/* * QEMU RISC-V VirtIO Board * * Copyright (c) 2017 SiFive, Inc. * * RISC-V machine with 16550a UART and VirtIO MMIO * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/hw.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/sysbus.h" #include "hw/char/serial.h" #include "target/riscv/cpu.h" #include "hw/riscv/riscv_htif.h" #include "hw/riscv/riscv_hart.h" #include "hw/riscv/sifive_plic.h" #include "hw/riscv/sifive_clint.h" #include "hw/riscv/sifive_test.h" #include "hw/riscv/virt.h" #include "chardev/char.h" #include "sysemu/arch_init.h" #include "sysemu/device_tree.h" #include "exec/address-spaces.h" #include "elf.h" #include static const struct MemmapEntry { hwaddr base; hwaddr size; } virt_memmap[] = { [VIRT_DEBUG] = { 0x0, 0x100 }, [VIRT_MROM] = { 0x1000, 0x11000 }, [VIRT_TEST] = { 0x100000, 0x1000 }, [VIRT_CLINT] = { 0x2000000, 0x10000 }, [VIRT_PLIC] = { 0xc000000, 0x4000000 }, [VIRT_UART0] = { 0x10000000, 0x100 }, [VIRT_VIRTIO] = { 0x10001000, 0x1000 }, [VIRT_DRAM] = { 0x80000000, 0x0 }, }; static uint64_t load_kernel(const char *kernel_filename) { uint64_t kernel_entry, kernel_high; if (load_elf(kernel_filename, NULL, NULL, &kernel_entry, NULL, &kernel_high, 0, EM_RISCV, 1, 0) < 0) { error_report("qemu: could not load kernel '%s'", kernel_filename); exit(1); } return kernel_entry; } static hwaddr load_initrd(const char *filename, uint64_t mem_size, uint64_t kernel_entry, hwaddr *start) { int size; /* We want to put the initrd far enough into RAM that when the * kernel is uncompressed it will not clobber the initrd. However * on boards without much RAM we must ensure that we still leave * enough room for a decent sized initrd, and on boards with large * amounts of RAM we must avoid the initrd being so far up in RAM * that it is outside lowmem and inaccessible to the kernel. * So for boards with less than 256MB of RAM we put the initrd * halfway into RAM, and for boards with 256MB of RAM or more we put * the initrd at 128MB. */ *start = kernel_entry + MIN(mem_size / 2, 128 * MiB); size = load_ramdisk(filename, *start, mem_size - *start); if (size == -1) { size = load_image_targphys(filename, *start, mem_size - *start); if (size == -1) { error_report("qemu: could not load ramdisk '%s'", filename); exit(1); } } return *start + size; } static void *create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap, uint64_t mem_size, const char *cmdline) { void *fdt; int cpu; uint32_t *cells; char *nodename; uint32_t plic_phandle, phandle = 1; int i; fdt = s->fdt = create_device_tree(&s->fdt_size); if (!fdt) { error_report("create_device_tree() failed"); exit(1); } qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu"); qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio"); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); qemu_fdt_add_subnode(fdt, "/soc"); qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); qemu_fdt_setprop_string(fdt, "/soc", "compatible", "riscv-virtio-soc"); qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); nodename = g_strdup_printf("/memory@%lx", (long)memmap[VIRT_DRAM].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cells(fdt, nodename, "reg", memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base, mem_size >> 32, mem_size); qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); g_free(nodename); qemu_fdt_add_subnode(fdt, "/cpus"); qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", SIFIVE_CLINT_TIMEBASE_FREQ); qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) { int cpu_phandle = phandle++; nodename = g_strdup_printf("/cpus/cpu@%d", cpu); char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); char *isa = riscv_isa_string(&s->soc.harts[cpu]); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", VIRT_CLOCK_FREQ); qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48"); qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv"); qemu_fdt_setprop_string(fdt, nodename, "status", "okay"); qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu); qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu"); qemu_fdt_add_subnode(fdt, intc); qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle); qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", cpu_phandle); qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc"); qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1); g_free(isa); g_free(intc); g_free(nodename); } cells = g_new0(uint32_t, s->soc.num_harts * 4); for (cpu = 0; cpu < s->soc.num_harts; cpu++) { nodename = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); g_free(nodename); } nodename = g_strdup_printf("/soc/clint@%lx", (long)memmap[VIRT_CLINT].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_CLINT].base, 0x0, memmap[VIRT_CLINT].size); qemu_fdt_setprop(fdt, nodename, "interrupts-extended", cells, s->soc.num_harts * sizeof(uint32_t) * 4); g_free(cells); g_free(nodename); plic_phandle = phandle++; cells = g_new0(uint32_t, s->soc.num_harts * 4); for (cpu = 0; cpu < s->soc.num_harts; cpu++) { nodename = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT); cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT); g_free(nodename); } nodename = g_strdup_printf("/soc/interrupt-controller@%lx", (long)memmap[VIRT_PLIC].