/* * LSM303DLHC I2C magnetometer. * * Copyright (C) 2021 Linaro Ltd. * Written by Kevin Townsend * * Based on: https://www.st.com/resource/en/datasheet/lsm303dlhc.pdf * * SPDX-License-Identifier: GPL-2.0-or-later */ /* * The I2C address associated with this device is set on the command-line when * initialising the machine, but the following address is standard: 0x1E. * * Get and set functions for 'mag-x', 'mag-y' and 'mag-z' assume that * 1 = 0.001 uT. (NOTE the 1 gauss = 100 uT, so setting a value of 100,000 * would be equal to 1 gauss or 100 uT.) * * Get and set functions for 'temperature' assume that 1 = 0.001 C, so 23.6 C * would be equal to 23600. */ #include "qemu/osdep.h" #include "hw/i2c/i2c.h" #include "migration/vmstate.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "qemu/module.h" #include "qemu/log.h" #include "qemu/bswap.h" enum LSM303DLHCMagReg { LSM303DLHC_MAG_REG_CRA = 0x00, LSM303DLHC_MAG_REG_CRB = 0x01, LSM303DLHC_MAG_REG_MR = 0x02, LSM303DLHC_MAG_REG_OUT_X_H = 0x03, LSM303DLHC_MAG_REG_OUT_X_L = 0x04, LSM303DLHC_MAG_REG_OUT_Z_H = 0x05, LSM303DLHC_MAG_REG_OUT_Z_L = 0x06, LSM303DLHC_MAG_REG_OUT_Y_H = 0x07, LSM303DLHC_MAG_REG_OUT_Y_L = 0x08, LSM303DLHC_MAG_REG_SR = 0x09, LSM303DLHC_MAG_REG_IRA = 0x0A, LSM303DLHC_MAG_REG_IRB = 0x0B, LSM303DLHC_MAG_REG_IRC = 0x0C, LSM303DLHC_MAG_REG_TEMP_OUT_H = 0x31, LSM303DLHC_MAG_REG_TEMP_OUT_L = 0x32 }; typedef struct LSM303DLHCMagState { I2CSlave parent_obj; uint8_t cra; uint8_t crb; uint8_t mr; int16_t x; int16_t z; int16_t y; int16_t x_lock; int16_t z_lock; int16_t y_lock; uint8_t sr; uint8_t ira; uint8_t irb; uint8_t irc; int16_t temperature; int16_t temperature_lock; uint8_t len; uint8_t buf; uint8_t pointer; } LSM303DLHCMagState; #define TYPE_LSM303DLHC_MAG "lsm303dlhc_mag" OBJECT_DECLARE_SIMPLE_TYPE(LSM303DLHCMagState, LSM303DLHC_MAG) /* * Conversion factor from Gauss to sensor values for each GN gain setting, * in units "lsb per Gauss" (see data sheet table 3). There is no documented * behaviour if the GN setting in CRB is incorrectly set to 0b000; * we arbitrarily make it the same as 0b001. */ uint32_t xy_gain[] = { 1100, 1100, 855, 670, 450, 400, 330, 230 }; uint32_t z_gain[] = { 980, 980, 760, 600, 400, 355, 295, 205 }; static void lsm303dlhc_mag_get_x(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int gm = extract32(s->crb, 5, 3); /* Convert to uT where 1000 = 1 uT. Conversion factor depends on gain. */ int64_t value = muldiv64(s->x, 100000, xy_gain[gm]); visit_type_int(v, name, &value, errp); } static void lsm303dlhc_mag_get_y(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int gm = extract32(s->crb, 5, 3); /* Convert to uT where 1000 = 1 uT. Conversion factor depends on gain. */ int64_t value = muldiv64(s->y, 100000, xy_gain[gm]); visit_type_int(v, name, &value, errp); } static void lsm303dlhc_mag_get_z(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int gm = extract32(s->crb, 5, 3); /* Convert to uT where 1000 = 1 uT. Conversion factor depends on gain. */ int64_t value = muldiv64(s->z, 100000, z_gain[gm]); visit_type_int(v, name, &value, errp); } static void lsm303dlhc_mag_set_x(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int64_t