionOps->write() callback of a ROM device must use this function * to mark byte ranges that have been modified internally, such as by directly * accessing the memory returned by memory_region_get_ram_ptr(). * * This function marks the range dirty and invalidates TBs so that TCG can * detect self-modifying code. * * @mr: the region being flushed. * @addr: the start, relative to the start of the region, of the range being * flushed. * @size: the size, in bytes, of the range being flushed. */ void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size); /** * memory_region_set_readonly: Turn a memory region read-only (or read-write) * * Allows a memory region to be marked as read-only (turning it into a ROM). * only useful on RAM regions. * * @mr: the region being updated. * @readonly: whether rhe region is to be ROM or RAM. */ void memory_region_set_readonly(MemoryRegion *mr, bool readonly); /** * memory_region_set_nonvolatile: Turn a memory region non-volatile * * Allows a memory region to be marked as non-volatile. * only useful on RAM regions. * * @mr: the region being updated. * @nonvolatile: whether rhe region is to be non-volatile. */ void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile); /** * memory_region_rom_device_set_romd: enable/disable ROMD mode * * Allows a ROM device (initialized with memory_region_init_rom_device() to * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the * device is mapped to guest memory and satisfies read access directly. * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function. * Writes are always handled by the #MemoryRegion.write function. * * @mr: the memory region to be updated * @romd_mode: %true to put the region into ROMD mode */ void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode); /** * memory_region_set_coalescing: Enable memory coalescing for the region. * * Enabled writes to a region to be queued for later processing. MMIO ->write * callbacks may be delayed until a non-coalesced MMIO is issued. * Only useful for IO regions. Roughly similar to write-combining hardware. * * @mr: the memory region to be write coalesced */ void memory_region_set_coalescing(MemoryRegion *mr); /** * memory_region_add_coalescing: Enable memory coalescing for a sub-range of * a region. * * Like memory_region_set_coalescing(), but works on a sub-range of a region. * Multiple calls can be issued coalesced disjoint ranges. * * @mr: the memory region to be updated. * @offset: the start of the range within the region to be coalesced. * @size: the size of the subrange to be coalesced. */ void memory_region_add_coalescing(MemoryRegion *mr, hwaddr offset, uint64_t size); /** * memory_region_clear_coalescing: Disable MMIO coalescing for the region. * * Disables any coalescing caused by memory_region_set_coalescing() or * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory * hardware. * * @mr: the memory region to be updated. */ void memory_region_clear_coalescing(MemoryRegion *mr); /** * memory_region_set_flush_coalesced: Enforce memory coalescing flush before * accesses. * * Ensure that pending coalesced MMIO request are flushed before the memory * region is accessed. This property is automatically enabled for all regions * passed to memory_region_set_coalescing() and memory_region_add_coalescing(). * * @mr: the memory region to be updated. */ void memory_region_set_flush_coalesced(MemoryRegion *mr); /** * memory_region_clear_flush_coalesced: Disable memory coalescing flush before * accesses. * * Clear the automatic coalesced MMIO flushing enabled via * memory_region_set_flush_coalesced. Note that this service has no effect on * memory regions that have MMIO coalescing enabled for themselves. For them, * automatic flushing will stop once coalescing is disabled. * * @mr: the memory region to be updated. */ void memory_region_clear_flush_coalesced(MemoryRegion *mr); /** * memory_region_add_eventfd: Request an eventfd to be triggered when a word * is written to a location. * * Marks a word in an IO region (initialized with memory_region_init_io()) * as a trigger for an eventfd event. The I/O callback will not be called. * The caller must be prepared to handle failure (that is, take the required * action if the callback _is_ called). * * @mr: the memory region being updated. * @addr: the address within @mr that is to be monitored * @size: the size of the access to trigger the eventfd * @match_data: whether to match against @data, instead of just @addr * @data: the data to match against the guest write * @e: event notifier to be triggered when @addr, @size, and @data all match. **/ void memory_region_add_eventfd(MemoryRegion *mr, hwaddr addr, unsigned size, bool match_data, uint64_t data, EventNotifier *e); /** * memory_region_del_eventfd: Cancel an eventfd. * * Cancels an eventfd trigger requested by a previous * memory_region_add_eventfd() call. * * @mr: the memory region being updated. * @addr: the address within @mr that is to be monitored * @size: the size of the access to trigger the eventfd * @match_data: whether to match against @data, instead of just @addr * @data: the data to match against the guest write * @e: event notifier to be triggered when @addr, @size, and @data all match. */ void memory_region_del_eventfd(MemoryRegion *mr, hwaddr addr, unsigned size, bool match_data, uint64_t data, EventNotifier *e); /** * memory_region_add_subregion: Add a subregion to a container. * * Adds a subregion at @offset. The subregion may not overlap with other * subregions (except for those explicitly marked as overlapping). A region * may only be added once as a subregion (unless removed with * memory_region_del_subregion()); use memory_region_init_alias() if you * want a region to be a subregion in multiple locations. * * @mr: the region to contain the new subregion; must be a container * initialized with memory_region_init(). * @offset: the offset relative to @mr where @subregion is added. * @subregion: the subregion to be added. */ void memory_region_add_subregion(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion); /** * memory_region_add_subregion_overlap: Add a subregion to a container * with overlap. * * Adds a subregion at @offset. The subregion may overlap with other * subregions. Conflicts are resolved by having a higher @priority hide a * lower @priority. Subregions without priority are taken as @priority 0. * A region may only be added once as a subregion (unless removed with * memory_region_del_subregion()); use memory_region_init_alias() if you * want a region to be a subregion in multiple locations. * * @mr: the region to contain the new subregion; must be a container * initialized with memory_region_init(). * @offset: the offset relative to @mr where @subregion is added. * @subregion: the subregion to be added. * @priority: used for resolving overlaps; highest priority wins. */ void memory_region_add_subregion_overlap(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion, int priority); /** * memory_region_get_ram_addr: Get the ram address associated with a memory * region * * @mr: the region to be queried */ ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr); uint64_t memory_region_get_alignment(const MemoryRegion *mr); /** * memory_region_del_subregion: Remove a subregion. * * Removes a subregion from its container. * * @mr: the container to be updated. * @subregion: the region being removed; must be a current subregion of @mr. */ void memory_region_del_subregion(MemoryRegion *mr, MemoryRegion *subregion); /* * memory_region_set_enabled: dynamically enable or disable a region * * Enables or disables a memory region. A disabled memory region * ignores all accesses to itself and its subregions. It does not * obscure sibling subregions with lower priority - it simply behaves as * if it was removed from the hierarchy. * * Regions default to being enabled. * * @mr: the region to be updated * @enabled: whether to enable or disable the region */ void memory_region_set_enabled(MemoryRegion *mr, bool enabled); /* * memory_region_set_address: dynamically update the address of a region * * Dynamically updates the address of a region, relative to its container. * May be used on regions are currently part of a memory hierarchy. * * @mr: the region to be updated * @addr: new address, relative to container region */ void memory_region_set_address(MemoryRegion *mr, hwaddr addr); /* * memory_region_set_size: dynamically update the size of a region. * * Dynamically updates the size of a region. * * @mr: the region to be updated * @size: used size of the region. */ void memory_region_set_size(MemoryRegion *mr, uint64_t size); /* * memory_region_set_alias_offset: dynamically update a memory alias's offset * * Dynamically updates the offset into the target region that an alias points * to, as if the fourth argument to memory_region_init_alias() has changed. * * @mr: the #MemoryRegion to be updated; should be an alias. * @offset: the new offset into the target memory region */ void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset); /* * memory_region_set_unmergeable: Set a memory region unmergeable * * Mark a memory region unmergeable, resulting in the memory region (or * everything contained in a memory region container) not getting merged when * simplifying the address space and notifying memory listeners. Consequently, * memory listeners will never get notified about ranges that are larger than * the original memory regions. * * This is primarily useful when multiple aliases to a RAM memory region are * mapped into a memory region container, and updates (e.g., enable/disable or * map/unmap) of individual memory region aliases are not supposed to affect * other memory regions in the same container. * * @mr: the #MemoryRegion to be updated * @unmergeable: whether to mark the #MemoryRegion unmergeable */ void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable); /** * memory_region_present: checks if an address relative to a @container * translates into #MemoryRegion within @container * * Answer whether a #MemoryRegion within @container covers the address * @addr. * * @container: a #MemoryRegion within which @addr is a relative address * @addr: the area within @container to be searched */ bool memory_region_present(MemoryRegion *container, hwaddr addr); /** * memory_region_is_mapped: returns true if #MemoryRegion is mapped * into another memory region, which does not necessarily imply that it is * mapped into an address space. * * @mr: a #MemoryRegion which should be checked if it's mapped */ bool memory_region_is_mapped(MemoryRegion *mr); /** * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a * #MemoryRegion * * The #RamDiscardManager cannot change while a memory region is mapped. * * @mr: the #MemoryRegion */ RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr); /** * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a * #RamDiscardManager assigned * * @mr: the #MemoryRegion */ static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr) { return !!memory_region_get_ram_discard_manager(mr); } /** * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a * #MemoryRegion * * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion * that does not cover RAM, or a #MemoryRegion that already has a * #RamDiscardManager assigned. * * @mr: the #MemoryRegion * @rdm: #RamDiscardManager to set */ void memory_region_set_ram_discard_manager(MemoryRegion *mr, RamDiscardManager *rdm); /** * memory_region_find: translate an address/size relative to a * MemoryRegion into a #MemoryRegionSection. * * Locates the first #MemoryRegion within @mr that overlaps the range * given by @addr and @size. * * Returns a #MemoryRegionSection that describes a contiguous overlap. * It will have the following characteristics: * - @size = 0 iff no overlap was found * - @mr is non-%NULL iff an overlap was found * * Remember that in the return value the @offset_within_region is * relative to the returned region (in the .@mr field), not to the * @mr argument. * * Similarly, the .@offset_within_address_space is relative to the * address space that contains both regions, the passed and the * returned one. However, in the special case where the @mr argument * has no container (and thus is the root of the address space), the * following will hold: * - @offset_within_address_space >= @addr * - @offset_within_address_space + .@size <= @addr + @size * * @mr: a MemoryRegion within which @addr is a relative address * @addr: start of the area within @as to be searched * @size: size of the area to be searched */ MemoryRegionSection memory_region_find(MemoryRegion *mr, hwaddr addr, uint64_t size); /** * memory_global_dirty_log_sync: synchronize the dirty log for all memory * * Synchronizes the dirty page log for all address spaces. * * @last_stage: whether this is the last stage of live migration */ void memory_global_dirty_log_sync(bool last_stage); /** * memory_global_dirty_log_sync: synchronize the dirty log for all memory * * Synchronizes the vCPUs with a thread that is reading the dirty bitmap. * This function must be called after the dirty log bitmap is cleared, and * before dirty guest memory pages are read. If you are using * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes * care of doing this. */ void memory_global_after_dirty_log_sync(void); /** * memory_region_transaction_begin: Start a transaction. * * During a transaction, changes will be accumulated and made visible * only when the transaction ends (is committed). */ void memory_region_transaction_begin(void); /** * memory_region_transaction_commit: Commit a transaction and make changes * visible to the guest. */ void memory_region_transaction_commit(void); /** * memory_listener_register: register callbacks to be called when memory * sections are mapped or unmapped into an address * space * * @listener: an object containing the callbacks to be called * @filter: if non-%NULL, only regions in this address space will be observed */ void memory_listener_register(MemoryListener *listener, AddressSpace *filter); /** * memory_listener_unregister: undo the effect of memory_listener_register() * * @listener: an object containing the callbacks to be removed */ void memory_listener_unregister(MemoryListener *listener); /** * memory_global_dirty_log_start: begin dirty logging for all regions * * @flags: purpose of starting dirty log, migration or dirty rate * @errp: pointer to Error*, to store an error if it happens. * * Return: true on success, else false setting @errp with error. */ bool memory_global_dirty_log_start(unsigned int flags, Error **errp); /** * memory_global_dirty_log_stop: end dirty logging for all regions * * @flags: purpose of stopping dirty log, migration or dirty rate */ void memory_global_dirty_log_stop(unsigned int flags); void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled); bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs); /** * memory_region_dispatch_read: perform a read directly to the specified * MemoryRegion. * * @mr: #MemoryRegion to access * @addr: address within that region * @pval: pointer to uint64_t which the data is written to * @op: size, sign, and endianness of the memory operation * @attrs: memory transaction attributes to use for the access */ MemTxResult memory_region_dispatch_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, MemOp op, MemTxAttrs attrs); /** * memory_region_dispatch_write: perform a write directly to the specified * MemoryRegion. * * @mr: #MemoryRegion to access * @addr: address within that region * @data: data to write * @op: size, sign, and endianness of the memory operation * @attrs: memory transaction attributes to use for the access */ MemTxResult memory_region_dispatch_write(MemoryRegion *mr, hwaddr addr, uint64_t data, MemOp op, MemTxAttrs attrs); /** * address_space_init: initializes an address space * * @as: an uninitialized #AddressSpace * @root: a #MemoryRegion that routes addresses for the address space * @name: an address space name. The name is only used for debugging * output. */ void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name); /** * address_space_destroy: destroy an address space * * Releases all resources associated with an address space. After an address space * is destroyed, its root memory region (given by address_space_init()) may be destroyed * as well. * * @as: address space to be destroyed */ void address_space_destroy(AddressSpace *as); /** * address_space_remove_listeners: unregister all listeners of an address space * * Removes all callbacks previously registered with memory_listener_register() * for @as. * * @as: an initialized #AddressSpace */ void address_space_remove_listeners(AddressSpace *as); /** * address_space_rw: read from or write to an address space. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @attrs: memory transaction attributes * @buf: buffer with the data transferred * @len: the number of bytes to read or write * @is_write: indicates the transfer direction */ MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, void *buf, hwaddr len, bool is_write); /** * address_space_write: write to address space. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @attrs: memory transaction attributes * @buf: buffer with the data transferred * @len: the number of bytes to write */ MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, const void *buf, hwaddr len); /** * address_space_write_rom: write to address space, including ROM. * * This function writes to the specified address space, but will * write data to both ROM and RAM. This is used for non-guest * writes like writes from the gdb debug stub or initial loading * of ROM contents. * * Note that portions of the write which attempt to write data to * a device will be silently ignored -- only real RAM and ROM will * be written to. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @attrs: memory transaction attributes * @buf: buffer with the data transferred * @len: the number of bytes to write */ MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, const void *buf, hwaddr len); /* address_space_ld*: load from an address space * address_space_st*: store to an address space * * These functions perform a load or store of the byte, word, * longword or quad to the specified address within the AddressSpace. * The _le suffixed functions treat the data as little endian; * _be indicates big endian; no suffix indicates "same endianness * as guest CPU". * * The "guest CPU endianness" accessors are deprecated for use outside * target-* code; devices should be CPU-agnostic and use either the LE * or the BE accessors. * * @as #AddressSpace to be accessed * @addr: address within that address space * @val: data value, for stores * @attrs: memory transaction attributes * @result: location to write the success/failure of the transaction; * if NULL, this information is discarded */ #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #include "exec/memory_ldst.h.inc" #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #include "exec/memory_ldst_phys.h.inc" struct MemoryRegionCache { void *ptr; hwaddr xlat; hwaddr len; FlatView *fv; MemoryRegionSection mrs; bool is_write; }; /* address_space_ld*_cached: load from a cached #MemoryRegion * address_space_st*_cached: store into a cached #MemoryRegion * * These functions perform a load or store of the byte, word, * longword or quad to the specified address. The address is * a physical address in the AddressSpace, but it must lie within * a #MemoryRegion that was mapped with address_space_cache_init. * * The _le suffixed functions treat the data as little endian; * _be indicates big endian; no suffix indicates "same endianness * as guest CPU". * * The "guest CPU endianness" accessors are deprecated for use outside * target-* code; devices should be CPU-agnostic and use either the LE * or the BE accessors. * * @cache: previously initialized #MemoryRegionCache to be accessed * @addr: address within the address space * @val: data value, for stores * @attrs: memory transaction attributes * @result: location to write the success/failure of the transaction; * if NULL, this information is discarded */ #define SUFFIX _cached_slow #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #include "exec/memory_ldst.h.inc" /* Inline fast path for direct RAM access. */ static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr, MemTxAttrs attrs, MemTxResult *result) { assert(addr < cache->len); if (likely(cache->ptr)) { return ldub_p(cache->ptr + addr); } else { return address_space_ldub_cached_slow(cache, addr, attrs, result); } } static inline void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result) { assert(addr < cache->len); if (likely(cache->ptr)) { stb_p(cache->ptr + addr, val); } else { address_space_stb_cached_slow(cache, addr, val, attrs, result); } } #define ENDIANNESS _le #include "exec/memory_ldst_cached.h.inc" #define ENDIANNESS _be #include "exec/memory_ldst_cached.h.inc" #define SUFFIX _cached #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #include "exec/memory_ldst_phys.h.inc" /* address_space_cache_init: prepare for repeated access to a physical * memory region * * @cache: #MemoryRegionCache to be filled * @as: #AddressSpace to be accessed * @addr: address within that address space * @len: length of buffer * @is_write: indicates the transfer direction * * Will only work with RAM, and may map a subset of the requested range by * returning a value that is less than @len. On failure, return a negative * errno