/* * QEMU paravirtual RDMA * * Copyright (C) 2018 Oracle * Copyright (C) 2018 Red Hat Inc * * Authors: * Yuval Shaia * Marcel Apfelbaum * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "hw/hw.h" #include "hw/pci/pci.h" #include "hw/pci/pci_ids.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/qdev-core.h" #include "hw/qdev-properties.h" #include "cpu.h" #include "trace.h" #include "../rdma_rm.h" #include "../rdma_backend.h" #include "../rdma_utils.h" #include #include "pvrdma.h" #include "standard-headers/rdma/vmw_pvrdma-abi.h" #include "standard-headers/drivers/infiniband/hw/vmw_pvrdma/pvrdma_dev_api.h" #include "pvrdma_qp_ops.h" static Property pvrdma_dev_properties[] = { DEFINE_PROP_STRING("backend-dev", PVRDMADev, backend_device_name), DEFINE_PROP_UINT8("backend-port", PVRDMADev, backend_port_num, 1), DEFINE_PROP_UINT8("backend-gid-idx", PVRDMADev, backend_gid_idx, 0), DEFINE_PROP_UINT64("dev-caps-max-mr-size", PVRDMADev, dev_attr.max_mr_size, MAX_MR_SIZE), DEFINE_PROP_INT32("dev-caps-max-qp", PVRDMADev, dev_attr.max_qp, MAX_QP), DEFINE_PROP_INT32("dev-caps-max-sge", PVRDMADev, dev_attr.max_sge, MAX_SGE), DEFINE_PROP_INT32("dev-caps-max-cq", PVRDMADev, dev_attr.max_cq, MAX_CQ), DEFINE_PROP_INT32("dev-caps-max-mr", PVRDMADev, dev_attr.max_mr, MAX_MR), DEFINE_PROP_INT32("dev-caps-max-pd", PVRDMADev, dev_attr.max_pd, MAX_PD), DEFINE_PROP_INT32("dev-caps-qp-rd-atom", PVRDMADev, dev_attr.max_qp_rd_atom, MAX_QP_RD_ATOM), DEFINE_PROP_INT32("dev-caps-max-qp-init-rd-atom", PVRDMADev, dev_attr.max_qp_init_rd_atom, MAX_QP_INIT_RD_ATOM), DEFINE_PROP_INT32("dev-caps-max-ah", PVRDMADev, dev_attr.max_ah, MAX_AH), DEFINE_PROP_END_OF_LIST(), }; static void free_dev_ring(PCIDevice *pci_dev, PvrdmaRing *ring, void *ring_state) { pvrdma_ring_free(ring); rdma_pci_dma_unmap(pci_dev, ring_state, TARGET_PAGE_SIZE); } static int init_dev_ring(PvrdmaRing *ring, struct pvrdma_ring **ring_state, const char *name, PCIDevice *pci_dev, dma_addr_t dir_addr, uint32_t num_pages) { uint64_t *dir, *tbl; int rc = 0; pr_dbg("Initializing device ring %s\n", name); pr_dbg("pdir_dma=0x%llx\n", (long long unsigned int)dir_addr); pr_dbg("num_pages=%d\n", num_pages); dir = rdma_pci_dma_map(pci_dev, dir_addr, TARGET_PAGE_SIZE); if (!dir) { pr_err("Failed to map to page directory\n"); rc = -ENOMEM; goto out; } tbl = rdma_pci_dma_map(pci_dev, dir[0], TARGET_PAGE_SIZE); if (!tbl) { pr_err("Failed to map to page table\n"); rc = -ENOMEM; goto out_free_dir; } *ring_state = rdma_pci_dma_map(pci_dev, tbl[0], TARGET_PAGE_SIZE); if (!*ring_state) { pr_err("Failed to map to ring state\n"); rc = -ENOMEM; goto out_free_tbl; } /* RX ring is the second */ (*ring_state)++; rc = pvrdma_ring_init(ring, name, pci_dev, (struct pvrdma_ring *)*ring_state, (num_pages - 1) * TARGET_PAGE_SIZE / sizeof(struct pvrdma_cqne), sizeof(struct pvrdma_cqne), (dma_addr_t *)&tbl[1], (dma_addr_t)num_pages - 1); if (rc) { pr_err("Failed to initialize ring\n"); rc = -ENOMEM; goto out_free_ring_state; } goto out_free_tbl; out_free_ring_state: