/* * SD Association Host Standard Specification v2.0 controller emulation * * Copyright (c) 2011 Samsung Electronics Co., Ltd. * Mitsyanko Igor * Peter A.G. Crosthwaite * * Based on MMC controller for Samsung S5PC1xx-based board emulation * by Alexey Merkulov and Vladimir Monakhov. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "hw/hw.h" #include "sysemu/blockdev.h" #include "sysemu/dma.h" #include "qemu/timer.h" #include "block/block_int.h" #include "qemu/bitops.h" #include "sdhci.h" /* host controller debug messages */ #ifndef SDHC_DEBUG #define SDHC_DEBUG 0 #endif #if SDHC_DEBUG == 0 #define DPRINT_L1(fmt, args...) do { } while (0) #define DPRINT_L2(fmt, args...) do { } while (0) #define ERRPRINT(fmt, args...) do { } while (0) #elif SDHC_DEBUG == 1 #define DPRINT_L1(fmt, args...) \ do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0) #define DPRINT_L2(fmt, args...) do { } while (0) #define ERRPRINT(fmt, args...) \ do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0) #else #define DPRINT_L1(fmt, args...) \ do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0) #define DPRINT_L2(fmt, args...) \ do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0) #define ERRPRINT(fmt, args...) \ do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0) #endif /* Default SD/MMC host controller features information, which will be * presented in CAPABILITIES register of generic SD host controller at reset. * If not stated otherwise: * 0 - not supported, 1 - supported, other - prohibited. */ #define SDHC_CAPAB_64BITBUS 0ul /* 64-bit System Bus Support */ #define SDHC_CAPAB_18V 1ul /* Voltage support 1.8v */ #define SDHC_CAPAB_30V 0ul /* Voltage support 3.0v */ #define SDHC_CAPAB_33V 1ul /* Voltage support 3.3v */ #define SDHC_CAPAB_SUSPRESUME 0ul /* Suspend/resume support */ #define SDHC_CAPAB_SDMA 1ul /* SDMA support */ #define SDHC_CAPAB_HIGHSPEED 1ul /* High speed support */ #define SDHC_CAPAB_ADMA1 1ul /* ADMA1 support */ #define SDHC_CAPAB_ADMA2 1ul /* ADMA2 support */ /* Maximum host controller R/W buffers size * Possible values: 512, 1024, 2048 bytes */ #define SDHC_CAPAB_MAXBLOCKLENGTH 512ul /* Maximum clock frequency for SDclock in MHz * value in range 10-63 MHz, 0 - not defined */ #define SDHC_CAPAB_BASECLKFREQ 0ul #define SDHC_CAPAB_TOUNIT 1ul /* Timeout clock unit 0 - kHz, 1 - MHz */ /* Timeout clock frequency 1-63, 0 - not defined */ #define SDHC_CAPAB_TOCLKFREQ 0ul /* Now check all parameters and calculate CAPABILITIES REGISTER value */ #if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 || \ SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 || \ SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\ SDHC_CAPAB_TOUNIT > 1 #error Capabilities features can have value 0 or 1 only! #endif #if SDHC_CAPAB_MAXBLOCKLENGTH == 512 #define MAX_BLOCK_LENGTH 0ul #elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024 #define MAX_BLOCK_LENGTH 1ul #elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048 #define MAX_BLOCK_LENGTH 2ul #else #error Max host controller block size can have value 512, 1024 or 2048 only! #endif #if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \ SDHC_CAPAB_BASECLKFREQ > 63 #error SDclock frequency can have value in range 0, 10-63 only! #endif #if SDHC_CAPAB_TOCLKFREQ > 63 #error Timeout clock frequency can have value in range 0-63 only! #endif #define SDHC_CAPAB_REG_DEFAULT \ ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) | \ (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) | \ (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) | \ (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) | \ (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) | \ (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \ (SDHC_CAPAB_TOCLKFREQ)) #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val)) static uint8_t sdhci_slotint(SDHCIState *s) { return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) || ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) || ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV)); } static inline void sdhci_update_irq(SDHCIState *s) { qemu_set_irq(s->irq, sdhci_slotint(s)); } static void sdhci_raise_insertion_irq(void *opaque) { SDHCIState *s = (SDHCIState *)opaque; if (s->norintsts & SDHC_NIS_REMOVE) { qemu_mod_timer(s->insert_timer, qemu_get_clock_ns(vm_clock) + SDHC_INSERTION_DELAY); } else { s->prnsts = 0x1ff0000; if (s->norintstsen & SDHC_NISEN_INSERT) { s->norintsts |= SDHC_NIS_INSERT; } sdhci_update_irq(s); } } static void sdhci_insert_eject_cb(void *opaque, int irq, int level) { SDHCIState *s = (SDHCIState *)opaque; DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject"); if ((s->norintsts & SDHC_NIS_REMOVE) && level) { /* Give target some time to notice card ejection */ qemu_mod_timer(s->insert_timer, qemu_get_clock_ns(vm_clock) + SDHC_INSERTION_DELAY); } else { if (level) { s->prnsts = 0x1ff0000; if (s->norintstsen & SDHC_NISEN_INSERT) { s->norintsts |= SDHC_NIS_INSERT; } } else { s->prnsts = 0x1fa0000; s->pwrcon &= ~SDHC_POWER_ON; s->clkcon &= ~SDHC_CLOCK_SDCLK_EN; if (s->norintstsen & SDHC_NISEN_REMOVE) { s->norintsts |= SDHC_NIS_REMOVE; } } sdhci_update_irq(s); } } static void sdhci_card_readonly_cb(void *opaque, int irq, int level) { SDHCIState *s = (SDHCIState *)opaque; if (level) { s->prnsts &= ~SDHC_WRITE_PROTECT; } else { /* Write enabled */ s->prnsts |= SDHC_WRITE_PROTECT; } } static void sdhci_reset(SDHCIState *s) { qemu_del_timer(s->insert_timer); qemu_del_timer(s->transfer_timer); /* Set all registers to 0. Capabilities registers are not cleared * and assumed to always preserve their value, given to them during * initialization */ memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad); sd_set_cb(s->card, s->ro_cb, s->eject_cb); s->data_count = 0; s->stopped_state = sdhc_not_stopped; } static void sdhci_do_data_transfer(void *opaque) { SDHCIState *s = (SDHCIState *)opaque; SDHCI_GET_CLASS(s)->data_transfer(s); } static void sdhci_send_command(SDHCIState *s) { SDRequest request; uint8_t response[16]; int rlen; s->errintsts = 0; s->acmd12errsts = 0; request.cmd = s->cmdreg >> 8; request.arg = s->argument; DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg); rlen = sd_do_command(s->card, &request, response); if (s->cmdreg & SDHC_CMD_RESPONSE) { if (rlen == 4) { s->rspreg[0] = (response[0] << 24) | (response[1] << 16) | (response[2] << 8) | response[3]; s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0; DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]); } else if (rlen == 16) { s->rspreg[0] = (response[11] << 24) | (response[12] << 16) | (response[13] << 8) | response[14]; s->rspreg[1] = (response[7] << 24) | (response[8] << 16) | (response[9] << 8) | response[10]; s->rspreg[2] = (response[3] << 24) | (response[4] << 16) | (response[5] << 8) | response[6]; s->rspreg[3] = (response[0] << 16) | (response[1] << 8) | response[2]; DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.." "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n", s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]); } else { ERRPRINT("Timeout waiting for command response\n"); if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) { s->errintsts |= SDHC_EIS_CMDTIMEOUT; s->norintsts |= SDHC_NIS_ERR; } } if ((s->norintstsen & SDHC_NISEN_TRSCMP) && (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) { s->norintsts |= SDHC_NIS_TRSCMP; } } else if (rlen != 0 && (s->errintstsen & SDHC_EISEN_CMDIDX)) { s->errintsts |= SDHC_EIS_CMDIDX; s->norintsts |= SDHC_NIS_ERR; } if (s->norintstsen & SDHC_NISEN_CMDCMP) { s->norintsts |= SDHC_NIS_CMDCMP; } sdhci_update_irq(s); if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) { s->data_count = 0; sdhci_do_data_transfer(s); } } static void sdhci_end_transfer(SDHCIState *s) { /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */ if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) { SDRequest request; uint8_t response[16]; request.cmd = 0x0C; request.arg = 0; DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg); sd_do_command(s->card, &request, response); /* Auto CMD12 response goes to the upper Response register */ s->rspreg[3] = (response[0] << 24) | (response[1] << 16) | (response[2] << 8) | response[3]; } s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT | SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE); if (s->norintstsen & SDHC_NISEN_TRSCMP) { s->norintsts |= SDHC_NIS_TRSCMP; } sdhci_update_irq(s); } /* * Programmed i/o data transfer */ /* Fill host controller's read buffer with BLKSIZE