/* * QEMU Sparc SLAVIO timer controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "sun4m.h" #include "qemu-timer.h" //#define DEBUG_TIMER #ifdef DEBUG_TIMER #define DPRINTF(fmt, args...) \ do { printf("TIMER: " fmt , ##args); } while (0) #else #define DPRINTF(fmt, args...) #endif /* * Registers of hardware timer in sun4m. * * This is the timer/counter part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 * are zero. Bit 31 is 1 when count has been reached. * * Per-CPU timers interrupt local CPU, system timer uses normal * interrupt routing. * */ #define MAX_CPUS 16 typedef struct SLAVIO_TIMERState { qemu_irq irq; ptimer_state *timer; uint32_t count, counthigh, reached; uint64_t limit; // processor only int running; struct SLAVIO_TIMERState *master; int slave_index; // system only unsigned int num_slaves; struct SLAVIO_TIMERState *slave[MAX_CPUS]; uint32_t slave_mode; } SLAVIO_TIMERState; #define TIMER_MAXADDR 0x1f #define SYS_TIMER_SIZE 0x14 #define CPU_TIMER_SIZE 0x10 #define SYS_TIMER_OFFSET 0x10000ULL #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) #define TIMER_LIMIT 0 #define TIMER_COUNTER 1 #define TIMER_COUNTER_NORST 2 #define TIMER_STATUS 3 #define TIMER_MODE 4 #define TIMER_COUNT_MASK32 0xfffffe00 #define TIMER_LIMIT_MASK32 0x7fffffff #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL #define TIMER_MAX_COUNT32 0x7ffffe00ULL #define TIMER_REACHED 0x80000000 #define TIMER_PERIOD 500ULL // 500ns #define LIMIT_TO_PERIODS(l) ((l) >> 9) #define PERIODS_TO_LIMIT(l) ((l) << 9) static int slavio_timer_is_user(SLAVIO_TIMERState *s) { return s->master && (s->master->slave_mode & (1 << s->slave_index)); } // Update count, set irq, update expire_time // Convert from ptimer countdown units static void slavio_timer_get_out(SLAVIO_TIMERState *s) { uint64_t count, limit; if (s->limit == 0) /* free-run processor or system counter */ limit = TIMER_MAX_COUNT32; else limit = s->limit; count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer)); DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh, s->count); s->count = count & TIMER_COUNT_MASK32; s->counthigh = count >> 32; } // timer callback static void slavio_timer_irq(void *opaque) { SLAVIO_TIMERState *s = opaque; slavio_timer_get_out(s); DPRINTF("callback: count %x%08x\n", s->counthigh, s->count); if (!slavio_timer_is_user(s)) { s->reached = TIMER_REACHED; qemu_irq_raise(s->irq); } } static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) { SLAVIO_TIMERState *s = opaque; uint32_t saddr, ret; saddr = (addr & TIMER_MAXADDR) >> 2; switch (saddr) { case TIMER_LIMIT: // read limit (system counter mode) or read most signifying // part of counter (user mode) if (slavio_timer_is_user(s)) { // read user timer MSW slavio_timer_get_out(s); ret = s->counthigh; } else { // read limit // clear irq qemu_irq_lower(s->irq); s->reached = 0; ret = s->limit & TIMER_LIMIT_MASK32; } break; case TIMER_COUNTER: // read counter and reached bit (system mode) or read lsbits // of counter (user mode) slavio_timer_get_out(s); if (slavio_timer_is_user(s)) // read user timer LSW ret = s->count & TIMER_COUNT_MASK32; else // read limit ret = (s->count & TIMER_MAX_COUNT32) | s->reached; break; case TIMER_STATUS: // only available in processor counter/timer // read start/stop status ret = s->running; break; case TIMER_MODE: // only available in system counter // read user/system mode ret = s->slave_mode; break; default: DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr); ret = 0; break; } DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret); return ret; } static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SLAVIO_TIMERState *s = opaque; uint32_t saddr; DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val); saddr = (addr & TIMER_MAXADDR) >> 2; switch (saddr) { case TIMER_LIMIT: if (slavio_timer_is_user(s)) { // set user counter MSW, reset counter qemu_irq_lower(s->irq); s->limit = TIMER_MAX_COUNT64; DPRINTF("processor %d user timer reset\n", s->slave_index); ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); } else { // set limit, reset counter qemu_irq_lower(s->irq); s->limit = val & TIMER_MAX_COUNT32; if (s->limit == 0) /* free-run */ ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); else ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); } break; case TIMER_COUNTER: if (slavio_timer_is_user(s)) { // set user counter LSW, reset counter qemu_irq_lower(s->irq); s->limit = TIMER_MAX_COUNT64; DPRINTF("processor %d user timer reset\n", s->slave_index); ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); } else DPRINTF("not user timer\n"); break; case TIMER_COUNTER_NORST: // set limit without resetting counter s->limit = val & TIMER_MAX_COUNT32; if (s->limit == 0) /* free-run */ ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0); else ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0); break; case TIMER_STATUS: if (slavio_timer_is_user(s)) { // start/stop user counter if ((val & 1) && !s->running) { DPRINTF("processor %d user timer started\n", s->slave_index); ptimer_run(s->timer, 0); s->running = 1; } else if (!(val & 1) && s->running) { DPRINTF("processor %d user timer stopped\n", s->slave_index); ptimer_stop(s->timer); s->running = 0; } } break; case TIMER_MODE: if (s->master == NULL) { unsigned int i; for (i = 0; i < s->num_slaves; i++) { if (val & (1 << i)) { qemu_irq_lower(s->slave[i]->irq); s->slave[i]->limit = -1ULL; } if ((val & (1 << i)) != (s->slave_mode & (1 << i))) { ptimer_stop(s->slave[i]->timer); ptimer_set_limit(s->slave[i]->timer, LIMIT_TO_PERIODS(s->slave[i]->limit), 1); DPRINTF("processor %d timer changed\n", s->slave[i]->slave_index); ptimer_run(s->slave[i]->timer, 0); } } s->slave_mode = val & ((1 << s->num_slaves) - 1); } else DPRINTF("not system timer\n"); break; default: DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr); break; } } static CPUReadMemoryFunc *slavio_timer_mem_read[3] = { slavio_timer_mem_readl, slavio_timer_mem_readl, slavio_timer_mem_readl, }; static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = { slavio_timer_mem_writel, slavio_timer_mem_writel, slavio_timer_mem_writel, }; static void slavio_timer_save(QEMUFile *f, void *opaque) { SLAVIO_TIMERState *s = opaque; qemu_put_be64s(f, &s->limit); qemu_put_be32s(f, &s->count); qemu_put_be32s(f, &s->counthigh); qemu_put_be32(f, 0); // Was irq qemu_put_be32s(f, &s->reached); qemu_put_be32s(f, &s->running); qemu_put_be32s(f, 0); // Was mode qemu_put_ptimer(f, s->timer); } static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) { SLAVIO_TIMERState *s = opaque; uint32_t tmp; if (version_id != 2) return -EINVAL; qemu_get_be64s(f, &s->limit); qemu_get_be32s(f, &s->count); qemu_get_be32s(f, &s->counthigh); qemu_get_be32s(f, &tmp); // Was irq qemu_get_be32s(f, &s->reached); qemu_get_be32s(f, &s->running); qemu_get_be32s(f, &tmp); // Was mode qemu_get_ptimer(f, s->timer); return 0; } static void slavio_timer_reset(void *opaque) { SLAVIO_TIMERState *s = opaque; s->limit = 0; s->count = 0; s->reached = 0; s->slave_mode = 0; ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); ptimer_run(s->timer, 0); s->running = 1; qemu_irq_lower(s->irq); } static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr, qemu_irq irq, SLAVIO_TIMERState *master, int slave_index) { int slavio_timer_io_memory; SLAVIO_TIMERState *s; QEMUBH *bh; s = qemu_mallocz(sizeof(SLAVIO_TIMERState)); if (!s) return s; s->irq = irq; s->master = master; s->slave_index = slave_index; bh = qemu_bh_new(slavio_timer_irq, s); s->timer = ptimer_init(bh); ptimer_set_period(s->timer, TIMER_PERIOD); slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read, slavio_timer_mem_write, s); if (master) cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory); else cpu_register_physical_memory(addr, SYS_TIMER_SIZE, slavio_timer_io_memory); register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s); qemu_register_reset(slavio_timer_reset, s); slavio_timer_reset(s); return s; } void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq, qemu_irq *cpu_irqs, unsigned int num_cpus) { SLAVIO_TIMERState *master; unsigned int i; master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0); master->num_slaves = num_cpus; for (i = 0; i < MAX_CPUS; i++) { master->slave[i] = slavio_timer_init(base + (target_phys_addr_t) CPU_TIMER_OFFSET(i), cpu_irqs[i], master, i); } }