/* * ASPEED AST2400 SMC Controller (SPI Flash Only) * * Copyright (C) 2016 IBM Corp. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qemu/units.h" #include "trace.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/ssi/aspeed_smc.h" /* CE Type Setting Register */ #define R_CONF (0x00 / 4) #define CONF_LEGACY_DISABLE (1 << 31) #define CONF_ENABLE_W4 20 #define CONF_ENABLE_W3 19 #define CONF_ENABLE_W2 18 #define CONF_ENABLE_W1 17 #define CONF_ENABLE_W0 16 #define CONF_FLASH_TYPE4 8 #define CONF_FLASH_TYPE3 6 #define CONF_FLASH_TYPE2 4 #define CONF_FLASH_TYPE1 2 #define CONF_FLASH_TYPE0 0 #define CONF_FLASH_TYPE_NOR 0x0 #define CONF_FLASH_TYPE_NAND 0x1 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */ /* CE Control Register */ #define R_CE_CTRL (0x04 / 4) #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */ #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */ #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */ #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */ #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */ /* Interrupt Control and Status Register */ #define R_INTR_CTRL (0x08 / 4) #define INTR_CTRL_DMA_STATUS (1 << 11) #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10) #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9) #define INTR_CTRL_DMA_EN (1 << 3) #define INTR_CTRL_CMD_ABORT_EN (1 << 2) #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1) /* Command Control Register */ #define R_CE_CMD_CTRL (0x0C / 4) #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0 #define aspeed_smc_addr_byte_enabled(s, i) \ (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i))))) #define aspeed_smc_data_byte_enabled(s, i) \ (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i))))) /* CEx Control Register */ #define R_CTRL0 (0x10 / 4) #define CTRL_IO_QPI (1 << 31) #define CTRL_IO_QUAD_DATA (1 << 30) #define CTRL_IO_DUAL_DATA (1 << 29) #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */ #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */ #define CTRL_CMD_SHIFT 16 #define CTRL_CMD_MASK 0xff #define CTRL_DUMMY_HIGH_SHIFT 14 #define CTRL_AST2400_SPI_4BYTE (1 << 13) #define CE_CTRL_CLOCK_FREQ_SHIFT 8 #define CE_CTRL_CLOCK_FREQ_MASK 0xf #define CE_CTRL_CLOCK_FREQ(div) \ (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT) #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */ #define CTRL_CE_STOP_ACTIVE (1 << 2) #define CTRL_CMD_MODE_MASK 0x3 #define CTRL_READMODE 0x0 #define CTRL_FREADMODE 0x1 #define CTRL_WRITEMODE 0x2 #define CTRL_USERMODE 0x3 #define R_CTRL1 (0x14 / 4) #define R_CTRL2 (0x18 / 4) #define R_CTRL3 (0x1C / 4) #define R_CTRL4 (0x20 / 4) /* CEx Segment Address Register */ #define R_SEG_ADDR0 (0x30 / 4) #define SEG_END_SHIFT 24 /* 8MB units */ #define SEG_END_MASK 0xff #define SEG_START_SHIFT 16 /* address bit [A29-A23] */ #define SEG_START_MASK 0xff #define R_SEG_ADDR1 (0x34 / 4) #define R_SEG_ADDR2 (0x38 / 4) #define R_SEG_ADDR3 (0x3C / 4) #define R_SEG_ADDR4 (0x40 / 4) /* Misc Control Register #1 */ #define R_MISC_CTRL1 (0x50 / 4) /* SPI dummy cycle data */ #define R_DUMMY_DATA (0x54 / 4) /* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */ #define R_FMC_WDT2_CTRL (0x64 / 4) #define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */ #define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5) #define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */ #define FMC_WDT2_CTRL_EN BIT(0) /* DMA Control/Status Register */ #define R_DMA_CTRL (0x80 / 4) #define DMA_CTRL_REQUEST (1 << 31) #define DMA_CTRL_GRANT (1 << 30) #define DMA_CTRL_DELAY_MASK 0xf #define DMA_CTRL_DELAY_SHIFT 8 #define DMA_CTRL_FREQ_MASK 0xf #define DMA_CTRL_FREQ_SHIFT 4 #define DMA_CTRL_CALIB (1 << 3) #define DMA_CTRL_CKSUM (1 << 2) #define DMA_CTRL_WRITE (1 << 1) #define DMA_CTRL_ENABLE (1 << 0) /* DMA Flash Side Address */ #define R_DMA_FLASH_ADDR (0x84 / 4) /* DMA DRAM Side Address */ #define R_DMA_DRAM_ADDR (0x88 / 4) /* DMA Length Register */ #define R_DMA_LEN (0x8C / 4) /* Checksum Calculation Result */ #define R_DMA_CHECKSUM (0x90 / 4) /* Read Timing Compensation Register */ #define R_TIMINGS (0x94 / 4) /* SPI controller registers and bits (AST2400) */ #define R_SPI_CONF (0x00 / 4) #define SPI_CONF_ENABLE_W0 0 #define R_SPI_CTRL0 (0x4 / 4) #define R_SPI_MISC_CTRL (0x10 / 4) #define R_SPI_TIMINGS (0x14 / 4) #define ASPEED_SMC_R_SPI_MAX (0x20 / 4) #define ASPEED_SMC_R_SMC_MAX (0x20 / 4) /* * DMA DRAM addresses should be 4 bytes aligned and the valid address * range is 0x40000000 - 0x5FFFFFFF (AST2400) * 0x80000000 - 0xBFFFFFFF (AST2500) * * DMA flash addresses should be 4 bytes aligned and the valid address * range is 0x20000000 - 0x2FFFFFFF. * * DMA length is from 4 bytes to 32MB * 0: 4 bytes * 0x7FFFFF: 32M bytes */ #define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask) #define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask) #define DMA_LENGTH(val) ((val) & 0x01FFFFFC) /* Flash opcodes. */ #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */ #define SNOOP_OFF 0xFF #define SNOOP_START 0x0 /* * Default segments mapping addresses and size for each peripheral per * controller. These can be changed when board is initialized with the * Segment Address Registers. */ static const AspeedSegments aspeed_2500_spi1_segments[]; static const AspeedSegments aspeed_2500_spi2_segments[]; #define ASPEED_SMC_FEATURE_DMA 0x1 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2 #define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4 static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc) { return !!