bytes of data from card */ static void sdhci_read_block_from_card(SDHCIState *s) { int index = 0; if ((s->trnmod & SDHC_TRNS_MULTI) && (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) { return; } for (index = 0; index < (s->blksize & 0x0fff); index++) { s->fifo_buffer[index] = sd_read_data(s->card); } /* New data now available for READ through Buffer Port Register */ s->prnsts |= SDHC_DATA_AVAILABLE; if (s->norintstsen & SDHC_NISEN_RBUFRDY) { s->norintsts |= SDHC_NIS_RBUFRDY; } /* Clear DAT line active status if that was the last block */ if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) { s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; } /* If stop at block gap request was set and it's not the last block of * data - generate Block Event interrupt */ if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt != 1) { s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; if (s->norintstsen & SDHC_EISEN_BLKGAP) { s->norintsts |= SDHC_EIS_BLKGAP; } } sdhci_update_irq(s); } /* Read @size byte of data from host controller @s BUFFER DATA PORT register */ static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size) { uint32_t value = 0; int i; /* first check that a valid data exists in host controller input buffer */ if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) { ERRPRINT("Trying to read from empty buffer\n"); return 0; } for (i = 0; i < size; i++) { value |= s->fifo_buffer[s->data_count] << i * 8; s->data_count++; /* check if we've read all valid data (blksize bytes) from buffer */ if ((s->data_count) >= (s->blksize & 0x0fff)) { DPRINT_L2("All %u bytes of data have been read from input buffer\n", s->data_count); s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */ s->data_count = 0; /* next buff read must start at position [0] */ if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { s->blkcnt--; } /* if that was the last block of data */ if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) || /* stop at gap request */ (s->stopped_state == sdhc_gap_read && !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) { SDHCI_GET_CLASS(s)->end_data_transfer(s); } else { /* if there are more data, read next block from card */ SDHCI_GET_CLASS(s)->read_block_from_card(s); } break; } } return value; } /* Write data from host controller FIFO to card */ static void sdhci_write_block_to_card(SDHCIState *s) { int index = 0; if (s->prnsts & SDHC_SPACE_AVAILABLE) { if (s->norintstsen & SDHC_NISEN_WBUFRDY) { s->norintsts |= SDHC_NIS_WBUFRDY; } sdhci_update_irq(s); return; } if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { if (s->blkcnt == 0) { return; } else { s->blkcnt--; } } for (index = 0; index < (s->blksize & 0x0fff); index++) { sd_write_data(s->card, s->fifo_buffer[index]); } /* Next data can be written through BUFFER DATORT register */ s->prnsts |= SDHC_SPACE_AVAILABLE; /* Finish transfer if that was the last block of data */ if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || ((s->trnmod & SDHC_TRNS_MULTI) && (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) { SDHCI_GET_CLASS(s)->end_data_transfer(s); } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) { s->norintsts |= SDHC_NIS_WBUFRDY; } /* Generate Block Gap Event if requested and if not the last block */ if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt > 0) { s->prnsts &= ~SDHC_DOING_WRITE; if (s->norintstsen & SDHC_EISEN_BLKGAP) { s->norintsts |= SDHC_EIS_BLKGAP; } SDHCI_GET_CLASS(s)->end_data_transfer(s); } sdhci_update_irq(s); } /* Write @size bytes of @value data to host controller @s Buffer Data Port * register */ static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size) { unsigned i; /* Check that there is free space left in a buffer */ if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) { ERRPRINT("Can't write to data buffer: buffer full\n"); return; } for (i = 0; i < size; i++) { s->fifo_buffer[s->data_count] = value & 0xFF; s->data_count++; value >>= 8; if (s->data_count >= (s->blksize & 0x0fff)) { DPRINT_L2("write buffer filled with %u bytes of data\n", s->data_count); s->data_count = 0; s->prnsts &= ~SDHC_SPACE_AVAILABLE; if (s->prnsts & SDHC_DOING_WRITE) { SDHCI_GET_CLASS(s)->write_block_to_card(s); } } } } /* * Single DMA data transfer */ /* Multi