rdma_pci_dma_unmap(pci_dev, *ring_state, TARGET_PAGE_SIZE); out_free_tbl: rdma_pci_dma_unmap(pci_dev, tbl, TARGET_PAGE_SIZE); out_free_dir: rdma_pci_dma_unmap(pci_dev, dir, TARGET_PAGE_SIZE); out: return rc; } static void free_dsr(PVRDMADev *dev) { PCIDevice *pci_dev = PCI_DEVICE(dev); if (!dev->dsr_info.dsr) { return; } free_dev_ring(pci_dev, &dev->dsr_info.async, dev->dsr_info.async_ring_state); free_dev_ring(pci_dev, &dev->dsr_info.cq, dev->dsr_info.cq_ring_state); rdma_pci_dma_unmap(pci_dev, dev->dsr_info.req, sizeof(union pvrdma_cmd_req)); rdma_pci_dma_unmap(pci_dev, dev->dsr_info.rsp, sizeof(union pvrdma_cmd_resp)); rdma_pci_dma_unmap(pci_dev, dev->dsr_info.dsr, sizeof(struct pvrdma_device_shared_region)); dev->dsr_info.dsr = NULL; } static int load_dsr(PVRDMADev *dev) { int rc = 0; PCIDevice *pci_dev = PCI_DEVICE(dev); DSRInfo *dsr_info; struct pvrdma_device_shared_region *dsr; free_dsr(dev); /* Map to DSR */ pr_dbg("dsr_dma=0x%llx\n", (long long unsigned int)dev->dsr_info.dma); dev->dsr_info.dsr = rdma_pci_dma_map(pci_dev, dev->dsr_info.dma, sizeof(struct pvrdma_device_shared_region)); if (!dev->dsr_info.dsr) { pr_err("Failed to map to DSR\n"); rc = -ENOMEM; goto out; } /* Shortcuts */ dsr_info = &dev->dsr_info; dsr = dsr_info->dsr; /* Map to command slot */ pr_dbg("cmd_dma=0x%llx\n", (long long unsigned int)dsr->cmd_slot_dma); dsr_info->req = rdma_pci_dma_map(pci_dev, dsr->cmd_slot_dma, sizeof(union pvrdma_cmd_req)); if (!dsr_info->req) { pr_err("Failed to map to command slot address\n"); rc = -ENOMEM; goto out_free_dsr; } /* Map to response slot */ pr_dbg("rsp_dma=0x%llx\n", (long long unsigned int)dsr->resp_slot_dma); dsr_info->rsp = rdma_pci_dma_map(pci_dev, dsr->resp_slot_dma, sizeof(union pvrdma_cmd_resp)); if (!dsr_info->rsp) { pr_err("Failed to map to response slot address\n"); rc = -ENOMEM; goto out_free_req; } /* Map to CQ notification ring */ rc = init_dev_ring(&dsr_info->cq, &dsr_info->cq_ring_state, "dev_cq", pci_dev, dsr->cq_ring_pages.pdir_dma, dsr->cq_ring_pages.num_pages); if (rc) { pr_err("Failed to map to initialize CQ ring\n"); rc = -ENOMEM; goto out_free_rsp; } /* Map to event notification ring */ rc = init_dev_ring(&dsr_info->async, &dsr_info->async_ring_state, "dev_async", pci_dev, dsr->async_ring_pages.pdir_dma, dsr->async_ring_pages.num_pages); if (rc) { pr_err("Failed to map to initialize event ring\n"); rc = -ENOMEM; goto out_free_rsp; } goto out; out_free_rsp: rdma_pci_dma_unmap(pci_dev, dsr_info->rsp, sizeof(union pvrdma_cmd_resp)); out_free_req: rdma_pci_dma_unmap(pci_dev, dsr_info->req, sizeof(union pvrdma_cmd_req)); out_free_dsr: rdma_pci_dma_unmap(pci_dev, dsr_info->dsr, sizeof(struct pvrdma_device_shared_region)); dsr_info->dsr = NULL; out: return rc; } static void init_dsr_dev_caps(PVRDMADev *dev) { struct pvrdma_device_shared_region *dsr; if (dev->dsr_info.dsr == NULL) { pr_err("Can't initialized DSR\n"); return; } dsr = dev->dsr_info.dsr; dsr->caps.fw_ver = PVRDMA_FW_VERSION; pr_dbg("fw_ver=0x%" PRIx64 "\n", dsr->caps.fw_ver); dsr->caps.mode = PVRDMA_DEVICE_MODE_ROCE; pr_dbg("mode=%d\n", dsr->caps.mode); dsr->caps.gid_types |= PVRDMA_GID_TYPE_FLAG_ROCE_V1; pr_dbg("gid_types=0x%x\n", dsr->caps.gid_types); dsr->caps.max_uar = RDMA_BAR2_UAR_SIZE; pr_dbg("max_uar=%d\n", dsr->caps.max_uar); dsr->caps.max_mr_size = dev->dev_attr.max_mr_size; dsr->caps.max_qp = dev->dev_attr.max_qp; dsr->caps.max_qp_wr = dev->dev_attr.max_qp_wr; dsr->caps.max_sge = dev->dev_attr.max_sge; dsr->caps.max_cq = dev->dev_attr.max_cq; dsr->caps.max_cqe = dev->dev_attr.max_cqe; dsr->caps.max_mr = dev->dev_attr.max_mr; dsr->caps.max_pd = dev->dev_attr.max_pd; dsr->caps.max_ah = dev->dev_attr.max_ah; dsr->caps.gid_tbl_len = MAX_GIDS; pr_dbg("gid_tbl_len=%d\n", dsr->caps.gid_tbl_len); dsr->caps.sys_image_guid = 0; pr_dbg("sys_image_guid=%" PRIx64 "\n", dsr->caps.sys_image_guid); dsr->caps.node_guid = cpu_to_be64(dev->node_guid); pr_dbg("node_guid=%" PRIx64 "\n", be64_to_cpu(dsr->caps.node_guid)); dsr->caps.phys_port_cnt = MAX_PORTS; pr_dbg("phys_port_cnt=%d\n", dsr->caps.phys_port_cnt); dsr->caps.max_pkeys = MAX_PKEYS; pr_dbg("max_pkeys=%d\n", dsr->caps.max_pkeys); pr_dbg("Initialized\n"); } static void init_ports(PVRDMADev *dev, Error **errp) { int i; memset(dev->rdma_dev_res.ports, 0, sizeof(dev->rdma_dev_res.ports)); for (i = 0; i < MAX_PORTS; i++) { dev->rdma_dev_res.ports[i].state = IBV_PORT_DOWN; } } static void activate_device(PVRDMADev *dev) { set_reg_val(dev, PVRDMA_REG_ERR, 0); pr_dbg("Device activated\n"); } static int unquiesce_device(PVRDMADev *dev) { pr_dbg("Device unquiesced\n"); return 0; } static int reset_device(PVRDMADev *dev) { pr_dbg("Device reset complete\n"); return 0; } static uint64_t regs_read(void *opaque, hwaddr addr, unsigned size) { PVRDMADev *dev = opaque; uint32_t val; /* pr_dbg("addr=0x%lx, size=%d\n", addr, size); */ if (get_reg_val(dev, addr, &val)) { pr_dbg("Error trying to read REG value from address 0x%x\n", (uint32_t)addr); return -EINVAL; } trace_pvrdma_regs_read(addr, val); return val; } static void regs_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PVRDMADev *dev = opaque; /* pr_dbg("addr=0x%lx, val=0x%x, size=%d\n", addr, (uint32_t)val, size); */ if (set_reg_val(dev, addr, val)) { pr_err("Fail to set REG value, addr=0x%" PRIx64 ", val=0x%" PRIx64 "\n", addr, val); return; } trace_pvrdma_regs_write(addr, val); switch (addr) { case PVRDMA_REG_DSRLOW: dev->dsr_info.dma = val; break; case PVRDMA_REG_DSRHIGH: dev->dsr_info.dma |= val << 32; load_dsr(dev); init_dsr_dev_caps(dev); break; case PVRDMA_REG_CTL: switch (val) { case PVRDMA_DEVICE_CTL_ACTIVATE: activate_device(dev); break; case PVRDMA_DEVICE_CTL_UNQUIESCE: unquiesce_device(dev); break; case PVRDMA_DEVICE_CTL_RESET: reset_device(dev); break; } break; case PVRDMA_REG_IMR: pr_dbg("Interrupt mask=0x%" PRIx64 "\n", val); dev->interrupt_mask = val; break; case PVRDMA_REG_REQUEST: if (val == 0) { execute_command(dev); } break; default: break; } } static const MemoryRegionOps regs_ops = { .read = regs_read, .write = regs_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = sizeof(uint32_t), .max_access_size = sizeof(uint32_t), }, }; static