(asc->features & ASPEED_SMC_FEATURE_DMA); } static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc) { return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL); } #define aspeed_smc_error(fmt, ...) \ qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__) static bool aspeed_smc_flash_overlap(const AspeedSMCState *s, const AspeedSegments *new, int cs) { AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); AspeedSegments seg; int i; for (i = 0; i < asc->max_peripherals; i++) { if (i == cs) { continue; } asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg); if (new->addr + new->size > seg.addr && new->addr < seg.addr + seg.size) { aspeed_smc_error("new segment CS%d [ 0x%" HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with " "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", cs, new->addr, new->addr + new->size, i, seg.addr, seg.addr + seg.size); return true; } } return false; } static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs, uint64_t regval) { AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); AspeedSMCFlash *fl = &s->flashes[cs]; AspeedSegments seg; asc->reg_to_segment(s, regval, &seg); memory_region_transaction_begin(); memory_region_set_size(&fl->mmio, seg.size); memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base); memory_region_set_enabled(&fl->mmio, !!seg.size); memory_region_transaction_commit(); if (asc->segment_addr_mask) { regval &= asc->segment_addr_mask; } s->regs[R_SEG_ADDR0 + cs] = regval; } static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs, uint64_t new) { AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); AspeedSegments seg; asc->reg_to_segment(s, new, &seg); trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size); /* The start address of CS0 is read-only */ if (cs == 0 && seg.addr != asc->flash_window_base) { aspeed_smc_error("Tried to change CS0 start address to 0x%" HWADDR_PRIx, seg.addr); seg.addr = asc->flash_window_base; new = asc->segment_to_reg(s, &seg); } /* * The end address of the AST2500 spi controllers is also * read-only. */ if ((asc->segments == aspeed_2500_spi1_segments || asc->segments == aspeed_2500_spi2_segments) && cs == asc->max_peripherals && seg.addr + seg.size != asc->segments[cs].addr + asc->segments[cs].size) { aspeed_smc_error("Tried to change CS%d end address to 0x%" HWADDR_PRIx, cs, seg.addr + seg.size); seg.size = asc->segments[cs].addr + asc->segments[cs].size - seg.addr; new = asc->segment_to_reg(s, &seg); } /* Keep the segment in the overall flash window */ if (seg.size && (seg.addr + seg.size <= asc->flash_window_base || seg.addr > asc->flash_window_base + asc->flash_window_size)) { aspeed_smc_error("new segment for CS%d is invalid : " "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", cs, seg.addr, seg.addr + seg.size); return; } /* Check start address vs. alignment */ if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) { aspeed_smc_error("new segment for CS%d is not " "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", cs, seg.addr, seg.addr + seg.size); } /* And segments should not overlap (in the specs) */ aspeed_smc_flash_overlap(s, &seg, cs); /* All should be fine now to move the region */ aspeed_smc_flash_set_segment_region(s, cs, new); } static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr, unsigned size) { aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u" PRIx64, addr, size); return 0; } static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64, addr, size, data); } static const MemoryRegionOps aspeed_smc_flash_default_ops = { .read = aspeed_smc_flash_default_read, .write = aspeed_smc_flash_default_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4, }, }; static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl) { const AspeedSMCState *s = fl->controller; return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK; } static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl) { const AspeedSMCState *s = fl->controller; return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs)); } static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl) { const AspeedSMCState *s = fl->controller; int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK; /* * In read mode, the default SPI command is READ (0x3). In other * modes, the command should necessarily be defined * * TODO: add support for READ4 (0x13) on AST2600 */ if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) { cmd = SPI_OP_READ; } if (!cmd) { aspeed_smc_error("no command defined for mode %d", aspeed_smc_flash_mode(fl)); } return cmd; } static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl) { const AspeedSMCState *s = fl->controller; AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); if (asc->addr_width) { return asc->addr_width(s); } else { return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3; } } static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect) { AspeedSMCState *s = fl->controller; trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : ""); qemu_set_irq(s->cs_lines[fl->cs], unselect); } static void aspeed_smc_flash_select(AspeedSMCFlash *fl) { aspeed_smc_flash_do_select(fl, false); } static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl) { aspeed_smc_flash_do_select(fl, true); } static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl, uint32_t addr) { const AspeedSMCState *s = fl->controller; AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); AspeedSegments seg; asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg); if ((addr % seg.size) != addr) { aspeed_smc_error("invalid address 0x%08x for CS%d segment : " "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]", addr, fl->cs, seg.addr, seg.addr + seg.size); addr %= seg.size; } return addr; } static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl) { const AspeedSMCState *s = fl->controller; uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs]; uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1; uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3; uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8; if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) { dummies /= 2; } return dummies; } static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr) { const AspeedSMCState *s = fl->controller; uint8_t cmd = aspeed_smc_flash_cmd(fl); int i = aspeed_smc_flash_addr_width(fl); /* Flash access can not exceed CS segment */ addr = aspeed_smc_check_segment_addr(fl, addr); ssi_transfer(s->spi, cmd); while (i--) { if (aspeed_smc_addr_byte_enabled(s, i)) { ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff); } } /* * Use fake transfers to model dummy bytes. The value should * be configured to some non-zero value in fast read mode and * zero in read mode. But, as the HW allows inconsistent * settings, let's check for fast read mode. */ if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) { for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) { ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff); } } } static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size) { AspeedSMCFlash *fl = opaque; AspeedSMCState *s = fl->controller; uint64_t ret = 0; int i; switch (aspeed_smc_flash_mode(fl)) { case CTRL_USERMODE: for (i = 0; i < size; i++) { ret |= ssi_transfer(s->spi, 0x0) << (8 * i); } break; case CTRL_READMODE: case CTRL_FREADMODE: aspeed_smc_flash_select(fl); aspeed_smc_flash_setup(fl, addr); for (i = 0; i < size; i++) { ret |= ssi_transfer(s->spi, 0x0) << (8 * i); } aspeed_smc_flash_unselect(fl); break; default: aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl)); } trace_aspeed_smc_flash_read(fl->cs, addr, size, ret, aspeed_smc_flash_mode(fl)); return ret; } /* * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a * common include header. */ typedef enum { READ = 0x3, READ_4 = 0x13, FAST_READ = 0xb, FAST_READ_4 = 0x0c, DOR = 0x3b, DOR_4 = 0x3c, QOR = 0x6b, QOR_4 = 0x6c, DIOR = 0xbb, DIOR_4 = 0xbc, QIOR = 0xeb, QIOR_4 = 0xec, PP = 0x2, PP_4 = 0x12, DPP = 0xa2, QPP = 0x32, QPP_4 = 0x34, } FlashCMD; static int aspeed_smc_num_dummies(uint8_t command) { switch (command) { /* check for dummies */ case READ: /* no dummy bytes/cycles */ case PP: case DPP: case QPP: case READ_4: case PP_4: case QPP_4: return 0; case FAST_READ: case DOR: case QOR: case FAST_READ_4: case DOR_4: case QOR_4: return 1; case DIOR: case DIOR_4: return 2; case QIOR: case QIOR_4: return 4; default: return -1; } } static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data, unsigned size) { AspeedSMCState *s = fl->controller; uint8_t addr_width = aspeed_smc_flash_addr_width(fl); trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies, (uint8_t) data & 0xff); if (s->snoop_index == SNOOP_OFF) { return false; /* Do nothing */ } else if (s->snoop_index == SNOOP_START) { uint8_t cmd = data & 0xff; int ndummies = aspeed_smc_num_dummies(cmd); /* * No dummy cycles are expected with the current command. Turn * off snooping and let the transfer proceed normally. */ if (ndummies <= 0) { s->snoop_index = SNOOP_OFF; return false; } s->snoop_dummies = ndummies * 8; } else if (s->snoop_index >= addr_width + 1) { /* The SPI transfer has reached the dummy cycles sequence */ for (; s->snoop_dummies; s->snoop_dummies--) { ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff); } /* If no more dummy cycles are expected, turn off snooping */ if (!s->snoop_dummies) { s->snoop_index = SNOOP_OFF; } else { s->snoop_index += size; } /* * Dummy cycles have been faked already. Ignore the current * SPI transfer */ return true; } s->snoop_index += size; return false; } static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { AspeedSMCFlash *fl = opaque; AspeedSMCState *s = fl->controller; int i; trace_aspeed_smc_flash_write(fl->cs, addr, size, data, aspeed_smc_flash_mode(fl)); if (!aspeed_smc_is_writable(fl)) { aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr); return; } switch (aspeed_smc_flash_mode(fl)) { case CTRL_USERMODE: if (aspeed_smc_do_snoop(fl, data, size)) { break; } for (i = 0; i < size; i++) { ssi_transfer(s->spi, (data >> (8 * i)) & 0xff); } break; case CTRL_WRITEMODE: aspeed_smc_flash_select(fl); aspeed_smc_flash_setup(fl, addr); for (i = 0; i < size; i++) { ssi_transfer(s->spi, (data >> (8 * i)) & 0xff); } aspeed_smc_flash_unselect(fl); break; default: aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl)); } } static const MemoryRegionOps aspeed_smc_flash_ops = { .read = aspeed_smc_flash_read, .write = aspeed_smc_flash_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4, }, }; static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value) { AspeedSMCState *s = fl->controller; bool unselect; /* User mode selects the CS, other modes unselect */ unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE; /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */ if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) && value & CTRL_CE_STOP_ACTIVE) { unselect = true; } s->regs[s->r_ctrl0 + fl->cs] = value; s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START; aspeed_smc_flash_do_select(fl, unselect); } static void aspeed_smc_reset(DeviceState *d) { AspeedSMCState *s = ASPEED_SMC(d); AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); int i; if (asc->resets) { memcpy(s->regs, asc->resets, sizeof s->regs); } else { memset(s->regs, 0, sizeof s->regs); } /* Unselect all peripherals */ for (i = 0; i < asc->max_peripherals; ++i) { s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE; qemu_set_irq(s->cs_lines[i], true); } /* setup the default segment register values and regions for all */ for (i = 0; i < asc->max_peripherals; ++i) { aspeed_smc_flash_set_segment_region(s, i, asc->segment_to_reg(s, &asc->segments[i])); } s->snoop_index = SNOOP_OFF; s->snoop_dummies = 0; } static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size) { AspeedSMCState *s = ASPEED_SMC(opaque); AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque); addr >>= 2; if (addr == s->r_conf || (addr >= s->r_timings && addr < s->r_timings + asc->nregs_timings) || addr == s->r_ce_ctrl || addr == R_CE_CMD_CTRL || addr == R_INTR_CTRL || addr == R_DUMMY_DATA || (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) || (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) || (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) || (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) || (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) || (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) || (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + asc->max_peripherals) || (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->max_peripherals)) { trace_aspeed_smc_read(addr << 2, size, s->regs[addr]); return s->regs[addr]; } else { qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } } static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask) { /* HCLK/1 .. HCLK/16 */ const uint8_t hclk_divisors[] = { 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0 }; int i; for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) { if (hclk_mask == hclk_divisors[i]) { return i + 1; } } aspeed_smc_error("invalid HCLK mask %x", hclk_mask); return 0; } /* * When doing calibration, the SPI clock rate in the CE0 Control * Register and the read delay cycles in the Read Timing Compensation * Register are set using bit[11:4] of the DMA Control Register. */ static void aspeed_smc_dma_calibration(AspeedSMCState *s) { uint8_t delay = (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK; uint8_t hclk_mask = (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK; uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask); uint32_t hclk_shift = (hclk_div - 1) << 2; uint8_t cs; /* * The Read Timing Compensation Register values apply to all CS on * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays */ if (hclk_div && hclk_div < 6) { s->regs[s->r_timings] &= ~(0xf << hclk_shift); s->regs[s->r_timings] |= delay << hclk_shift; } /* * TODO: compute the CS from the DMA address and the segment * registers. This is not really a problem for now because the * Timing Register values apply to all CS and software uses CS0 to * do calibration. */ cs = 0; s->regs[s->r_ctrl0 + cs] &= ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT); s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div); } /* * Emulate read errors in the DMA Checksum Register for high * frequencies and optimistic settings of the Read Timing Compensation * Register. This will help in tuning the SPI timing calibration * algorithm. */ static bool aspeed_smc_inject_read_failure(AspeedSMCState *s) { uint8_t delay = (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK; uint8_t hclk_mask = (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK; /* * Typical values of a palmetto-bmc machine. */ switch (aspeed_smc_hclk_divisor(hclk_mask)) { case 4 ... 16: return false; case 3: /* at least one HCLK cycle delay */ return (delay & 0x7) < 1; case 2: /* at least two HCLK cycle delay */ return (delay & 0x7) < 2; case 1: /* (> 100MHz) is above the max freq of the controller */ return true; default: g_assert_not_reached(); } } /* * Accumulate the result of the reads to provide a checksum that will * be used to validate the read timing settings. */ static void aspeed_smc_dma_checksum(AspeedSMCState *s) { MemTxResult result; uint32_t data; if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) { aspeed_smc_error("invalid direction for DMA checksum"); return; } if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) { aspeed_smc_dma_calibration(s); } while (s->regs[R_DMA_LEN]) { data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR], MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { aspeed_smc_error("Flash read failed @%08x", s->regs[R_DMA_FLASH_ADDR]); return; } trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data); /* * When the DMA is on-going, the DMA registers are updated * with the current working addresses and length. */ s->regs[R_DMA_CHECKSUM] += data; s->regs[R_DMA_FLASH_ADDR] += 4; s->regs[R_DMA_LEN] -= 4; } if (s->inject_failure && aspeed_smc_inject_read_failure(s)) { s->regs[R_DMA_CHECKSUM] = 0xbadc0de; } } static void aspeed_smc_dma_rw(AspeedSMCState *s) { MemTxResult result; uint32_t data; trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ? "write" : "read", s->regs[R_DMA_FLASH_ADDR], s->regs[R_DMA_DRAM_ADDR], s->regs[R_DMA_LEN]); while (s->regs[R_DMA_LEN]) { if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) { data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR], MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { aspeed_smc_error("DRAM read failed @%08x", s->regs[R_DMA_DRAM_ADDR]); return; } address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR], data, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { aspeed_smc_error("Flash write failed @%08x", s->regs[R_DMA_FLASH_ADDR]); return; } } else { data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR], MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { aspeed_smc_error("Flash read failed @%08x", s->regs[R_DMA_FLASH_ADDR]); return; } address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR], data, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { aspeed_smc_error("DRAM write failed @%08x", s->regs[R_DMA_DRAM_ADDR]); return; } } /* * When the DMA is on-going, the DMA registers are updated * with the current working addresses and length. */ s->regs[R_DMA_FLASH_ADDR] += 4; s->regs[R_DMA_DRAM_ADDR] += 4; s->regs[R_DMA_LEN] -= 4; s->regs[R_DMA_CHECKSUM] += data; } } static void aspeed_smc_dma_stop(AspeedSMCState *s) { /* * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the * engine is idle */ s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS; s->regs[R_DMA_CHECKSUM] = 0; /* * Lower the DMA irq in any case. The IRQ control register could * have been cleared before disabling the DMA. */ qemu_irq_lower(s->irq); } /* * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA * can start even if the result of the previous was not collected. */ static bool aspeed_smc_dma_in_progress(AspeedSMCState *s) { return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE && !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS); } static void aspeed_smc_dma_done(AspeedSMCState *s) { s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS; if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) { qemu_irq_raise(s->irq); } } static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl) { if (!(dma_ctrl & DMA_CTRL_ENABLE)) { s->regs[R_DMA_CTRL] = dma_ctrl; aspeed_smc_dma_stop(s); return; } if (aspeed_smc_dma_in_progress(s)) { aspeed_smc_error("DMA in progress !"); return; } s->regs[R_DMA_CTRL] = dma_ctrl; if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) { aspeed_smc_dma_checksum(s); } else { aspeed_smc_dma_rw(s); } aspeed_smc_dma_done(s); } static inline bool aspeed_smc_dma_granted(AspeedSMCState *s) { AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) { return true; } if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) { aspeed_smc_error("DMA not granted"); return false; } return true; } static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl) { /* Preserve DMA bits */ dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT); if (dma_ctrl == 0xAEED0000) { /* automatically grant request */ s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT); return; } /* clear request */ if (dma_ctrl == 0xDEEA0000) { s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT); return; } if (!aspeed_smc_dma_granted(s)) { aspeed_smc_error("DMA not granted"); return; } aspeed_smc_dma_ctrl(s, dma_ctrl); s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT); } static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data, unsigned int size) { AspeedSMCState *s = ASPEED_SMC(opaque); AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); uint32_t value = data; trace_aspeed_smc_write(addr, size, data); addr >>= 2; if (addr == s->r_conf || (addr >= s->r_timings && addr < s->r_timings + asc->nregs_timings) || addr == s->r_ce_ctrl) { s->regs[addr] = value; } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->max_peripherals) { int cs = addr - s->r_ctrl0; aspeed_smc_flash_update_ctrl(&s->flashes[cs], value); } else if (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + asc->max_peripherals) { int cs = addr - R_SEG_ADDR0; if (value != s->regs[R_SEG_ADDR0 + cs]) { aspeed_smc_flash_set_segment(s, cs, value); } } else if (addr == R_CE_CMD_CTRL) { s->regs[addr] = value & 0xff; } else if (addr == R_DUMMY_DATA) { s->regs[addr] = value & 0xff; } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) { s->regs[addr] = value & FMC_WDT2_CTRL_EN; } else if (addr == R_INTR_CTRL) { s->regs[addr] = value; } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) { asc->dma_ctrl(s, value); } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR && aspeed_smc_dma_granted(s)) { s->regs[addr] = DMA_DRAM_ADDR(asc, value); } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR && aspeed_smc_dma_granted(s)) { s->regs[addr] = DMA_FLASH_ADDR(asc, value); } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN && aspeed_smc_dma_granted(s)) { s->regs[addr] = DMA_LENGTH(value); } else { qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n", __func__, addr); return; } } static const MemoryRegionOps aspeed_smc_ops = { .read = aspeed_smc_read, .write = aspeed_smc_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void aspeed_smc_instance_init(Object *obj) { AspeedSMCState *s = ASPEED_SMC(obj); AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); int i; for (i = 0; i < asc->max_peripherals; i++) { object_initialize_child(obj, "flash[*]", &s->flashes[i], TYPE_ASPEED_SMC_FLASH); } } /* * Initialize the custom address spaces for