block SDMA transfer */ static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s) { bool page_aligned = false; unsigned int n, begin; const uint16_t block_size = s->blksize & 0x0fff; uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12); uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk); /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for * possible stop at page boundary if initial address is not page aligned, * allow them to work properly */ if ((s->sdmasysad % boundary_chk) == 0) { page_aligned = true; } if (s->trnmod & SDHC_TRNS_READ) { s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE; while (s->blkcnt) { if (s->data_count == 0) { for (n = 0; n < block_size; n++) { s->fifo_buffer[n] = sd_read_data(s->card); } } begin = s->data_count; if (((boundary_count + begin) < block_size) && page_aligned) { s->data_count = boundary_count + begin; boundary_count = 0; } else { s->data_count = block_size; boundary_count -= block_size - begin; if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { s->blkcnt--; } } dma_memory_write(&dma_context_memory, s->sdmasysad, &s->fifo_buffer[begin], s->data_count - begin); s->sdmasysad += s->data_count - begin; if (s->data_count == block_size) { s->data_count = 0; } if (page_aligned && boundary_count == 0) { break; } } } else { s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE; while (s->blkcnt) { begin = s->data_count; if (((boundary_count + begin) < block_size) && page_aligned) { s->data_count = boundary_count + begin; boundary_count = 0; } else { s->data_count = block_size; boundary_count -= block_size - begin; } dma_memory_read(&dma_context_memory, s->sdmasysad, &s->fifo_buffer[begin], s->data_count); s->sdmasysad += s->data_count - begin; if (s->data_count == block_size) { for (n = 0; n < block_size; n++) { sd_write_data(s->card, s->fifo_buffer[n]); } s->data_count = 0; if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { s->blkcnt--; } } if (page_aligned && boundary_count == 0) { break; } } } if (s->blkcnt == 0) { SDHCI_GET_CLASS(s)->end_data_transfer(s); } else { if (s->norintstsen & SDHC_NISEN_DMA) { s->norintsts |= SDHC_NIS_DMA; } sdhci_update_irq(s); } } /* single block SDMA transfer */ static void sdhci_sdma_transfer_single_block(SDHCIState *s) { int n; uint32_t datacnt = s->blksize & 0x0fff; if (s->trnmod & SDHC_TRNS_READ) { for (n = 0; n < datacnt; n++) { s->fifo_buffer[n] = sd_read_data(s->card); } dma_memory_write(&dma_context_memory, s->sdmasysad, s->fifo_buffer, datacnt); } else { dma_memory_read(&dma_context_memory, s->sdmasysad, s->fifo_buffer, datacnt); for (n = 0; n < datacnt; n++) { sd_write_data(s->card, s->fifo_buffer[n]); } } if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { s->blkcnt--; } SDHCI_GET_CLASS(s)->end_data_transfer(s); } typedef struct ADMADescr { hwaddr addr; uint16_t length; uint8_t attr; uint8_t incr; } ADMADescr; static void get_adma_description(SDHCIState *s, ADMADescr *dscr) { uint32_t adma1 = 0; uint64_t adma2 = 0; hwaddr entry_addr = (hwaddr)s->admasysaddr; switch (SDHC_DMA_TYPE(s->hostctl)) { case SDHC_CTRL_ADMA2_32: dma_memory_read(&dma_context_memory, entry_addr, (uint8_t *)&adma2, sizeof(adma2)); adma2 = le64_to_cpu(adma2); /* The spec does not specify endianness of descriptor table. * We currently assume that it is LE. */ dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull; dscr->length = (uint16_t)extract64(adma2, 16, 16); dscr->attr = (uint8_t)extract64(adma2, 0, 7); dscr->incr = 8; break; case SDHC_CTRL_ADMA1_32: dma_memory_read(&dma_context_memory, entry_addr, (uint8_t *)&adma1, sizeof(adma1)); adma1 = le32_to_cpu(adma1); dscr->addr = (hwaddr)(adma1 & 0xFFFFF000); dscr->attr = (uint8_t)extract32(adma1, 0, 7); dscr->incr = 4; if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) { dscr->length = (uint16_t)extract32(adma1, 12, 16); } else { dscr->length = 4096; } break; case SDHC_CTRL_ADMA2_64: dma_memory_read(&dma_context_memory, entry_addr, (uint8_t *)(&dscr->attr), 1); dma_memory_read(&dma_context_memory, entry_addr + 2, (uint8_t *)(&dscr->length), 2); dscr->length = le16_to_cpu(dscr->length); dma_memory_read(&dma_context_memory, entry_addr + 4, (uint8_t *)(&dscr->addr), 8); dscr->attr = le64_to_cpu(dscr->attr); dscr->attr &= 0xfffffff8; dscr->incr = 