/* * Software MMU support (per-target) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ /* * Generate inline load/store functions for all MMU modes (typically * at least _user and _kernel) as well as _data versions, for all data * sizes. * * Used by target op helpers. * * The syntax for the accessors is: * * load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr) * cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr) * cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr) * cpu_ld{sign}{size}{end}_mmu(env, ptr, oi, retaddr) * * store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val) * cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr) * cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr) * cpu_st{size}{end}_mmu(env, ptr, val, oi, retaddr) * * sign is: * (empty): for 32 and 64 bit sizes * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * end is: * (empty): for target native endian, or for 8 bit access * _be: for forced big endian * _le: for forced little endian * * mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx". * The "mmuidx" suffix carries an extra mmu_idx argument that specifies * the index to use; the "data" and "code" suffixes take the index from * cpu_mmu_index(). * * The "mmu" suffix carries the full MemOpIdx, with both mmu_idx and the * MemOp including alignment requirements. The alignment will be enforced. */ #ifndef ACCEL_TCG_CPU_LDST_H #define ACCEL_TCG_CPU_LDST_H #ifndef CONFIG_TCG #error Can only include this header with TCG #endif #include "exec/cpu-common.h" #include "accel/tcg/cpu-ldst-common.h" #include "accel/tcg/cpu-mmu-index.h" #include "exec/abi_ptr.h" #if defined(CONFIG_USER_ONLY) #include "user/guest-host.h" #endif /* CONFIG_USER_ONLY */ static inline uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); return cpu_ldb_mmu(env, addr, oi, ra); } static inline int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return (int8_t)cpu_ldub_mmuidx_ra(env, addr, mmu_idx, ra); } static inline uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_BEUW | MO_UNALN, mmu_idx); return cpu_ldw_mmu(env, addr, oi, ra); } static inline int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return (int16_t)cpu_lduw_be_mmuidx_ra(env, addr, mmu_idx, ra); } static inline uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_BEUL | MO_UNALN, mmu_idx); return cpu_ldl_mmu(env, addr, oi, ra); } static inline uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_BEUQ | MO_UNALN, mmu_idx); return cpu_ldq_mmu(env, addr, oi, ra); } static inline uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_LEUW | MO_UNALN, mmu_idx); return cpu_ldw_mmu(env, addr, oi, ra); } static inline int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return (int16_t)cpu_lduw_le_mmuidx_ra(env, addr, mmu_idx, ra); } static inline uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_LEUL | MO_UNALN, mmu_idx); return cpu_ldl_mmu(env, addr, oi, ra); } static inline uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_LEUQ | MO_UNALN, mmu_idx); return cpu_ldq_mmu(env, addr, oi, ra); } static inline void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); cpu_stb_mmu(env, addr, val, oi, ra); } static inline void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_BEUW | MO_UNALN, mmu_idx); cpu_stw_mmu(env, addr, val, oi, ra); } static inline void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_BEUL | MO_UNALN, mmu_idx); cpu_stl_mmu(env, addr, val, oi, ra); } static inline void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint64_t val, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_BEUQ | MO_UNALN, mmu_idx); cpu_stq_mmu(env, addr, val, oi, ra); } static inline void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_LEUW | MO_UNALN, mmu_idx); cpu_stw_mmu(env, addr, val, oi, ra); } static inline void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_LEUL | MO_UNALN, mmu_idx); cpu_stl_mmu(env, addr, val, oi, ra); } static inline void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint64_t val, int mmu_idx, uintptr_t ra) { MemOpIdx oi = make_memop_idx(MO_LEUQ | MO_UNALN, mmu_idx); cpu_stq_mmu(env, addr, val, oi, ra); } /*--------------------------*/ static inline uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); return cpu_ldub_mmuidx_ra(env, addr, mmu_index, ra); } static inline int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { return (int8_t)cpu_ldub_data_ra(env, addr, ra); } static inline uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); return cpu_lduw_be_mmuidx_ra(env, addr, mmu_index, ra); } static