value; int64_t reg; int gm = extract32(s->crb, 5, 3); if (!visit_type_int(v, name, &value, errp)) { return; } reg = muldiv64(value, xy_gain[gm], 100000); /* Make sure we are within a 12-bit limit. */ if (reg > 2047 || reg < -2048) { error_setg(errp, "value %" PRId64 " out of register's range", value); return; } s->x = (int16_t)reg; } static void lsm303dlhc_mag_set_y(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int64_t value; int64_t reg; int gm = extract32(s->crb, 5, 3); if (!visit_type_int(v, name, &value, errp)) { return; } reg = muldiv64(value, xy_gain[gm], 100000); /* Make sure we are within a 12-bit limit. */ if (reg > 2047 || reg < -2048) { error_setg(errp, "value %" PRId64 " out of register's range", value); return; } s->y = (int16_t)reg; } static void lsm303dlhc_mag_set_z(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int64_t value; int64_t reg; int gm = extract32(s->crb, 5, 3); if (!visit_type_int(v, name, &value, errp)) { return; } reg = muldiv64(value, z_gain[gm], 100000); /* Make sure we are within a 12-bit limit. */ if (reg > 2047 || reg < -2048) { error_setg(errp, "value %" PRId64 " out of register's range", value); return; } s->z = (int16_t)reg; } /* * Get handler for the temperature property. */ static void lsm303dlhc_mag_get_temperature(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int64_t value; /* Convert to 1 lsb = 0.125 C to 1 = 0.001 C for 'temperature' property. */ value = s->temperature * 125; visit_type_int(v, name, &value, errp); } /* * Set handler for the temperature property. */ static void lsm303dlhc_mag_set_temperature(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { LSM303DLHCMagState *s = LSM303DLHC_MAG(obj); int64_t value; if (!visit_type_int(v, name, &value, errp)) { return; } /* Input temperature is in 0.001 C units. Convert to 1 lsb = 0.125 C. */ value /= 125; if (value > 2047 || value < -2048) { error_setg(errp, "value %" PRId64 " lsb is out of range", value); return; } s->temperature = (int16_t)value; } /* * Callback handler whenever a 'I2C_START_RECV' (read) event is received. */ static void lsm303dlhc_mag_read(LSM303DLHCMagState *s) { /* * Set the LOCK bit whenever a new read attempt is made. This will be * cleared in I2C_FINISH. Note that DRDY is always set to 1 in this driver. */ s->sr = 0x3; /* * Copy the current X/Y/Z and temp. values into the locked registers so * that 'mag-x', 'mag-y', 'mag-z' and 'temperature' can continue to be * updated via QOM, etc., without corrupting the current read event. */ s->x_lock = s->x; s->z_lock = s->z; s->y_lock = s->y; s->temperature_lock = s->temperature; } /* * Callback handler whenever a 'I2C_FINISH' event is received. */ static void lsm303dlhc_mag_finish(LSM303DLHCMagState *s) { /* * Clear the LOCK bit when the read attempt terminates. * This bit is initially set in the I2C_START_RECV handler. */ s->sr = 0x1; } /* * Callback handler when a device attempts to write to a register. */ static void lsm303dlhc_mag_write(LSM303DLHCMagState *s) { switch (s->pointer) { case LSM303DLHC_MAG_REG_CRA: s->cra = s->buf; break; case LSM303DLHC_MAG_REG_CRB: /* Make sure gain is at least 1, falling back to 1 on an error. */ if (s->buf >> 5 == 0) { s->buf = 1 << 5; } s->crb = s->buf; break; case LSM303DLHC_MAG_REG_MR: s->mr = s->buf; break; case LSM303DLHC_MAG_REG_SR: s->sr = s->buf; break; case LSM303DLHC_MAG_REG_IRA: s->ira = s->buf; break; case LSM303DLHC_MAG_REG_IRB: s->irb = s->buf; break; case LSM303DLHC_MAG_REG_IRC: s->irc = s->buf; break; default: qemu_log_mask(LOG_GUEST_ERROR, "reg is read-only: 0x%02X", s->buf); break; } } /* * Low-level master-to-slave transaction handler. */ static int lsm303dlhc_mag_send(I2CSlave *i2c, uint8_t data) { LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c); if (s->len == 0) { /* First byte is the reg pointer */ s->pointer = data; s->len++; } else if (s->len == 1) { /* Second byte is the new register value. */ s->buf = data; lsm303dlhc_mag_write(s); } else { g_assert_not_reached(); } return 0; } /* * Low-level slave-to-master transaction handler (read attempts). */ static uint8_t lsm303dlhc_mag_recv(I2CSlave *i2c) { LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c); uint8_t resp; switch (s->pointer) { case LSM303DLHC_MAG_REG_CRA: resp = s->cra; break; case LSM303DLHC_MAG_REG_CRB: resp = s->crb; break; case LSM303DLHC_MAG_REG_MR: resp = s->mr; break; case LSM303DLHC_MAG_REG_OUT_X_H: resp = (uint8_t)(s->x_lock >> 8); break; case LSM303DLHC_MAG_REG_OUT_X_L: resp = (uint8_t)(s->x_lock); break; case LSM303DLHC_MAG_REG_OUT_Z_H: resp = (uint8_t)(s->z_lock >> 8); break; case LSM303DLHC_MAG_REG_OUT_Z_L: resp = (uint8_t)(s->z_lock); break; case LSM303DLHC_MAG_REG_OUT_Y_H: resp = (uint8_t)(s->y_lock >> 8); break; case LSM303DLHC_MAG_REG_OUT_Y_L: resp = (uint8_t)(s->y_lock); break; case LSM303DLHC_MAG_REG_SR: resp = s->sr; break; case LSM303DLHC_MAG_REG_IRA: resp = s->ira; break; case LSM303DLHC_MAG_REG_IRB: resp = s->irb; break; case LSM303DLHC_MAG_REG_IRC: resp = s->irc; break; case LSM303DLHC_MAG_REG_TEMP_OUT_H: /* Check if the temperature sensor is enabled or not (CRA & 0x80). */ if (s->cra & 0x80) { resp = (uint8_t)(s->temperature_lock >> 8); } else { resp = 0; } break; case LSM303DLHC_MAG_REG_TEMP_OUT_L: if (s->cra & 0x80) { resp = (uint8_t)(s->temperature_lock & 0xff); } else { resp = 0; } break; default: resp = 0; break; } /* * The address pointer on the LSM303DLHC auto-increments whenever a byte * is read, without the master device having to request the next address. * * The auto-increment process has the following logic: * * - if (s->pointer == 8) then s->pointer = 3 * - else: if (s->pointer == 12) then s->pointer = 0 * - else: s->pointer += 1 * * Reading an invalid address return 0. */ if (s->pointer == LSM303DLHC_MAG_REG_OUT_Y_L) { s->pointer = LSM303DLHC_MAG_REG_OUT_X_H; } else if (s->pointer == LSM303DLHC_MAG_REG_IRC) { s->pointer = LSM303DLHC_MAG_REG_CRA; } else { s->pointer++; } return resp; } /* * Bus state change handler. */ static int lsm303dlhc_mag_event(I2CSlave *i2c, enum i2c_event event) { LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c); switch (event) { case I2C_START_SEND: break; case I2C_START_RECV: lsm303dlhc_mag_read(s); break; case I2C_FINISH: lsm303dlhc_mag_finish(s); break; case I2C_NACK: break; default: return -1; } s->len = 0; return 0; } /* * Device data description using VMSTATE macros. */ static const VMStateDescription vmstate_lsm303dlhc_mag = { .name = "LSM303DLHC_MAG", .