12; break; } } /* Advanced DMA data transfer */ static void sdhci_do_adma(SDHCIState *s) { unsigned int n, begin, length; const uint16_t block_size = s->blksize & 0x0fff; ADMADescr dscr; int i; for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) { s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH; get_adma_description(s, &dscr); DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n", dscr.addr, dscr.length, dscr.attr); if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) { /* Indicate that error occurred in ST_FDS state */ s->admaerr &= ~SDHC_ADMAERR_STATE_MASK; s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS; /* Generate ADMA error interrupt */ if (s->errintstsen & SDHC_EISEN_ADMAERR) { s->errintsts |= SDHC_EIS_ADMAERR; s->norintsts |= SDHC_NIS_ERR; } sdhci_update_irq(s); return; } length = dscr.length ? dscr.length : 65536; switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) { case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */ if (s->trnmod & SDHC_TRNS_READ) { while (length) { if (s->data_count == 0) { for (n = 0; n < block_size; n++) { s->fifo_buffer[n] = sd_read_data(s->card); } } begin = s->data_count; if ((length + begin) < block_size) { s->data_count = length + begin; length = 0; } else { s->data_count = block_size; length -= block_size - begin; } dma_memory_write(&dma_context_memory, dscr.addr, &s->fifo_buffer[begin], s->data_count - begin); dscr.addr += s->data_count - begin; if (s->data_count == block_size) { s->data_count = 0; if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { s->blkcnt--; if (s->blkcnt == 0) { break; } } } } } else { while (length) { begin = s->data_count; if ((length + begin) < block_size) { s->data_count = length + begin; length = 0; } else { s->data_count = block_size; length -= block_size - begin; } dma_memory_read(&dma_context_memory, dscr.addr, &s->fifo_buffer[begin], s->data_count); dscr.addr += s->data_count - begin; if (s->data_count == block_size) { for (n = 0; n < block_size; n++) { sd_write_data(s->card, s->fifo_buffer[n]); } s->data_count = 0; if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { s->blkcnt--; if (s->blkcnt == 0) { break; } } } } } s->admasysaddr += dscr.incr; break; case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */ s->admasysaddr = dscr.addr; DPRINT_L1("ADMA link: admasysaddr=0x%lx\n", s->admasysaddr); break; default: s->admasysaddr += dscr.incr; break; } /* ADMA transfer terminates if blkcnt == 0 or by END attribute */ if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) { DPRINT_L2("ADMA transfer completed\n"); if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) && (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && s->blkcnt != 0)) { ERRPRINT("SD/MMC host ADMA length mismatch\n"); s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH | SDHC_ADMAERR_STATE_ST_TFR; if (s->errintstsen & SDHC_EISEN_ADMAERR) { ERRPRINT("Set ADMA error flag\n"); s->errintsts |= SDHC_EIS_ADMAERR; s->norintsts |= SDHC_NIS_ERR; } sdhci_update_irq(s); } SDHCI_GET_CLASS(s)->end_data_transfer(s); return; } if (dscr.attr & SDHC_ADMA_ATTR_INT) { DPRINT_L1("ADMA interrupt: admasysaddr=0x%lx\n", s->admasysaddr); if (s->norintstsen & SDHC_NISEN_DMA) { s->norintsts |= SDHC_NIS_DMA; } sdhci_update_irq(s); return; } } /* we have unfinished business - reschedule to continue ADMA */ qemu_mod_timer(s->transfer_timer, qemu_get_clock_ns(vm_clock) + SDHC_TRANSFER_DELAY); } /* Perform data transfer according to controller configuration */ static void sdhci_data_transfer(SDHCIState *s) { SDHCIClass *k = SDHCI_GET_CLASS(s); if (s->trnmod & SDHC_TRNS_DMA) { switch (SDHC_DMA_TYPE(s->hostctl)) { case SDHC_CTRL_SDMA: if ((s->trnmod & SDHC_TRNS_MULTI) && (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) { break; } if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) { k->do_sdma_single(s); } else { k->do_sdma_multi(s); } break; case SDHC_CTRL_ADMA1_32: if (!(s->capareg & SDHC_CAN_DO_ADMA1)) { ERRPRINT("ADMA1 not supported\n"); break; } k->do_adma(s); break; case SDHC_CTRL_ADMA2_32: if (!(s->capareg & SDHC_CAN_DO_ADMA2)) { ERRPRINT("ADMA2 not supported\n"); break; } k->do_adma(s); break; case SDHC_CTRL_ADMA2_64: if (!(s->capareg & SDHC_CAN_DO_ADMA2) || !