value. * * Because it only works with RAM, this function can be used for * read-modify-write operations. In this case, is_write should be %true. * * Note that addresses passed to the address_space_*_cached functions * are relative to @addr. */ int64_t address_space_cache_init(MemoryRegionCache *cache, AddressSpace *as, hwaddr addr, hwaddr len, bool is_write); /** * address_space_cache_init_empty: Initialize empty #MemoryRegionCache * * @cache: The #MemoryRegionCache to operate on. * * Initializes #MemoryRegionCache structure without memory region attached. * Cache initialized this way can only be safely destroyed, but not used. */ static inline void address_space_cache_init_empty(MemoryRegionCache *cache) { cache->mrs.mr = NULL; /* There is no real need to initialize fv, but it makes Coverity happy. */ cache->fv = NULL; } /** * address_space_cache_invalidate: complete a write to a #MemoryRegionCache * * @cache: The #MemoryRegionCache to operate on. * @addr: The first physical address that was written, relative to the * address that was passed to @address_space_cache_init. * @access_len: The number of bytes that were written starting at @addr. */ void address_space_cache_invalidate(MemoryRegionCache *cache, hwaddr addr, hwaddr access_len); /** * address_space_cache_destroy: free a #MemoryRegionCache * * @cache: The #MemoryRegionCache whose memory should be released. */ void address_space_cache_destroy(MemoryRegionCache *cache); /* address_space_get_iotlb_entry: translate an address into an IOTLB * entry. Should be called from an RCU critical section. */ IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, bool is_write, MemTxAttrs attrs); /* address_space_translate: translate an address range into an address space * into a MemoryRegion and an address range into that section. Should be * called from an RCU critical section, to avoid that the last reference * to the returned region disappears after address_space_translate returns. * * @fv: #FlatView to be accessed * @addr: address within that address space * @xlat: pointer to address within the returned memory region section's * #MemoryRegion. * @len: pointer to length * @is_write: indicates the transfer direction * @attrs: memory attributes */ MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, hwaddr *len, bool is_write, MemTxAttrs attrs); static inline MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, hwaddr *xlat, hwaddr *len, bool is_write, MemTxAttrs attrs) { return flatview_translate(address_space_to_flatview(as), addr, xlat, len, is_write, attrs); } /* address_space_access_valid: check for validity of accessing an address * space range * * Check whether memory is assigned to the given address space range, and * access is permitted by any IOMMU regions that are active for the address * space. * * For now, addr and len should be aligned to a page size. This limitation * will be lifted in the future. * * @as: #AddressSpace to be accessed * @addr: address within that address space * @len: length of the area to be checked * @is_write: indicates the transfer direction * @attrs: memory attributes */ bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len, bool is_write, MemTxAttrs attrs); /* address_space_map: map a physical memory region into a host virtual address * * May map a subset of the requested range, given by and returned in @plen. * May return %NULL and set *@plen to zero(0), if resources needed to perform * the mapping are exhausted. * Use only for reads OR writes - not for read-modify-write operations. * Use cpu_register_map_client() to know when retrying the map operation is * likely to succeed. * * @as: #AddressSpace to be accessed * @addr: address within that address space * @plen: pointer to length of buffer; updated on return * @is_write: indicates the transfer direction * @attrs: memory attributes */ void *address_space_map(AddressSpace *as, hwaddr addr, hwaddr *plen, bool is_write, MemTxAttrs attrs); /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map() * * Will also mark the memory as dirty if @is_write == %true. @access_len gives * the amount of memory that was actually read or written by the caller. * * @as: #AddressSpace used * @buffer: host pointer as returned by address_space_map() * @len: buffer length as returned by address_space_map() * @access_len: amount of data actually transferred * @is_write: indicates the transfer direction */ void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, bool is_write, hwaddr access_len); /* Internal functions, part of the implementation of address_space_read. */ MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, void *buf, hwaddr len); MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, MemTxAttrs attrs, void *buf, hwaddr len, hwaddr addr1, hwaddr l, MemoryRegion *mr); void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr); /* Internal functions, part of the implementation of address_space_read_cached * and address_space_write_cached. */ MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, void *buf, hwaddr len); MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, const void *buf, hwaddr len); int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr); bool prepare_mmio_access(MemoryRegion *mr); static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write) { if (is_write) { return memory_region_is_ram(mr) && !mr->readonly && !mr->rom_device && !memory_region_is_ram_device(mr); } else { return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) || memory_region_is_romd(mr); } } /** * address_space_read: read from an address space. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). Called within RCU critical section. * * @as: #AddressSpace to be accessed * @addr: address within that address space * @attrs: memory transaction attributes * @buf: buffer with the data transferred * @len: length of the data transferred */ static inline __attribute__((__always_inline__)) MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, void *buf, hwaddr len) { MemTxResult result = MEMTX_OK; hwaddr l, addr1; void *ptr; MemoryRegion *mr; FlatView *fv; if (__builtin_constant_p(len)) { if (len) { RCU_READ_LOCK_GUARD(); fv = address_space_to_flatview(as); l = len; mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); if (len == l && memory_access_is_direct(mr, false)) { ptr = qemu_map_ram_ptr(mr->ram_block, addr1); memcpy(buf, ptr, len); } else { result = flatview_read_continue(fv, addr, attrs, buf, len, addr1, l, mr); } } } else { result = address_space_read_full(as, addr, attrs, buf, len); } return result; } /** * address_space_read_cached: read from a cached RAM region * * @cache: Cached region to be addressed * @addr: address relative to the base of the RAM region * @buf: buffer with the data transferred * @len: length of the data transferred */ static inline MemTxResult address_space_read_cached(MemoryRegionCache *cache, hwaddr addr, void *buf, hwaddr len) { assert(addr < cache->len && len <= cache->len - addr); fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr); if (likely(cache->ptr)) { memcpy(buf, cache->ptr + addr, len); return MEMTX_OK; } else { return address_space_read_cached_slow(cache, addr, buf, len); } } /** * address_space_write_cached: write to a cached RAM region * * @cache: Cached region to be addressed * @addr: address relative to the base of the RAM region * @buf: buffer with the data transferred * @len: length of the data transferred */ static inline MemTxResult address_space_write_cached(MemoryRegionCache *cache, hwaddr addr, const void *buf, hwaddr len) { assert(addr < cache->len && len <= cache->len - addr); if (likely(cache->ptr)) { memcpy(cache->ptr + addr, buf, len); return MEMTX_OK; } else { return address_space_write_cached_slow(cache, addr, buf, len); } } /** * address_space_set: Fill address space with a constant byte. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @c: constant byte to fill the memory * @len: the number of bytes to fill with the constant byte * @attrs: memory transaction attributes */ MemTxResult address_space_set(AddressSpace *as, hwaddr addr, uint8_t c, hwaddr len, MemTxAttrs attrs); #ifdef COMPILING_PER_TARGET /* enum device_endian to MemOp. */ static inline MemOp devend_memop(enum device_endian end) { QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN && DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN); #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN /* Swap if non-host endianness or native (target) endianness */ return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP; #else const int non_host_endianness = DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN; /* In this case, native (target) endianness needs no swap. */ return (end == non_host_endianness) ? MO_BSWAP : 0; #endif } #endif /* COMPILING_PER_TARGET */ /* * Inhibit technologies that require discarding of pages in RAM blocks, e.g., * to manage the actual amount of memory consumed by the VM (then, the memory * provided by RAM blocks might be bigger than the desired memory consumption). * This *must* be set if: * - Discarding parts of a RAM blocks does not result in the change being * reflected in the VM and the pages getting freed. * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous * discards blindly. * - Discarding parts of a RAM blocks will result in integrity issues (e.g., * encrypted VMs). * Technologies that only temporarily pin the current working set of a * driver are fine, because we don't expect such pages to be discarded * (esp. based on guest action like balloon inflation). * * This is *not* to be used to protect from concurrent discards (esp., * postcopy). * * Returns 0 if successful. Returns -EBUSY if a technology that relies on * discards to work reliably is active. */ int ram_block_discard_disable(bool state); /* * See ram_block_discard_disable(): only disable uncoordinated discards, * keeping coordinated discards (via the RamDiscardManager) enabled. */ int ram_block_uncoordinated_discard_disable(bool state); /* * Inhibit technologies that disable discarding of pages in RAM blocks. * * Returns 0 if successful. Returns -EBUSY if discards are already set to * broken. */ int ram_block_discard_require(bool state); /* * See ram_block_discard_require(): only inhibit technologies that disable * uncoordinated discarding of pages in RAM blocks, allowing co-existence with * technologies that only inhibit uncoordinated discards (via the * RamDiscardManager). */ int ram_block_coordinated_discard_require(bool state); /* * Test if any discarding of memory in ram blocks is disabled. */ bool ram_block_discard_is_disabled(void); /* * Test if any discarding of memory in ram blocks is required to work reliably. */ bool ram_block_discard_is_required(void); #endif #endif