inline int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { return (int16_t)cpu_lduw_be_data_ra(env, addr, ra); } static inline uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); return cpu_ldl_be_mmuidx_ra(env, addr, mmu_index, ra); } static inline uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); return cpu_ldq_be_mmuidx_ra(env, addr, mmu_index, ra); } static inline uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); return cpu_lduw_le_mmuidx_ra(env, addr, mmu_index, ra); } static inline int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { return (int16_t)cpu_lduw_le_data_ra(env, addr, ra); } static inline uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); return cpu_ldl_le_mmuidx_ra(env, addr, mmu_index, ra); } static inline uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr addr, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); return cpu_ldq_le_mmuidx_ra(env, addr, mmu_index, ra); } static inline void cpu_stb_data_ra(CPUArchState *env, abi_ptr addr, uint32_t val, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); cpu_stb_mmuidx_ra(env, addr, val, mmu_index, ra); } static inline void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr addr, uint32_t val, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); cpu_stw_be_mmuidx_ra(env, addr, val, mmu_index, ra); } static inline void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr addr, uint32_t val, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); cpu_stl_be_mmuidx_ra(env, addr, val, mmu_index, ra); } static inline void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr addr, uint64_t val, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); cpu_stq_be_mmuidx_ra(env, addr, val, mmu_index, ra); } static inline void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr addr, uint32_t val, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); cpu_stw_le_mmuidx_ra(env, addr, val, mmu_index, ra); } static inline void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr addr, uint32_t val, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); cpu_stl_le_mmuidx_ra(env, addr, val, mmu_index, ra); } static inline void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr addr, uint64_t val, uintptr_t ra) { int mmu_index = cpu_mmu_index(env_cpu(env), false); cpu_stq_le_mmuidx_ra(env, addr, val, mmu_index, ra); } /*--------------------------*/ static inline uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr addr) { return cpu_ldub_data_ra(env, addr, 0); } static inline int cpu_ldsb_data(CPUArchState *env, abi_ptr addr) { return (int8_t)cpu_ldub_data(env, addr); } static inline uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr addr) { return cpu_lduw_be_data_ra(env, addr, 0); } static inline int cpu_ldsw_be_data(CPUArchState *env, abi_ptr addr) { return (int16_t)cpu_lduw_be_data(env, addr); } static inline uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr addr) { return cpu_ldl_be_data_ra(env, addr, 0); } static inline uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr addr) { return cpu_ldq_be_data_ra(env, addr, 0); } static inline uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr addr) { return cpu_lduw_le_data_ra(env, addr, 0); } static inline int cpu_ldsw_le_data(CPUArchState *env, abi_ptr addr) { return (int16_t)cpu_lduw_le_data(env, addr); } static inline uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr addr) { return cpu_ldl_le_data_ra(env, addr, 0); } static inline uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr addr) { return cpu_ldq_le_data_ra(env, addr, 0); } static inline void cpu_stb_data(CPUArchState *env, abi_ptr addr, uint32_t val) { cpu_stb_data_ra(env, addr, val, 0); } static inline void cpu_stw_be_data(CPUArchState *env, abi_ptr addr, uint32_t val) { cpu_stw_be_data_ra(env, addr, val, 0); } static inline void cpu_stl_be_data(CPUArchState *env, abi_ptr addr, uint32_t val) { cpu_stl_be_data_ra(env, addr, val, 0); } static inline void cpu_stq_be_data(CPUArchState *env, abi_ptr addr, uint64_t val) { cpu_stq_be_data_ra(env, addr, val, 0); } static inline void cpu_stw_le_data(CPUArchState *env, abi_ptr addr, uint32_t val) { cpu_stw_le_data_ra(env, addr, val, 0); } static inline void cpu_stl_le_data(CPUArchState *env, abi_ptr addr, uint32_t val) { cpu_stl_le_data_ra(env, addr, val, 0); } static inline void cpu_stq_le_data(CPUArchState *env, abi_ptr addr, uint64_t val) { cpu_stq_le_data_ra(env, addr, val, 0); } #if TARGET_BIG_ENDIAN # define cpu_lduw_data cpu_lduw_be_data # define