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) { ERRPRINT("64 bit ADMA not supported\n"); break; } k->do_adma(s); break; default: ERRPRINT("Unsupported DMA type\n"); break; } } else { if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) { s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE; SDHCI_GET_CLASS(s)->read_block_from_card(s); } else { s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE | SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT; SDHCI_GET_CLASS(s)->write_block_to_card(s); } } } static bool sdhci_can_issue_command(SDHCIState *s) { if (!SDHC_CLOCK_IS_ON(s->clkcon) || !(s->pwrcon & SDHC_POWER_ON) || (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) && ((s->cmdreg & SDHC_CMD_DATA_PRESENT) || ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY && !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) { return false; } return true; } /* The Buffer Data Port register must be accessed in sequential and * continuous manner */ static inline bool sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num) { if ((s->data_count & 0x3) != byte_num) { ERRPRINT("Non-sequential access to Buffer Data Port register" "is prohibited\n"); return false; } return true; } static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size) { uint32_t ret = 0; switch (offset & ~0x3) { case SDHC_SYSAD: ret = s->sdmasysad; break; case SDHC_BLKSIZE: ret = s->blksize | (s->blkcnt << 16); break; case SDHC_ARGUMENT: ret = s->argument; break; case SDHC_TRNMOD: ret = s->trnmod | (s->cmdreg << 16); break; case SDHC_RSPREG0 ... SDHC_RSPREG3: ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2]; break; case SDHC_BDATA: if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { ret = SDHCI_GET_CLASS(s)->bdata_read(s, size); DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset, ret, ret); return ret; } break; case SDHC_PRNSTS: ret = s->prnsts; break; case SDHC_HOSTCTL: ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) | (s->wakcon << 24); break; case SDHC_CLKCON: ret = s->clkcon | (s->timeoutcon << 16); break; case SDHC_NORINTSTS: ret = s->norintsts | (s->errintsts << 16); break; case SDHC_NORINTSTSEN: ret = s->norintstsen | (s->errintstsen << 16); break; case SDHC_NORINTSIGEN: ret = s->norintsigen | (s->errintsigen << 16); break; case SDHC_ACMD12ERRSTS: ret = s->acmd12errsts; break; case SDHC_CAPAREG: ret = s->capareg; break; case SDHC_MAXCURR: ret = s->maxcurr; break; case SDHC_ADMAERR: ret = s->admaerr; break; case SDHC_ADMASYSADDR: ret = (uint32_t)s->admasysaddr; break; case SDHC_ADMASYSADDR + 4: ret = (uint32_t)(s->admasysaddr >> 32); break; case SDHC_SLOT_INT_STATUS: ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s); break; default: ERRPRINT("bad %ub read: addr[0x%04x]\n", size, offset); break; } ret >>= (offset & 0x3) * 8; ret &= (1ULL << (size * 8)) - 1; DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset, ret, ret); return ret; } static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value) { if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) { return; } s->blkgap = value & SDHC_STOP_AT_GAP_REQ; if ((value & SDHC_CONTINUE_REQ) && s->stopped_state && (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) { if (s->stopped_state == sdhc_gap_read) { s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ; SDHCI_GET_CLASS(s)->read_block_from_card(s); } else { s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE; SDHCI_GET_CLASS(s)->write_block_to_card(s); } s->stopped_state = sdhc_not_stopped; } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) { if (s->prnsts & SDHC_DOING_READ) { s->stopped_state = sdhc_gap_read; } else if (s->prnsts & SDHC_DOING_WRITE) { s->stopped_state = sdhc_gap_write; } } } static inline void sdhci_reset_write(SDHCIState *s, uint8_t value) { switch (value) { case SDHC_RESET_ALL: DEVICE_GET_CLASS(s)->reset(DEVICE(s)); break; case SDHC_RESET_CMD: s->prnsts &= ~SDHC_CMD_INHIBIT; s->norintsts &= ~SDHC_NIS_CMDCMP; break; case SDHC_RESET_DATA: s->data_count = 0; s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE | SDHC_DOING_READ | SDHC_DOING_WRITE | SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE); s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ); s->stopped_state = sdhc_not_stopped; s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY | SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP); break; } } static void sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size) { unsigned shift = 8 * (offset & 0x3); uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift); value <<= shift; switch (offset & ~0x3) { case SDHC_SYSAD: s->sdmasysad = (s->sdmasysad & mask) | value; MASKED_WRITE(s->sdmasysad, mask, value); /* Writing to last byte of sdmasysad might trigger transfer */ if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt && s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) { SDHCI_GET_CLASS(s)->do_sdma_multi(s); } break; case SDHC_BLKSIZE: if (!TRANSFERRING_DATA(s->prnsts)) { MASKED_WRITE(s->blksize, mask, value); MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16); } break; case SDHC_ARGUMENT: MASKED_WRITE(s->argument, mask, value); break; case SDHC_TRNMOD: /* DMA can be enabled only if it is supported as indicated by * capabilities register */ if (!(s->capareg & SDHC_CAN_DO_DMA)) { value &= ~SDHC_TRNS_DMA; } MASKED_WRITE(s->trnmod, mask, value); MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16); /* Writing to the upper byte of CMDREG triggers SD command generation */ if ((mask & 0xFF000000) || !SDHCI_GET_CLASS(s)->can_issue_command(s)) { break; } SDHCI_GET_CLASS(s)->send_command(s); break; case SDHC_BDATA: if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { SDHCI_GET_CLASS(s)->bdata_write(s, value >> shift, size); } break; case SDHC_HOSTCTL: if (!(mask & 0xFF0000)) { sdhci_blkgap_write(s, value >> 16); } MASKED_WRITE(s->hostctl, mask, value); MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8); MASKED_WRITE(s->wakcon, mask >> 24, value >> 24); if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 || !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) { s->pwrcon &= ~SDHC_POWER_ON; } break; case SDHC_CLKCON: if (!(mask & 0xFF000000)) { sdhci_reset_write(s, value >> 24); } MASKED_WRITE(s->clkcon, mask, value); MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16); if (s->clkcon & SDHC_CLOCK_INT_EN) { s->clkcon |= SDHC_CLOCK_INT_STABLE; } else { s->clkcon &= ~SDHC_CLOCK_INT_STABLE; } break; case SDHC_NORINTSTS: if (s->norintstsen & SDHC_NISEN_CARDINT) { value &= ~SDHC_NIS_CARDINT; } s->norintsts &= mask | ~value; s->errintsts &= (mask >> 16) | ~(value >> 16); if (s->errintsts) { s->norintsts |= SDHC_NIS_ERR; } else { s->norintsts &= ~SDHC_NIS_ERR; } sdhci_update_irq(s); break; case SDHC_NORINTSTSEN: MASKED_WRITE(s->norintstsen, mask, value); MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16); s->norintsts &= s->norintstsen; s->errintsts &= s->errintstsen; if (s->errintsts) { s->norintsts |= SDHC_NIS_ERR; } else { s->norintsts &= ~SDHC_NIS_ERR; } sdhci_update_irq(s); break; case SDHC_NORINTSIGEN: MASKED_WRITE(s->norintsigen, mask, value); MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16); sdhci_update_irq(s); break; case SDHC_ADMAERR: MASKED_WRITE(s->admaerr, mask, value); break; case SDHC_ADMASYSADDR: s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL | (uint64_t)mask)) | (uint64_t)value; break; case SDHC_ADMASYSADDR + 4: s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL | ((uint64_t)mask << 32))) | ((uint64_t)value << 32); break; case SDHC_FEAER: s->acmd12errsts |= value; s->errintsts |= (value >> 16) & s->errintstsen; if (s->acmd12errsts) { s->errintsts |= SDHC_EIS_CMD12ERR; } if (s->errintsts) { s->norintsts |= SDHC_NIS_ERR; } sdhci_update_irq(s); break; default: ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n", size, offset, value >> shift, value >> shift); break; } DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n", size, offset, value >> shift, value >> shift); } static uint64_t sdhci_readfn(void *opaque, hwaddr offset, unsigned size) { SDHCIState *s = (SDHCIState *)opaque; return SDHCI_GET_CLASS(s)->mem_read(s, offset, size); } static void sdhci_writefn(void *opaque, hwaddr off, uint64_t val, unsigned sz) { SDHCIState *s = (SDHCIState *)opaque; SDHCI_GET_CLASS(s)->mem_write(s, off, val, sz); } static const MemoryRegionOps sdhci_mmio_ops = { .read = sdhci_readfn, .write = sdhci_writefn, .valid = { .min_access_size = 1, .max_access_size = 4, .unaligned = false }, .endianness = DEVICE_LITTLE_ENDIAN, }; static inline unsigned int