/* * QEMU PowerPC pSeries Logical Partition NUMA associativity handling * * Copyright IBM Corp. 2020 * * Authors: * Daniel Henrique Barboza * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "hw/ppc/spapr_numa.h" #include "hw/pci-host/spapr.h" #include "hw/ppc/fdt.h" /* Moved from hw/ppc/spapr_pci_nvlink2.c */ #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1)) void spapr_numa_associativity_init(SpaprMachineState *spapr, MachineState *machine) { SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); int nb_numa_nodes = machine->numa_state->num_nodes; int i, j, max_nodes_with_gpus; /* * For all associativity arrays: first position is the size, * position MAX_DISTANCE_REF_POINTS is always the numa_id, * represented by the index 'i'. * * This will break on sparse NUMA setups, when/if QEMU starts * to support it, because there will be no more guarantee that * 'i' will be a valid node_id set by the user. */ for (i = 0; i < nb_numa_nodes; i++) { spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS); spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i); } /* * Initialize NVLink GPU associativity arrays. We know that * the first GPU will take the first available NUMA id, and * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine. * At this point we're not sure if there are GPUs or not, but * let's initialize the associativity arrays and allow NVLink * GPUs to be handled like regular NUMA nodes later on. */ max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM; for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) { spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS); for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) { uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? SPAPR_GPU_NUMA_ID : cpu_to_be32(i); spapr->numa_assoc_array[i][j] = gpu_assoc; } spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i); } } void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, int offset, int nodeid) { _FDT((fdt_setprop(fdt, offset, "ibm,associativity", spapr->numa_assoc_array[nodeid], sizeof(spapr->numa_assoc_array[nodeid])))); } static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, PowerPCCPU *cpu) { uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE); int index = spapr_get_vcpu_id(cpu); /* * VCPUs have an extra 'cpu_id' value in ibm,associativity * compared to other resources. Increment the size at index * 0, put cpu_id last, then copy the remaining associativity * domains. */ vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1); vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index); memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1, (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t)); return vcpu_assoc; } int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, int offset, PowerPCCPU *cpu) { g_autofree uint32_t *vcpu_assoc = NULL; vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); /* Advertise NUMA via ibm,associativity */ return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, VCPU_ASSOC_SIZE * sizeof(uint32_t)); } int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, int offset) { MachineState *machine = MACHINE(spapr); int nb_numa_nodes = machine->numa_state->num_nodes; int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; uint32_t *int_buf, *cur_index, buf_len; int ret, i; /* ibm,associativity-lookup-arrays */ buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t); cur_index = int_buf = g_malloc0(buf_len); int_buf[0] = cpu_to_be32(nr_nodes); /* Number of entries per associativity list */ int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS); cur_index += 2; for (i = 0; i < nr_nodes; i++) { /* * For the lookup-array we use the ibm,associativity array, * from numa_assoc_array. without the first element (size). */ uint32_t *associativity = spapr->numa_assoc_array[i]; memcpy(cur_index, ++associativity, sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS); cur_index += MAX_DISTANCE_REF_POINTS; } ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, (cur_index - int_buf) * sizeof(uint32_t)); g_free(int_buf); return ret; } /* * Helper that writes ibm,associativity-reference-points and * max-associativity-domains in the RTAS pointed by @rtas * in the DT @fdt. */ void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) { SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4), cpu_to_be32(0x2), }; uint32_t nr_refpoints = ARRAY_SIZE(refpoints); uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); uint32_t maxdomains[] = { cpu_to_be32(4), maxdomain, maxdomain, maxdomain, cpu_to_be32(spapr->gpu_numa_id), }; if (smc->pre_5_1_assoc_refpoints) { nr_refpoints = 2; } _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", refpoints, nr_refpoints * sizeof(refpoints[0]))); _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", maxdomains, sizeof(maxdomains))); } static target_ulong h_home_node_associativity(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { g_autofree uint32_t *vcpu_assoc = NULL; target_ulong flags = args[0]; target_ulong procno = args[1]; PowerPCCPU *tcpu; int idx, assoc_idx; /* only support procno from H_REGISTER_VPA */ if (flags != 0x1) { return H_FUNCTION; } tcpu = spapr_find_cpu(procno); if (tcpu == NULL) { return H_P2; } /* * Given that we want to be flexible with the sizes and indexes, * we must consider that there is a hard limit of how many * associativities domain we can fit in R4 up to R9, which would be * 12 associativity domains for vcpus. Assert and bail if that's * not the case. */ G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12); vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); /* assoc_idx starts at 1 to skip associativity size */ assoc_idx = 1; #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ ((uint64_t)(b) & 0xffffffff)) for (idx = 0; idx < 6; idx++) { int32_t a, b; /* * vcpu_assoc[] will contain the associativity domains for tcpu, * including tcpu->node_id and procno, meaning that we don't * need to use these variables here. * * We'll read 2 values at a time to fill up the ASSOCIATIVITY() * macro. The ternary will fill the remaining registers with -1 * after we went through vcpu_assoc[]. */ a = assoc_idx < VCPU_ASSOC_SIZE ? be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; b = assoc_idx < VCPU_ASSOC_SIZE ? be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; args[idx] = ASSOCIATIVITY(a, b); } #undef ASSOCIATIVITY return H_SUCCESS; } static void spapr_numa_register_types(void) { /* Virtual Processor Home Node */ spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, h_home_node_associativity); } type_init(spapr_numa_register_types)