cpu_ldsw_data cpu_ldsw_be_data # define cpu_ldl_data cpu_ldl_be_data # define cpu_ldq_data cpu_ldq_be_data # define cpu_lduw_data_ra cpu_lduw_be_data_ra # define cpu_ldsw_data_ra cpu_ldsw_be_data_ra # define cpu_ldl_data_ra cpu_ldl_be_data_ra # define cpu_ldq_data_ra cpu_ldq_be_data_ra # define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra # define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra # define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra # define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra # define cpu_stw_data cpu_stw_be_data # define cpu_stl_data cpu_stl_be_data # define cpu_stq_data cpu_stq_be_data # define cpu_stw_data_ra cpu_stw_be_data_ra # define cpu_stl_data_ra cpu_stl_be_data_ra # define cpu_stq_data_ra cpu_stq_be_data_ra # define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra # define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra # define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra #else # define cpu_lduw_data cpu_lduw_le_data # define cpu_ldsw_data cpu_ldsw_le_data # define cpu_ldl_data cpu_ldl_le_data # define cpu_ldq_data cpu_ldq_le_data # define cpu_lduw_data_ra cpu_lduw_le_data_ra # define cpu_ldsw_data_ra cpu_ldsw_le_data_ra # define cpu_ldl_data_ra cpu_ldl_le_data_ra # define cpu_ldq_data_ra cpu_ldq_le_data_ra # define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra # define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra # define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra # define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra # define cpu_stw_data cpu_stw_le_data # define cpu_stl_data cpu_stl_le_data # define cpu_stq_data cpu_stq_le_data # define cpu_stw_data_ra cpu_stw_le_data_ra # define cpu_stl_data_ra cpu_stl_le_data_ra # define cpu_stq_data_ra cpu_stq_le_data_ra # define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra # define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra # define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra #endif static inline uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) { CPUState *cs = env_cpu(env); MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true)); return cpu_ldb_code_mmu(env, addr, oi, 0); } static inline uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) { CPUState *cs = env_cpu(env); MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true)); return cpu_ldw_code_mmu(env, addr, oi, 0); } static inline uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) { CPUState *cs = env_cpu(env); MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true)); return cpu_ldl_code_mmu(env, addr, oi, 0); } static inline uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) { CPUState *cs = env_cpu(env); MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true)); return cpu_ldq_code_mmu(env, addr, oi, 0); } /** * tlb_vaddr_to_host: * @env: CPUArchState * @addr: guest virtual address to look up * @access_type: 0 for read, 1 for write, 2 for execute * @mmu_idx: MMU index to use for lookup * * Look up the specified guest virtual index in the TCG softmmu TLB. * If we can translate a host virtual address suitable for direct RAM * access, without causing a guest exception, then return it. * Otherwise (TLB entry is for an I/O access, guest software * TLB fill required, etc) return NULL. */ #ifdef CONFIG_USER_ONLY static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, MMUAccessType access_type, int mmu_idx) { return g2h(env_cpu(env), addr); } #else void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr, MMUAccessType access_type, int mmu_idx); #endif /* * For user-only, helpers that use guest to host address translation * must protect the actual host memory access by recording 'retaddr' * for the signal handler. This is required for a race condition in * which another thread unmaps the page between a probe and the * actual access. */ #ifdef CONFIG_USER_ONLY extern __thread uintptr_t helper_retaddr; static inline void set_helper_retaddr(uintptr_t ra) { helper_retaddr = ra; /* * Ensure that this write is visible to the SIGSEGV handler that * may be invoked due to a subsequent invalid memory operation. */ signal_barrier(); } static inline void clear_helper_retaddr(void) { /* * Ensure that previous memory operations have succeeded before * removing the data visible to the signal handler. */ signal_barrier(); helper_retaddr = 0; } #else #define set_helper_retaddr(ra) do { } while (0) #define clear_helper_retaddr() do { } while (0) #endif #endif /* ACCEL_TCG_CPU_LDST_H */