void uar_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PVRDMADev *dev = opaque; /* pr_dbg("addr=0x%lx, val=0x%x, size=%d\n", addr, (uint32_t)val, size); */ switch (addr & 0xFFF) { /* Mask with 0xFFF as each UC gets page */ case PVRDMA_UAR_QP_OFFSET: pr_dbg("UAR QP command, addr=0x%" PRIx64 ", val=0x%" PRIx64 "\n", (uint64_t)addr, val); if (val & PVRDMA_UAR_QP_SEND) { pvrdma_qp_send(dev, val & PVRDMA_UAR_HANDLE_MASK); } if (val & PVRDMA_UAR_QP_RECV) { pvrdma_qp_recv(dev, val & PVRDMA_UAR_HANDLE_MASK); } break; case PVRDMA_UAR_CQ_OFFSET: /* pr_dbg("UAR CQ cmd, addr=0x%x, val=0x%lx\n", (uint32_t)addr, val); */ if (val & PVRDMA_UAR_CQ_ARM) { rdma_rm_req_notify_cq(&dev->rdma_dev_res, val & PVRDMA_UAR_HANDLE_MASK, !!(val & PVRDMA_UAR_CQ_ARM_SOL)); } if (val & PVRDMA_UAR_CQ_ARM_SOL) { pr_dbg("UAR_CQ_ARM_SOL (%" PRIx64 ")\n", val & PVRDMA_UAR_HANDLE_MASK); } if (val & PVRDMA_UAR_CQ_POLL) { pr_dbg("UAR_CQ_POLL (%" PRIx64 ")\n", val & PVRDMA_UAR_HANDLE_MASK); pvrdma_cq_poll(&dev->rdma_dev_res, val & PVRDMA_UAR_HANDLE_MASK); } break; default: pr_err("Unsupported command, addr=0x%" PRIx64 ", val=0x%" PRIx64 "\n", addr, val); break; } } static const MemoryRegionOps uar_ops = { .write = uar_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = sizeof(uint32_t), .max_access_size = sizeof(uint32_t), }, }; static void init_pci_config(PCIDevice *pdev) { pdev->config[PCI_INTERRUPT_PIN] = 1; } static void init_bars(PCIDevice *pdev) { PVRDMADev *dev = PVRDMA_DEV(pdev); /* BAR 0 - MSI-X */ memory_region_init(&dev->msix, OBJECT(dev), "pvrdma-msix", RDMA_BAR0_MSIX_SIZE); pci_register_bar(pdev, RDMA_MSIX_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &dev->msix); /* BAR 1 - Registers */ memset(&dev->regs_data, 0, sizeof(dev->regs_data)); memory_region_init_io(&dev->regs, OBJECT(dev), ®s_ops, dev, "pvrdma-regs", sizeof(dev->regs_data)); pci_register_bar(pdev, RDMA_REG_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &dev->regs); /* BAR 2 - UAR */ memset(&dev->uar_data, 0, sizeof(dev->uar_data)); memory_region_init_io(&dev->uar, OBJECT(dev), &uar_ops, dev, "rdma-uar", sizeof(dev->uar_data)); pci_register_bar(pdev, RDMA_UAR_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &dev->uar); } static void init_regs(PCIDevice *pdev) { PVRDMADev *dev = PVRDMA_DEV(pdev); set_reg_val(dev, PVRDMA_REG_VERSION, PVRDMA_HW_VERSION); set_reg_val(dev, PVRDMA_REG_ERR, 0xFFFF); } static void uninit_msix(PCIDevice *pdev, int used_vectors) { PVRDMADev *dev = PVRDMA_DEV(pdev); int i; for (i = 0; i < used_vectors; i++) { msix_vector_unuse(pdev, i); } msix_uninit(pdev, &dev->msix, &dev->msix); } static int init_msix(PCIDevice *pdev, Error **errp) { PVRDMADev *dev = PVRDMA_DEV(pdev); int i; int rc; rc = msix_init(pdev, RDMA_MAX_INTRS, &dev->msix, RDMA_MSIX_BAR_IDX, RDMA_MSIX_TABLE, &dev->msix, RDMA_MSIX_BAR_IDX, RDMA_MSIX_PBA, 0, NULL); if (rc < 0) { error_setg(errp, "Failed to initialize MSI-X"); return rc; } for (i = 0; i < RDMA_MAX_INTRS; i++) { rc = msix_vector_use(PCI_DEVICE(dev), i); if (rc < 0) { error_setg(errp, "Fail mark MSI-X