/* * QEMU RISC-V NUMA Helper * * Copyright (c) 2020 Western Digital Corporation or its affiliates. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/boards.h" #include "hw/qdev-properties.h" #include "hw/riscv/numa.h" #include "sysemu/device_tree.h" static bool numa_enabled(const MachineState *ms) { return (ms->numa_state && ms->numa_state->num_nodes) ? true : false; } int riscv_socket_count(const MachineState *ms) { return (numa_enabled(ms)) ? ms->numa_state->num_nodes : 1; } int riscv_socket_first_hartid(const MachineState *ms, int socket_id) { int i, first_hartid = ms->smp.cpus; if (!numa_enabled(ms)) { return (!socket_id) ? 0 : -1; } for (i = 0; i < ms->smp.cpus; i++) { if (ms->possible_cpus->cpus[i].props.node_id != socket_id) { continue; } if (i < first_hartid) { first_hartid = i; } } return (first_hartid < ms->smp.cpus) ? first_hartid : -1; } int riscv_socket_last_hartid(const MachineState *ms, int socket_id) { int i, last_hartid = -1; if (!numa_enabled(ms)) { return (!socket_id) ? ms->smp.cpus - 1 : -1; } for (i = 0; i < ms->smp.cpus; i++) { if (ms->possible_cpus->cpus[i].props.node_id != socket_id) { continue; } if (i > last_hartid) { last_hartid = i; } } return (last_hartid < ms->smp.cpus) ? last_hartid : -1; } int riscv_socket_hart_count(const MachineState *ms, int socket_id) { int first_hartid, last_hartid; if (!numa_enabled(ms)) { return (!socket_id) ? ms->smp.cpus : -1; } first_hartid = riscv_socket_first_hartid(ms, socket_id); if (first_hartid < 0) { return -1; } last_hartid = riscv_socket_last_hartid(ms, socket_id); if (last_hartid < 0) { return -1; } if (first_hartid > last_hartid) { return -1; } return last_hartid - first_hartid + 1; } bool riscv_socket_check_hartids(const MachineState *ms, int socket_id) { int i, first_hartid, last_hartid; if (!numa_enabled(ms)) { return (!socket_id) ? true : false; } first_hartid = riscv_socket_first_hartid(ms, socket_id); if (first_hartid < 0) { return false; } last_hartid = riscv_socket_last_hartid(ms, socket_id); if (last_hartid < 0) { return false; } for (i = first_hartid; i <= last_hartid; i++) { if (ms->possible_cpus->cpus[i].props.node_id != socket_id) { return false; } } return true; } uint64_t riscv_socket_mem_offset(const MachineState *ms, int socket_id) { int i; uint64_t mem_offset = 0; if (!numa_enabled(ms)) { return 0; } for (i = 0; i < ms->numa_state->num_nodes; i++) { if (i == socket_id) { break; } mem_offset += ms->numa_state->nodes[i].node_mem; } return (i == socket_id) ? mem_offset : 0; } uint64_t riscv_socket_mem_size(const MachineState *ms, int socket_id) { if (!numa_enabled(ms)) { return (!socket_id) ? ms->ram_size : 0; } return (socket_id < ms->numa_state->num_nodes) ? ms->numa_state->nodes[socket_id].node_mem : 0; } void riscv_socket_fdt_write_id(const MachineState *ms, const char *node_name, int socket_id) { if (numa_enabled(ms)) { qemu_fdt_setprop_cell(ms->fdt, node_name, "numa-node-id", socket_id); } } void riscv_socket_fdt_write_distance_matrix(const MachineState *ms) { int i, j, idx; uint32_t *dist_matrix, dist_matrix_size; if (numa_enabled(ms) && ms->numa_state->have_numa_distance) { dist_matrix_size = riscv_socket_count(ms) * riscv_socket_count(ms); dist_matrix_size *= (3 * sizeof(uint32_t)); dist_matrix = g_malloc0(dist_matrix_size); for (i = 0; i < riscv_socket_count(ms); i++) { for (j = 0; j < riscv_socket_count(ms); j++) { idx = (i * riscv_socket_count(ms) + j) * 3; dist_matrix[idx + 0] = cpu_to_be32(i); dist_matrix[idx + 1] = cpu_to_be32(j); dist_matrix[idx + 2] = cpu_to_be32(ms->numa_state->nodes[i].distance[j]); } } qemu_fdt_add_subnode(ms->fdt, "/distance-map"); qemu_fdt_setprop_string(ms->fdt, "/distance-map", "compatible", "numa-distance-map-v1"); qemu_fdt_setprop(ms->fdt, "/distance-map", "distance-matrix", dist_matrix, dist_matrix_size); g_free(dist_matrix); } } CpuInstanceProperties riscv_numa_cpu_index_to_props(MachineState *ms, unsigned cpu_index) { MachineClass *mc = MACHINE_GET_CLASS(ms); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); assert(cpu_index < possible_cpus->len); return possible_cpus->cpus[cpu_index].props; } int64_t riscv_numa_get_default_cpu_node_id(const MachineState *ms, int idx) { int64_t nidx = 0; if (ms->numa_state->num_nodes > ms->smp.cpus) { error_report("Number of NUMA nodes (%d)" " cannot exceed the number of available CPUs (%u).", ms->numa_state->num_nodes, ms->smp.cpus); exit(EXIT_FAILURE); } if (ms->numa_state->num_nodes) { nidx = idx / (ms->smp.cpus / ms->numa_state->num_nodes); if (ms->numa_state->num_nodes <= nidx) { nidx = ms->numa_state->num_nodes - 1; } } return nidx; } const CPUArchIdList *riscv_numa_possible_cpu_arch_ids(MachineState *ms) { int n; unsigned int max_cpus = ms->smp.max_cpus; if (ms->possible_cpus) { assert(ms->possible_cpus->len == max_cpus); return ms->possible_cpus; } ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + sizeof(CPUArchId) * max_cpus); ms->possible_cpus->len = max_cpus; for (n = 0; n < ms->possible_cpus->len; n++) { ms->possible_cpus->cpus[n].type = ms->cpu_type; ms->possible_cpus->cpus[n].arch_id = n; ms->possible_cpus->cpus[n].props.has_core_id = true; ms->possible_cpus->cpus[n].props.core_id = n; } return ms->possible_cpus; }