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_I2C_SLAVE(parent_obj, LSM303DLHCMagState), VMSTATE_UINT8(len, LSM303DLHCMagState), VMSTATE_UINT8(buf, LSM303DLHCMagState), VMSTATE_UINT8(pointer, LSM303DLHCMagState), VMSTATE_UINT8(cra, LSM303DLHCMagState), VMSTATE_UINT8(crb, LSM303DLHCMagState), VMSTATE_UINT8(mr, LSM303DLHCMagState), VMSTATE_INT16(x, LSM303DLHCMagState), VMSTATE_INT16(z, LSM303DLHCMagState), VMSTATE_INT16(y, LSM303DLHCMagState), VMSTATE_INT16(x_lock, LSM303DLHCMagState), VMSTATE_INT16(z_lock, LSM303DLHCMagState), VMSTATE_INT16(y_lock, LSM303DLHCMagState), VMSTATE_UINT8(sr, LSM303DLHCMagState), VMSTATE_UINT8(ira, LSM303DLHCMagState), VMSTATE_UINT8(irb, LSM303DLHCMagState), VMSTATE_UINT8(irc, LSM303DLHCMagState), VMSTATE_INT16(temperature, LSM303DLHCMagState), VMSTATE_INT16(temperature_lock, LSM303DLHCMagState), VMSTATE_END_OF_LIST() } }; /* * Put the device into post-reset default state. */ static void lsm303dlhc_mag_default_cfg(LSM303DLHCMagState *s) { /* Set the device into is default reset state. */ s->len = 0; s->pointer = 0; /* Current register. */ s->buf = 0; /* Shared buffer. */ s->cra = 0x10; /* Temp Enabled = 0, Data Rate = 15.0 Hz. */ s->crb = 0x20; /* Gain = +/- 1.3 Gauss. */ s->mr = 0x3; /* Operating Mode = Sleep. */ s->x = 0; s->z = 0; s->y = 0; s->x_lock = 0; s->z_lock = 0; s->y_lock = 0; s->sr = 0x1; /* DRDY = 1. */ s->ira = 0x48; s->irb = 0x34; s->irc = 0x33; s->temperature = 0; /* Default to 0 degrees C (0/8 lsb = 0 C). */ s->temperature_lock = 0; } /* * Callback handler when DeviceState 'reset' is set to true. */ static void lsm303dlhc_mag_reset(DeviceState *dev) { I2CSlave *i2c = I2C_SLAVE(dev); LSM303DLHCMagState *s = LSM303DLHC_MAG(i2c); /* Set the device into its default reset state. */ lsm303dlhc_mag_default_cfg(s); } /* * Initialisation of any public properties. */ static void lsm303dlhc_mag_initfn(Object *obj) { object_property_add(obj, "mag-x", "int", lsm303dlhc_mag_get_x, lsm303dlhc_mag_set_x, NULL, NULL); object_property_add(obj, "mag-y", "int", lsm303dlhc_mag_get_y, lsm303dlhc_mag_set_y, NULL, NULL); object_property_add(obj, "mag-z", "int", lsm303dlhc_mag_get_z, lsm303dlhc_mag_set_z, NULL, NULL); object_property_add(obj, "temperature", "int", lsm303dlhc_mag_get_temperature, lsm303dlhc_mag_set_temperature, NULL, NULL); } /* * Set the virtual method pointers (bus state change, tx/rx, etc.). */ static void lsm303dlhc_mag_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); I2CSlaveClass *k = I2C_SLAVE_CLASS(klass); device_class_set_legacy_reset(dc, lsm303dlhc_mag_reset); dc->vmsd = &vmstate_lsm303dlhc_mag; k->event = lsm303dlhc_mag_event; k->recv = lsm303dlhc_mag_recv; k->send = lsm303dlhc_mag_send; } static const TypeInfo lsm303dlhc_mag_info = { .name = TYPE_LSM303DLHC_MAG, .parent = TYPE_I2C_SLAVE, .instance_size = sizeof(LSM303DLHCMagState), .instance_init = lsm303dlhc_mag_initfn, .class_init = lsm303dlhc_mag_class_init, }; static void lsm303dlhc_mag_register_types(void) { type_register_static(&lsm303dlhc_mag_info); } type_init(lsm303dlhc_mag_register_types)