vercor %d", i); uninit_msix(pdev, i); return rc; } } return 0; } static void init_dev_caps(PVRDMADev *dev) { size_t pg_tbl_bytes = TARGET_PAGE_SIZE * (TARGET_PAGE_SIZE / sizeof(uint64_t)); size_t wr_sz = MAX(sizeof(struct pvrdma_sq_wqe_hdr), sizeof(struct pvrdma_rq_wqe_hdr)); dev->dev_attr.max_qp_wr = pg_tbl_bytes / (wr_sz + sizeof(struct pvrdma_sge) * MAX_SGE) - TARGET_PAGE_SIZE; /* First page is ring state */ pr_dbg("max_qp_wr=%d\n", dev->dev_attr.max_qp_wr); dev->dev_attr.max_cqe = pg_tbl_bytes / sizeof(struct pvrdma_cqe) - TARGET_PAGE_SIZE; /* First page is ring state */ pr_dbg("max_cqe=%d\n", dev->dev_attr.max_cqe); } static int pvrdma_check_ram_shared(Object *obj, void *opaque) { bool *shared = opaque; if (object_dynamic_cast(obj, "memory-backend-ram")) { *shared = object_property_get_bool(obj, "share", NULL); } return 0; } static void pvrdma_realize(PCIDevice *pdev, Error **errp) { int rc; PVRDMADev *dev = PVRDMA_DEV(pdev); Object *memdev_root; bool ram_shared = false; pr_dbg("Initializing device %s %x.%x\n", pdev->name, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); if (TARGET_PAGE_SIZE != getpagesize()) { error_setg(errp, "Target page size must be the same as host page size"); return; } memdev_root = object_resolve_path("/objects", NULL); if (memdev_root) { object_child_foreach(memdev_root, pvrdma_check_ram_shared, &ram_shared); } if (!ram_shared) { error_setg(errp, "Only shared memory backed ram is supported"); return; } dev->dsr_info.dsr = NULL; init_pci_config(pdev); init_bars(pdev); init_regs(pdev); init_dev_caps(dev); rc = init_msix(pdev, errp); if (rc) { goto out; } rc = rdma_backend_init(&dev->backend_dev, &dev->rdma_dev_res, dev->backend_device_name, dev->backend_port_num, dev->backend_gid_idx, &dev->dev_attr, errp); if (rc) { goto out; } rc = rdma_rm_init(&dev->rdma_dev_res, &dev->dev_attr, errp); if (rc) { goto out; } init_ports(dev, errp); rc = pvrdma_qp_ops_init(); if (rc) { goto out; } out: if (rc) { error_append_hint(errp, "Device fail to load\n"); } } static void pvrdma_exit(PCIDevice *pdev) { PVRDMADev *dev = PVRDMA_DEV(pdev); pr_dbg("Closing device %s %x.%x\n", pdev->name, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); pvrdma_qp_ops_fini(); rdma_rm_fini(&dev->rdma_dev_res); rdma_backend_fini(&dev->backend_dev); free_dsr(dev); if (msix_enabled(pdev)) { uninit_msix(pdev, RDMA_MAX_INTRS); } } static void pvrdma_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->realize = pvrdma_realize; k->exit = pvrdma_exit; k->vendor_id = PCI_VENDOR_ID_VMWARE; k->device_id = PCI_DEVICE_ID_VMWARE_PVRDMA; k->revision = 0x00; k->class_id = PCI_CLASS_NETWORK_OTHER; dc->desc = "RDMA Device"; dc->props = pvrdma_dev_properties; set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); } static const TypeInfo pvrdma_info = { .name = PVRDMA_HW_NAME, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(PVRDMADev), .class_init = pvrdma_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { } } }; static void register_types(void) { type_register_static(&pvrdma_info); } type_init(register_types)