sdhci_get_fifolen(SDHCIState *s) { switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) { case 0: return 512; case 1: return 1024; case 2: return 2048; default: hw_error("SDHC: unsupported value for maximum block size\n"); return 0; } } static void sdhci_initfn(Object *obj) { SDHCIState *s = SDHCI(obj); DriveInfo *di; di = drive_get_next(IF_SD); s->card = sd_init(di ? di->bdrv : NULL, 0); s->eject_cb = qemu_allocate_irqs(sdhci_insert_eject_cb, s, 1)[0]; s->ro_cb = qemu_allocate_irqs(sdhci_card_readonly_cb, s, 1)[0]; sd_set_cb(s->card, s->ro_cb, s->eject_cb); s->insert_timer = qemu_new_timer_ns(vm_clock, sdhci_raise_insertion_irq, s); s->transfer_timer = qemu_new_timer_ns(vm_clock, sdhci_do_data_transfer, s); } static void sdhci_uninitfn(Object *obj) { SDHCIState *s = SDHCI(obj); qemu_del_timer(s->insert_timer); qemu_free_timer(s->insert_timer); qemu_del_timer(s->transfer_timer); qemu_free_timer(s->transfer_timer); qemu_free_irqs(&s->eject_cb); qemu_free_irqs(&s->ro_cb); if (s->fifo_buffer) { g_free(s->fifo_buffer); s->fifo_buffer = NULL; } } const VMStateDescription sdhci_vmstate = { .name = "sdhci", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(sdmasysad, SDHCIState), VMSTATE_UINT16(blksize, SDHCIState), VMSTATE_UINT16(blkcnt, SDHCIState), VMSTATE_UINT32(argument, SDHCIState), VMSTATE_UINT16(trnmod, SDHCIState), VMSTATE_UINT16(cmdreg, SDHCIState), VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4), VMSTATE_UINT32(prnsts, SDHCIState), VMSTATE_UINT8(hostctl, SDHCIState), VMSTATE_UINT8(pwrcon, SDHCIState), VMSTATE_UINT8(blkgap, SDHCIState), VMSTATE_UINT8(wakcon, SDHCIState), VMSTATE_UINT16(clkcon, SDHCIState), VMSTATE_UINT8(timeoutcon, SDHCIState), VMSTATE_UINT8(admaerr, SDHCIState), VMSTATE_UINT16(norintsts, SDHCIState), VMSTATE_UINT16(errintsts, SDHCIState), VMSTATE_UINT16(norintstsen, SDHCIState), VMSTATE_UINT16(errintstsen, SDHCIState), VMSTATE_UINT16(norintsigen, SDHCIState), VMSTATE_UINT16(errintsigen, SDHCIState), VMSTATE_UINT16(acmd12errsts, SDHCIState), VMSTATE_UINT16(data_count, SDHCIState), VMSTATE_UINT64(admasysaddr, SDHCIState), VMSTATE_UINT8(stopped_state, SDHCIState), VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz), VMSTATE_TIMER(insert_timer, SDHCIState), VMSTATE_TIMER(transfer_timer, SDHCIState), VMSTATE_END_OF_LIST() } }; /* Capabilities registers provide information on supported features of this * specific host controller implementation */ static Property sdhci_properties[] = { DEFINE_PROP_HEX32("capareg", SDHCIState, capareg, SDHC_CAPAB_REG_DEFAULT), DEFINE_PROP_HEX32("maxcurr", SDHCIState, maxcurr, 0), DEFINE_PROP_END_OF_LIST(), }; static void sdhci_realize(DeviceState *dev, Error ** errp) { SDHCIState *s = SDHCI(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); s->buf_maxsz = sdhci_get_fifolen(s); s->fifo_buffer = g_malloc0(s->buf_maxsz); sysbus_init_irq(sbd, &s->irq); memory_region_init_io(&s->iomem, &sdhci_mmio_ops, s, "sdhci", SDHC_REGISTERS_MAP_SIZE); sysbus_init_mmio(sbd, &s->iomem); } static void sdhci_generic_reset(DeviceState *ds) { SDHCIState *s = SDHCI(ds); SDHCI_GET_CLASS(s)->reset(s); } static void sdhci_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SDHCIClass *k = SDHCI_CLASS(klass); dc->vmsd = &sdhci_vmstate; dc->props = sdhci_properties; dc->reset = sdhci_generic_reset; dc->realize = sdhci_realize; k->reset = sdhci_reset; k->mem_read = sdhci_read; k->mem_write = sdhci_write; k->send_command = sdhci_send_command; k->can_issue_command = sdhci_can_issue_command; k->data_transfer = sdhci_data_transfer; k->end_data_transfer = sdhci_end_transfer; k->do_sdma_single = sdhci_sdma_transfer_single_block; k->do_sdma_multi = sdhci_sdma_transfer_multi_blocks; k->do_adma = sdhci_do_adma; k->read_block_from_card = sdhci_read_block_from_card; k->write_block_to_card = sdhci_write_block_to_card; k->bdata_read = sdhci_read_dataport; k->bdata_write = sdhci_write_dataport; } static const TypeInfo sdhci_type_info = { .name = TYPE_SDHCI, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SDHCIState), .instance_init = sdhci_initfn, .instance_finalize = sdhci_uninitfn, .class_init = sdhci_class_init, .class_size = sizeof(SDHCIClass) }; static void sdhci_register_types(void) { type_register_static(&sdhci_type_info); } type_init(sdhci_register_types)