DMAs */ static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp) { if (!s->dram_mr) { error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set"); return; } address_space_init(&s->flash_as, &s->mmio_flash, TYPE_ASPEED_SMC ".dma-flash"); address_space_init(&s->dram_as, s->dram_mr, TYPE_ASPEED_SMC ".dma-dram"); } static void aspeed_smc_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); AspeedSMCState *s = ASPEED_SMC(dev); AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); int i; hwaddr offset = 0; /* keep a copy under AspeedSMCState to speed up accesses */ s->r_conf = asc->r_conf; s->r_ce_ctrl = asc->r_ce_ctrl; s->r_ctrl0 = asc->r_ctrl0; s->r_timings = asc->r_timings; s->conf_enable_w0 = asc->conf_enable_w0; /* Enforce some real HW limits */ if (s->num_cs > asc->max_peripherals) { aspeed_smc_error("num_cs cannot exceed: %d", asc->max_peripherals); s->num_cs = asc->max_peripherals; } /* DMA irq. Keep it first for the initialization in the SoC */ sysbus_init_irq(sbd, &s->irq); s->spi = ssi_create_bus(dev, "spi"); /* Setup cs_lines for peripherals */ s->cs_lines = g_new0(qemu_irq, asc->max_peripherals); for (i = 0; i < asc->max_peripherals; ++i) { sysbus_init_irq(sbd, &s->cs_lines[i]); } /* The memory region for the controller registers */ memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s, TYPE_ASPEED_SMC, asc->nregs * 4); sysbus_init_mmio(sbd, &s->mmio); /* * The container memory region representing the address space * window in which the flash modules are mapped. The size and * address depends on the SoC model and controller type. */ memory_region_init(&s->mmio_flash_container, OBJECT(s), TYPE_ASPEED_SMC ".container", asc->flash_window_size); sysbus_init_mmio(sbd, &s->mmio_flash_container); memory_region_init_io(&s->mmio_flash, OBJECT(s), &aspeed_smc_flash_default_ops, s, TYPE_ASPEED_SMC ".flash", asc->flash_window_size); memory_region_add_subregion(&s->mmio_flash_container, 0x0, &s->mmio_flash); /* * Let's create a sub memory region for each possible peripheral. All * have a configurable memory segment in the overall flash mapping * window of the controller but, there is not necessarily a flash * module behind to handle the memory accesses. This depends on * the board configuration. */ for (i = 0; i < asc->max_peripherals; ++i) { AspeedSMCFlash *fl = &s->flashes[i]; if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s), errp)) { return; } if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) { return; } if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) { return; } memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio); offset += asc->segments[i].size; } /* DMA support */ if (aspeed_smc_has_dma(asc)) { aspeed_smc_dma_setup(s, errp); } } static const VMStateDescription vmstate_aspeed_smc = { .name = "aspeed.smc", .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX), VMSTATE_UINT8(snoop_index, AspeedSMCState), VMSTATE_UINT8(snoop_dummies, AspeedSMCState), VMSTATE_END_OF_LIST() } }; static Property aspeed_smc_properties[] = { DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1), DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false), DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_END_OF_LIST(), }; static void aspeed_smc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = aspeed_smc_realize; dc->reset = aspeed_smc_reset; device_class_set_props(dc, aspeed_smc_properties); dc->vmsd = &vmstate_aspeed_smc; } static const TypeInfo aspeed_smc_info = { .name = TYPE_ASPEED_SMC, .parent = TYPE_SYS_BUS_DEVICE, .instance_init = aspeed_smc_instance_init, .instance_size = sizeof(AspeedSMCState), .class_size = sizeof(AspeedSMCClass), .class_init = aspeed_smc_class_init, .abstract = true, }; static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp) { AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev); AspeedSMCClass *asc; g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs); if (!s->controller) { error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set"); return; } asc = ASPEED_SMC_GET_CLASS(s->controller); /* * Use the default segment value to size the memory region. This * can be changed by FW at runtime. */ memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops, s, name, asc->segments[s->cs].size); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); } static Property aspeed_smc_flash_properties[] = { DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0), DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC, AspeedSMCState *), DEFINE_PROP_END_OF_LIST(), }; static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "Aspeed SMC Flash device region"; dc->realize = aspeed_smc_flash_realize; device_class_set_props(dc, aspeed_smc_flash_properties); } static const TypeInfo aspeed_smc_flash_info = { .name = TYPE_ASPEED_SMC_FLASH, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(AspeedSMCFlash), .class_init = aspeed_smc_flash_class_init, }; /* * The Segment Registers of the AST2400 and AST2500 have a 8MB * unit. The address range of a flash SPI peripheral is encoded with * absolute addresses which should be part of the overall controller * window. */ static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s, const AspeedSegments *seg) { uint32_t reg = 0; reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT; reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT; return reg; } static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg, AspeedSegments *seg) { seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23; seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr; } static const AspeedSegments aspeed_2400_smc_segments[] = { { 0x10000000, 32 * MiB }, }; static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2400 SMC Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 1; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 1; asc->segments = aspeed_2400_smc_segments; asc->flash_window_base = 0x10000000; asc->flash_window_size = 0x6000000; asc->features = 0x0; asc->nregs = ASPEED_SMC_R_SMC_MAX; asc->segment_to_reg = aspeed_smc_segment_to_reg; asc->reg_to_segment = aspeed_smc_reg_to_segment; asc->dma_ctrl = aspeed_smc_dma_ctrl; } static const TypeInfo aspeed_2400_smc_info = { .name = "aspeed.smc-ast2400", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2400_smc_class_init, }; static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = { /* * CE0 and CE1 types are HW strapped in SCU70. Do it here to * simplify the model. */ [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0, }; static const AspeedSegments aspeed_2400_fmc_segments[] = { { 0x20000000, 64 * MiB }, /* start address is readonly */ { 0x24000000, 32 * MiB }, { 0x26000000, 32 * MiB }, { 0x28000000, 32 * MiB }, { 0x2A000000, 32 * MiB } }; static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2400 FMC Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 1; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 5; asc->segments = aspeed_2400_fmc_segments; asc->segment_addr_mask = 0xffff0000; asc->resets = aspeed_2400_fmc_resets; asc->flash_window_base = 0x20000000; asc->flash_window_size = 0x10000000; asc->features = ASPEED_SMC_FEATURE_DMA; asc->dma_flash_mask = 0x0FFFFFFC; asc->dma_dram_mask = 0x1FFFFFFC; asc->nregs = ASPEED_SMC_R_MAX; asc->segment_to_reg = aspeed_smc_segment_to_reg; asc->reg_to_segment = aspeed_smc_reg_to_segment; asc->dma_ctrl = aspeed_smc_dma_ctrl; } static const TypeInfo aspeed_2400_fmc_info = { .name = "aspeed.fmc-ast2400", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2400_fmc_class_init, }; static const AspeedSegments aspeed_2400_spi1_segments[] = { { 0x30000000, 64 * MiB }, }; static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s) { return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3; } static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2400 SPI1 Controller"; asc->r_conf = R_SPI_CONF; asc->r_ce_ctrl = 0xff; asc->r_ctrl0 = R_SPI_CTRL0; asc->r_timings = R_SPI_TIMINGS; asc->nregs_timings = 1; asc->conf_enable_w0 = SPI_CONF_ENABLE_W0; asc->max_peripherals = 1; asc->segments = aspeed_2400_spi1_segments; asc->flash_window_base = 0x30000000; asc->flash_window_size = 0x10000000; asc->features = 0x0; asc->nregs = ASPEED_SMC_R_SPI_MAX; asc->segment_to_reg = aspeed_smc_segment_to_reg; asc->reg_to_segment = aspeed_smc_reg_to_segment; asc->dma_ctrl = aspeed_smc_dma_ctrl; asc->addr_width = aspeed_2400_spi1_addr_width; } static const TypeInfo aspeed_2400_spi1_info = { .name = "aspeed.spi1-ast2400", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2400_spi1_class_init, }; static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = { [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 | CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1), }; static const AspeedSegments aspeed_2500_fmc_segments[] = { { 0x20000000, 128 * MiB }, /* start address is readonly */ { 0x28000000, 32 * MiB }, { 0x2A000000, 32 * MiB }, }; static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2600 FMC Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 1; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 3; asc->segments = aspeed_2500_fmc_segments; asc->segment_addr_mask = 0xffff0000; asc->resets = aspeed_2500_fmc_resets; asc->flash_window_base = 0x20000000; asc->flash_window_size = 0x10000000; asc->features = ASPEED_SMC_FEATURE_DMA; asc->dma_flash_mask = 0x0FFFFFFC; asc->dma_dram_mask = 0x3FFFFFFC; asc->nregs = ASPEED_SMC_R_MAX; asc->segment_to_reg = aspeed_smc_segment_to_reg; asc->reg_to_segment = aspeed_smc_reg_to_segment; asc->dma_ctrl = aspeed_smc_dma_ctrl; } static const TypeInfo aspeed_2500_fmc_info = { .name = "aspeed.fmc-ast2500", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2500_fmc_class_init, }; static const AspeedSegments aspeed_2500_spi1_segments[] = { { 0x30000000, 32 * MiB }, /* start address is readonly */ { 0x32000000, 96 * MiB }, /* end address is readonly */ }; static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2600 SPI1 Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 1; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 2; asc->segments = aspeed_2500_spi1_segments; asc->segment_addr_mask = 0xffff0000; asc->flash_window_base = 0x30000000; asc->flash_window_size = 0x8000000; asc->features = 0x0; asc->nregs = ASPEED_SMC_R_MAX; asc->segment_to_reg = aspeed_smc_segment_to_reg; asc->reg_to_segment = aspeed_smc_reg_to_segment; asc->dma_ctrl = aspeed_smc_dma_ctrl; } static const TypeInfo aspeed_2500_spi1_info = { .name = "aspeed.spi1-ast2500", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2500_spi1_class_init, }; static const AspeedSegments aspeed_2500_spi2_segments[] = { { 0x38000000, 32 * MiB }, /* start address is readonly */ { 0x3A000000, 96 * MiB }, /* end address is readonly */ }; static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2600 SPI2 Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 1; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 2; asc->segments = aspeed_2500_spi2_segments; asc->segment_addr_mask = 0xffff0000; asc->flash_window_base = 0x38000000; asc->flash_window_size = 0x8000000; asc->features = 0x0; asc->nregs = ASPEED_SMC_R_MAX; asc->segment_to_reg = aspeed_smc_segment_to_reg; asc->reg_to_segment = aspeed_smc_reg_to_segment; asc->dma_ctrl = aspeed_smc_dma_ctrl; } static const TypeInfo aspeed_2500_spi2_info = { .name = "aspeed.spi2-ast2500", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2500_spi2_class_init, }; /* * The Segment Registers of the AST2600 have a 1MB unit. The address * range of a flash SPI peripheral is encoded with offsets in the overall * controller window. The previous SoC AST2400 and AST2500 used * absolute addresses. Only bits [27:20] are relevant and the end * address is an upper bound limit. */ #define AST2600_SEG_ADDR_MASK 0x0ff00000 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s, const AspeedSegments *seg) { uint32_t reg = 0; /* Disabled segments have a nil register */ if (!seg->size) { return 0; } reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */ reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */ return reg; } static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg, AspeedSegments *seg) { uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK; uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK; AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s); if (reg) { seg->addr = asc->flash_window_base + start_offset; seg->size = end_offset + MiB - start_offset; } else { seg->addr = asc->flash_window_base; seg->size = 0; } } static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = { [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 | CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 | CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2), }; static const AspeedSegments aspeed_2600_fmc_segments[] = { { 0x0, 128 * MiB }, /* start address is readonly */ { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */ { 0x0, 0 }, /* disabled */ }; static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2600 FMC Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 1; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 3; asc->segments = aspeed_2600_fmc_segments; asc->segment_addr_mask = 0x0ff00ff0; asc->resets = aspeed_2600_fmc_resets; asc->flash_window_base = 0x20000000; asc->flash_window_size = 0x10000000; asc->features = ASPEED_SMC_FEATURE_DMA | ASPEED_SMC_FEATURE_WDT_CONTROL; asc->dma_flash_mask = 0x0FFFFFFC; asc->dma_dram_mask = 0x3FFFFFFC; asc->nregs = ASPEED_SMC_R_MAX; asc->segment_to_reg = aspeed_2600_smc_segment_to_reg; asc->reg_to_segment = aspeed_2600_smc_reg_to_segment; asc->dma_ctrl = aspeed_2600_smc_dma_ctrl; } static const TypeInfo aspeed_2600_fmc_info = { .name = "aspeed.fmc-ast2600", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2600_fmc_class_init, }; static const AspeedSegments aspeed_2600_spi1_segments[] = { { 0x0, 128 * MiB }, /* start address is readonly */ { 0x0, 0 }, /* disabled */ }; static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2600 SPI1 Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 2; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 2; asc->segments = aspeed_2600_spi1_segments; asc->segment_addr_mask = 0x0ff00ff0; asc->flash_window_base = 0x30000000; asc->flash_window_size = 0x10000000; asc->features = ASPEED_SMC_FEATURE_DMA | ASPEED_SMC_FEATURE_DMA_GRANT; asc->dma_flash_mask = 0x0FFFFFFC; asc->dma_dram_mask = 0x3FFFFFFC; asc->nregs = ASPEED_SMC_R_MAX; asc->segment_to_reg = aspeed_2600_smc_segment_to_reg; asc->reg_to_segment = aspeed_2600_smc_reg_to_segment; asc->dma_ctrl = aspeed_2600_smc_dma_ctrl; } static const TypeInfo aspeed_2600_spi1_info = { .name = "aspeed.spi1-ast2600", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2600_spi1_class_init, }; static const AspeedSegments aspeed_2600_spi2_segments[] = { { 0x0, 128 * MiB }, /* start address is readonly */ { 0x0, 0 }, /* disabled */ { 0x0, 0 }, /* disabled */ }; static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); dc->desc = "Aspeed 2600 SPI2 Controller"; asc->r_conf = R_CONF; asc->r_ce_ctrl = R_CE_CTRL; asc->r_ctrl0 = R_CTRL0; asc->r_timings = R_TIMINGS; asc->nregs_timings = 3; asc->conf_enable_w0 = CONF_ENABLE_W0; asc->max_peripherals = 3; asc->segments = aspeed_2600_spi2_segments; asc->segment_addr_mask = 0x0ff00ff0; asc->flash_window_base = 0x50000000; asc->flash_window_size = 0x10000000; asc->features = ASPEED_SMC_FEATURE_DMA | ASPEED_SMC_FEATURE_DMA_GRANT; asc->dma_flash_mask = 0x0FFFFFFC; asc->dma_dram_mask = 0x3FFFFFFC; asc->nregs = ASPEED_SMC_R_MAX; asc->segment_to_reg = aspeed_2600_smc_segment_to_reg; asc->reg_to_segment = aspeed_2600_smc_reg_to_segment; asc->dma_ctrl = aspeed_2600_smc_dma_ctrl; } static const TypeInfo aspeed_2600_spi2_info = { .name = "aspeed.spi2-ast2600", .parent = TYPE_ASPEED_SMC, .class_init = aspeed_2600_spi2_class_init, }; static void aspeed_smc_register_types(void) { type_register_static(&aspeed_smc_flash_info); type_register_static(&aspeed_smc_info); type_register_static(&aspeed_2400_smc_info); type_register_static(&aspeed_2400_fmc_info); type_register_static(&aspeed_2400_spi1_info); type_register_static(&aspeed_2500_fmc_info); type_register_static(&aspeed_2500_spi1_info); type_register_static(&aspeed_2500_spi2_info); type_register_static(&aspeed_2600_fmc_info); type_register_static(&aspeed_2600_spi1_info); type_register_static(&aspeed_2600_spi2_info); } type_init(aspeed_smc_register_types)