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0"); qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0); qemu_fdt_setprop(fdt, nodename, "interrupts-extended", cells, s->soc.num_harts * sizeof(uint32_t) * 4); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_PLIC].base, 0x0, memmap[VIRT_PLIC].size); qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control"); qemu_fdt_setprop_cell(fdt, nodename, "riscv,max-priority", 7); qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV); qemu_fdt_setprop_cells(fdt, nodename, "phandle", plic_phandle); qemu_fdt_setprop_cells(fdt, nodename, "linux,phandle", plic_phandle); plic_phandle = qemu_fdt_get_phandle(fdt, nodename); g_free(cells); g_free(nodename); for (i = 0; i < VIRTIO_COUNT; i++) { nodename = g_strdup_printf("/virtio_mmio@%lx", (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size)); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, 0x0, memmap[VIRT_VIRTIO].size); qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_cells(fdt, nodename, "interrupts", VIRTIO_IRQ + i); g_free(nodename); } nodename = g_strdup_printf("/test@%lx", (long)memmap[VIRT_TEST].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,test0"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size); nodename = g_strdup_printf("/uart@%lx", (long)memmap[VIRT_UART0].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_UART0].base, 0x0, memmap[VIRT_UART0].size); qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400); qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_cells(fdt, nodename, "interrupts", UART0_IRQ); qemu_fdt_add_subnode(fdt, "/chosen"); qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename); qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); g_free(nodename); return fdt; } static void riscv_virt_board_init(MachineState *machine) { const struct MemmapEntry *memmap = virt_memmap; RISCVVirtState *s = g_new0(RISCVVirtState, 1); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *main_mem = g_new(MemoryRegion, 1); MemoryRegion *mask_rom = g_new(MemoryRegion, 1); char *plic_hart_config; size_t plic_hart_config_len; int i; void *fdt; /* Initialize SOC */ object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY); object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc), &error_abort); object_property_set_str(OBJECT(&s->soc), VIRT_CPU, "cpu-type", &error_abort); object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts", &error_abort); object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_abort); /* register system main memory (actual RAM) */ memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram", machine->ram_size, &error_fatal); memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base, main_mem); /* create device tree */ fdt = create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline); /* boot rom */ memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom", memmap[VIRT_MROM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base, mask_rom); if (machine->kernel_filename) { uint64_t kernel_entry = load_kernel(machine->kernel_filename); if (machine->initrd_filename) { hwaddr start; hwaddr end = load_initrd(machine->initrd_filename, machine->ram_size, kernel_entry, &start); qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", start); qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", end); } } /* reset vector */ uint32_t reset_vec[8] = { 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */ 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */ 0xf1402573, /* csrr a0, mhartid */ #if defined(TARGET_RISCV32) 0x0182a283, /* lw t0, 24(t0) */ #elif defined(TARGET_RISCV64) 0x0182b283, /* ld t0, 24(t0) */ #endif 0x00028067, /* jr t0 */ 0x00000000, memmap[VIRT_DRAM].base, /* start: .dword memmap[VIRT_DRAM].base */ 0x00000000, /* dtb: */ }; /* copy in the reset vector in little_endian byte order */ for (i = 0; i < sizeof(reset_vec) >> 2; i++) { reset_vec[i] = cpu_to_le32(reset_vec[i]); } rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), memmap[VIRT_MROM].base, &address_space_memory); /* copy in the device tree */ if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) > memmap[VIRT_MROM].size - sizeof(reset_vec)) { error_report("not enough space to store device-tree"); exit(1); } qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt)); rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt), memmap[VIRT_MROM].base + sizeof(reset_vec), &address_space_memory); /* create PLIC hart topology configuration string */ plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus; plic_hart_config = g_malloc0(plic_hart_config_len); for (i = 0; i < smp_cpus; i++) { if (i != 0) { strncat(plic_hart_config, ",", plic_hart_config_len); } strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len); plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1); } /* MMIO */ s->plic = sifive_plic_create(memmap[VIRT_PLIC].base, plic_hart_config, VIRT_PLIC_NUM_SOURCES, VIRT_PLIC_NUM_PRIORITIES, VIRT_PLIC_PRIORITY_BASE, VIRT_PLIC_PENDING_BASE, VIRT_PLIC_ENABLE_BASE, VIRT_PLIC_ENABLE_STRIDE, VIRT_PLIC_CONTEXT_BASE, VIRT_PLIC_CONTEXT_STRIDE, memmap[VIRT_PLIC].size); sifive_clint_create(memmap[VIRT_CLINT].base, memmap[VIRT_CLINT].size, smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE); sifive_test_create(memmap[VIRT_TEST].base); for (i = 0; i < VIRTIO_COUNT; i++) { sysbus_create_simple("virtio-mmio", memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, qdev_get_gpio_in(DEVICE(s->plic), VIRTIO_IRQ + i)); } serial_mm_init(system_memory, memmap[VIRT_UART0].base, 0, qdev_get_gpio_in(DEVICE(s->plic), UART0_IRQ), 399193, serial_hd(0), DEVICE_LITTLE_ENDIAN); } static void riscv_virt_board_machine_init(MachineClass *mc) { mc->desc = "RISC-V VirtIO Board (Privileged ISA v1.10)"; mc->init = riscv_virt_board_init; mc->max_cpus = 8; /* hardcoded limit in BBL */ } DEFINE_MACHINE("virt", riscv_virt_board_machine_init)