#include "qemu/osdep.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "sysemu/hw_accel.h" #include "sysemu/runstate.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "qemu/module.h" #include "qemu/error-report.h" #include "cpu.h" #include "exec/exec-all.h" #include "helper_regs.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "mmu-hash64.h" #include "cpu-models.h" #include "trace.h" #include "kvm_ppc.h" #include "hw/ppc/fdt.h" #include "hw/ppc/spapr_ovec.h" #include "mmu-book3s-v3.h" #include "hw/mem/memory-device.h" static bool has_spr(PowerPCCPU *cpu, int spr) { /* We can test whether the SPR is defined by checking for a valid name */ return cpu->env.spr_cb[spr].name != NULL; } static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) { /* * hash value/pteg group index is normalized by HPT mask */ if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { return false; } return true; } static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) { MachineState *machine = MACHINE(spapr); DeviceMemoryState *dms = machine->device_memory; if (addr < machine->ram_size) { return true; } if ((addr >= dms->base) && ((addr - dms->base) < memory_region_size(&dms->mr))) { return true; } return false; } static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong ptex = args[1]; target_ulong pteh = args[2]; target_ulong ptel = args[3]; unsigned apshift; target_ulong raddr; target_ulong slot; const ppc_hash_pte64_t *hptes; apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); if (!apshift) { /* Bad page size encoding */ return H_PARAMETER; } raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); if (is_ram_address(spapr, raddr)) { /* Regular RAM - should have WIMG=0010 */ if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { return H_PARAMETER; } } else { target_ulong wimg_flags; /* Looks like an IO address */ /* FIXME: What WIMG combinations could be sensible for IO? * For now we allow WIMG=010x, but are there others? */ /* FIXME: Should we check against registered IO addresses? */ wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); if (wimg_flags != HPTE64_R_I && wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { return H_PARAMETER; } } pteh &= ~0x60ULL; if (!valid_ptex(cpu, ptex)) { return H_PARAMETER; } slot = ptex & 7ULL; ptex = ptex & ~7ULL; if (likely((flags & H_EXACT) == 0)) { hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); for (slot = 0; slot < 8; slot++) { if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { break; } } ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); if (slot == 8) { return H_PTEG_FULL; } } else { hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); return H_PTEG_FULL; } ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); } spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); args[0] = ptex + slot; return H_SUCCESS; } typedef enum { REMOVE_SUCCESS = 0, REMOVE_NOT_FOUND = 1, REMOVE_PARM = 2, REMOVE_HW = 3, } RemoveResult; static RemoveResult remove_hpte(PowerPCCPU *cpu , target_ulong ptex, target_ulong avpn, target_ulong flags, target_ulong *vp, target_ulong *rp) { const ppc_hash_pte64_t *hptes; target_ulong v, r; if (!valid_ptex(cpu, ptex)) { return REMOVE_PARM; } hptes = ppc_hash64_map_hptes(cpu, ptex, 1); v = ppc_hash64_hpte0(cpu, hptes, 0); r = ppc_hash64_hpte1(cpu, hptes, 0); ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); if ((v & HPTE64_V_VALID) == 0 || ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || ((flags & H_ANDCOND) && (v & avpn) != 0)) { return REMOVE_NOT_FOUND; } *vp = v; *rp = r; spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); return REMOVE_SUCCESS; } static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; target_ulong flags = args[0]; target_ulong ptex = args[1]; target_ulong avpn = args[2]; RemoveResult ret; ret = remove_hpte(cpu, ptex, avpn, flags, &args[0], &args[1]); switch (ret) { case REMOVE_SUCCESS: check_tlb_flush(env, true); return H_SUCCESS; case REMOVE_NOT_FOUND: return H_NOT_FOUND; case REMOVE_PARM: return H_PARAMETER; case REMOVE_HW: return H_HARDWARE; } g_assert_not_reached(); } #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL #define H_BULK_REMOVE_END 0xc000000000000000ULL #define H_BULK_REMOVE_CODE 0x3000000000000000ULL #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL #define H_BULK_REMOVE_PARM 0x2000000000000000ULL #define H_BULK_REMOVE_HW 0x3000000000000000ULL #define H_BULK_REMOVE_RC 0x0c00000000000000ULL #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL #define H_BULK_REMOVE_MAX_BATCH 4 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; int i; target_ulong rc = H_SUCCESS; for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { target_ulong *tsh = &args[i*2]; target_ulong tsl = args[i*2 + 1]; target_ulong v, r, ret; if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { break; } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { return H_PARAMETER; } *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; *tsh |= H_BULK_REMOVE_RESPONSE; if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { *tsh |= H_BULK_REMOVE_PARM; return H_PARAMETER; } ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, (*tsh & H_BULK_REMOVE_FLAGS) >> 26, &v, &r); *tsh |= ret << 60; switch (ret) { case REMOVE_SUCCESS: *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; break; case REMOVE_PARM: rc = H_PARAMETER; goto exit; case REMOVE_HW: rc = H_HARDWARE; goto exit; } } exit: check_tlb_flush(env, true); return rc; } static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; target_ulong flags = args[0]; target_ulong ptex = args[1]; target_ulong avpn = args[2]; const ppc_hash_pte64_t *hptes; target_ulong v, r; if (!valid_ptex(cpu, ptex)) { return H_PARAMETER; } hptes = ppc_hash64_map_hptes(cpu, ptex, 1); v = ppc_hash64_hpte0(cpu, hptes, 0); r = ppc_hash64_hpte1(cpu, hptes, 0); ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); if ((v & HPTE64_V_VALID) == 0 || ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { return H_NOT_FOUND; } r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); r |= (flags << 55) & HPTE64_R_PP0; r |= (flags << 48) & HPTE64_R_KEY_HI; r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); spapr_store_hpte(cpu, ptex, (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); /* Flush the tlb */ check_tlb_flush(env, true); /* Don't need a memory barrier, due to qemu's global lock */ spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); return H_SUCCESS; } static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong ptex = args[1]; int i, ridx, n_entries = 1; const ppc_hash_pte64_t *hptes; if (!valid_ptex(cpu, ptex)) { return H_PARAMETER; } if (flags & H_READ_4) { /* Clear the two low order bits */ ptex &= ~(3ULL); n_entries = 4; } hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries); for (i = 0, ridx = 0; i < n_entries; i++) { args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i); args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i); } ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries); return H_SUCCESS; } struct SpaprPendingHpt { /* These fields are read-only after initialization */ int shift; QemuThread thread; /* These fields are protected by the BQL */ bool complete; /* These fields are private to the preparation thread if * !complete, otherwise protected by the BQL */ int ret; void *hpt; }; static void free_pending_hpt(SpaprPendingHpt *pending) { if (pending->hpt) { qemu_vfree(pending->hpt); } g_free(pending); } static void *hpt_prepare_thread(void *opaque) { SpaprPendingHpt *pending = opaque; size_t size = 1ULL << pending->shift; pending->hpt = qemu_memalign(size, size); if (pending->hpt) { memset(pending->hpt, 0, size); pending->ret = H_SUCCESS; } else { pending->ret = H_NO_MEM; } qemu_mutex_lock_iothread(); if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) { /* Ready to go */ pending->complete = true; } else { /* We've been cancelled, clean ourselves up */ free_pending_hpt(pending); } qemu_mutex_unlock_iothread(); return NULL; } /* Must be called with BQL held */ static void cancel_hpt_prepare(SpaprMachineState *spapr) { SpaprPendingHpt *pending = spapr->pending_hpt; /* Let the thread know it's cancelled */ spapr->pending_hpt = NULL; if (!pending) { /* Nothing to do */ return; } if (!pending->complete) { /* thread will clean itself up */ return; } free_pending_hpt(pending); } /* Convert a return code from the KVM ioctl()s implementing resize HPT * into a PAPR hypercall return code */ static target_ulong resize_hpt_convert_rc(int ret) { if (ret >= 100000) { return H_LONG_BUSY_ORDER_100_SEC; } else if (ret >= 10000) { return H_LONG_BUSY_ORDER_10_SEC; } else if (ret >= 1000) { return H_LONG_BUSY_ORDER_1_SEC; } else if (ret >= 100) { return H_LONG_BUSY_ORDER_100_MSEC; } else if (ret >= 10) { return H_LONG_BUSY_ORDER_10_MSEC; } else if (ret > 0) { return H_LONG_BUSY_ORDER_1_MSEC; } switch (ret) { case 0: return H_SUCCESS; case -EPERM: return H_AUTHORITY; case -EINVAL: return H_PARAMETER; case -ENXIO: return H_CLOSED; case -ENOSPC: return H_PTEG_FULL; case -EBUSY: return H_BUSY; case -ENOMEM: return H_NO_MEM; default: return H_HARDWARE; } } static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; int shift = args[1]; SpaprPendingHpt *pending = spapr->pending_hpt; uint64_t current_ram_size; int rc; if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { return H_AUTHORITY; } if (!spapr->htab_shift) { /* Radix guest, no HPT */ return H_NOT_AVAILABLE; } trace_spapr_h_resize_hpt_prepare(flags, shift); if (flags != 0) { return H_PARAMETER; } if (shift && ((shift < 18) || (shift > 46))) { return H_PARAMETER; } current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); /* We only allow the guest to allocate an HPT one order above what * we'd normally give them (to stop a small guest claiming a huge * chunk of resources in the HPT */ if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { return H_RESOURCE; } rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); if (rc != -ENOSYS) { return resize_hpt_convert_rc(rc); } if (pending) { /* something already in progress */ if (pending->shift == shift) { /* and it's suitable */ if (pending->complete) { return pending->ret; } else { return H_LONG_BUSY_ORDER_100_MSEC; } } /* not suitable, cancel and replace */ cancel_hpt_prepare(spapr); } if (!shift) { /* nothing to do */ return H_SUCCESS; } /* start new prepare */ pending = g_new0(SpaprPendingHpt, 1); pending->shift = shift; pending->ret = H_HARDWARE; qemu_thread_create(&pending->thread, "sPAPR HPT prepare", hpt_prepare_thread, pending, QEMU_THREAD_DETACHED); spapr->pending_hpt = pending; /* In theory we could estimate the time more accurately based on * the new size, but there's not much point */ return H_LONG_BUSY_ORDER_100_MSEC; } static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot) { uint8_t *addr = htab; addr += pteg * HASH_PTEG_SIZE_64; addr += slot * HASH_PTE_SIZE_64; return ldq_p(addr); } static void new_hpte_store(void *htab, uint64_t pteg, int slot, uint64_t pte0, uint64_t pte1) { uint8_t *addr = htab; addr += pteg * HASH_PTEG_SIZE_64; addr += slot * HASH_PTE_SIZE_64; stq_p(addr, pte0); stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1); } static int rehash_hpte(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes, void *old_hpt, uint64_t oldsize, void *new_hpt, uint64_t newsize, uint64_t pteg, int slot) { uint64_t old_hash_mask = (oldsize >> 7) - 1; uint64_t new_hash_mask = (newsize >> 7) - 1; target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot); target_ulong pte1; uint64_t avpn; unsigned base_pg_shift; uint64_t hash, new_pteg, replace_pte0; if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) { return H_SUCCESS; } pte1 = ppc_hash64_hpte1(cpu, hptes, slot); base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1); assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */ avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23); if (pte0 & HPTE64_V_SECONDARY) { pteg = ~pteg; } if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) { uint64_t offset, vsid; /* We only have 28 - 23 bits of offset in avpn */ offset = (avpn & 0x1f) << 23; vsid = avpn >> 5; /* We can find more bits from the pteg value */ if (base_pg_shift < 23) { offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift; } hash = vsid ^ (offset >> base_pg_shift); } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) { uint64_t offset, vsid; /* We only have 40 - 23 bits of seg_off in avpn */ offset = (avpn & 0x1ffff) << 23; vsid = avpn >> 17; if (base_pg_shift < 23) { offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << base_pg_shift; } hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift); } else { error_report("rehash_pte: Bad segment size in HPTE"); return H_HARDWARE; } new_pteg = hash & new_hash_mask; if (pte0 & HPTE64_V_SECONDARY) { assert(~pteg == (hash & old_hash_mask)); new_pteg = ~new_pteg; } else { assert(pteg == (hash & old_hash_mask)); } assert((oldsize != newsize) || (pteg == new_pteg)); replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot); /* * Strictly speaking, we don't need all these tests, since we only * ever rehash bolted HPTEs. We might in future handle non-bolted * HPTEs, though so make the logic correct for those cases as * well. */ if (replace_pte0 & HPTE64_V_VALID) { assert(newsize < oldsize); if (replace_pte0 & HPTE64_V_BOLTED) { if (pte0 & HPTE64_V_BOLTED) { /* Bolted collision, nothing we can do */ return H_PTEG_FULL; } else { /* Discard this hpte */ return H_SUCCESS; } } } new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1); return H_SUCCESS; } static int rehash_hpt(PowerPCCPU *cpu, void *old_hpt, uint64_t oldsize, void *new_hpt, uint64_t newsize) { uint64_t n_ptegs = oldsize >> 7; uint64_t pteg; int slot; int rc; for (pteg = 0; pteg < n_ptegs; pteg++) { hwaddr ptex = pteg * HPTES_PER_GROUP; const ppc_hash_pte64_t *hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); if (!hptes) { return H_HARDWARE; } for (slot = 0; slot < HPTES_PER_GROUP; slot++) { rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize, pteg, slot); if (rc != H_SUCCESS) { ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); return rc; } } ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); } return H_SUCCESS; } static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) { int ret; cpu_synchronize_state(cs); ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); if (ret < 0) { error_report("failed to push sregs to KVM: %s", strerror(-ret)); exit(1); } } static void push_sregs_to_kvm_pr(SpaprMachineState *spapr) { CPUState *cs; /* * This is a hack for the benefit of KVM PR - it abuses the SDR1 * slot in kvm_sregs to communicate the userspace address of the * HPT */ if (!kvm_enabled() || !spapr->htab) { return; } CPU_FOREACH(cs) { run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); } } static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong shift = args[1]; SpaprPendingHpt *pending = spapr->pending_hpt; int rc; size_t newsize; if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { return H_AUTHORITY; } if (!spapr->htab_shift) { /* Radix guest, no HPT */ return H_NOT_AVAILABLE; } trace_spapr_h_resize_hpt_commit(flags, shift); rc = kvmppc_resize_hpt_commit(cpu, flags, shift); if (rc != -ENOSYS) { rc = resize_hpt_convert_rc(rc); if (rc == H_SUCCESS) { /* Need to set the new htab_shift in the machine state */ spapr->htab_shift = shift; } return rc; } if (flags != 0) { return H_PARAMETER; } if (!pending || (pending->shift != shift)) { /* no matching prepare */ return H_CLOSED; } if (!pending->complete) { /* prepare has not completed */ return H_BUSY; } /* Shouldn't have got past PREPARE without an HPT */ g_assert(spapr->htab_shift); newsize = 1ULL << pending->shift; rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr), pending->hpt, newsize); if (rc == H_SUCCESS) { qemu_vfree(spapr->htab); spapr->htab = pending->hpt; spapr->htab_shift = pending->shift; push_sregs_to_kvm_pr(spapr); pending->hpt = NULL; /* so it's not free()d */ } /* Clean up */ spapr->pending_hpt = NULL; free_pending_hpt(pending); return rc; } static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { cpu_synchronize_state(CPU(cpu)); cpu->env.spr[SPR_SPRG0] = args[0]; return H_SUCCESS; } static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { if (!has_spr(cpu, SPR_DABR)) { return H_HARDWARE; /* DABR register not available */ } cpu_synchronize_state(CPU(cpu)); if (has_spr(cpu, SPR_DABRX)) { cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ return H_RESERVED_DABR; } cpu->env.spr[SPR_DABR] = args[0]; return H_SUCCESS; } static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong dabrx = args[1]; if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { return H_HARDWARE; } if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { return H_PARAMETER; } cpu_synchronize_state(CPU(cpu)); cpu->env.spr[SPR_DABRX] = dabrx; cpu->env.spr[SPR_DABR] = args[0]; return H_SUCCESS; } static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; hwaddr dst = args[1]; hwaddr src = args[2]; hwaddr len = TARGET_PAGE_SIZE; uint8_t *pdst, *psrc; target_long ret = H_SUCCESS; if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE | H_COPY_PAGE | H_ZERO_PAGE)) { qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", flags); return H_PARAMETER; } /* Map-in destination */ if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { return H_PARAMETER; } pdst = cpu_physical_memory_map(dst, &len, true); if (!pdst || len != TARGET_PAGE_SIZE) { return H_PARAMETER; } if (flags & H_COPY_PAGE) { /* Map-in source, copy to destination, and unmap source again */ if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { ret = H_PARAMETER; goto unmap_out; } psrc = cpu_physical_memory_map(src, &len, false); if (!psrc || len != TARGET_PAGE_SIZE) { ret = H_PARAMETER; goto unmap_out; } memcpy(pdst, psrc, len); cpu_physical_memory_unmap(psrc, len, 0, len); } else if (flags & H_ZERO_PAGE) { memset(pdst, 0, len); /* Just clear the destination page */ } if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { kvmppc_dcbst_range(cpu, pdst, len); } if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { if (kvm_enabled()) { kvmppc_icbi_range(cpu, pdst, len); } else { tb_flush(CPU(cpu)); } } unmap_out: cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); return ret; } #define FLAGS_REGISTER_VPA 0x0000200000000000ULL #define FLAGS_REGISTER_DTL 0x0000400000000000ULL #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); uint16_t size; uint8_t tmp; if (vpa == 0) { hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); return H_HARDWARE; } if (vpa % env->dcache_line_size) { return H_PARAMETER; } /* FIXME: bounds check the address */ size = lduw_be_phys(cs->as, vpa + 0x4); if (size < VPA_MIN_SIZE) { return H_PARAMETER; } /* VPA is not allowed to cross a page boundary */ if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { return H_PARAMETER; } spapr_cpu->vpa_addr = vpa; tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); tmp |= VPA_SHARED_PROC_VAL; stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); return H_SUCCESS; } static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); if (spapr_cpu->slb_shadow_addr) { return H_RESOURCE; } if (spapr_cpu->dtl_addr) { return H_RESOURCE; } spapr_cpu->vpa_addr = 0; return H_SUCCESS; } static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); uint32_t size; if (addr == 0) { hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); return H_HARDWARE; } size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); if (size < 0x8) { return H_PARAMETER; } if ((addr / 4096) != ((addr + size - 1) / 4096)) { return H_PARAMETER; } if (!spapr_cpu->vpa_addr) { return H_RESOURCE; } spapr_cpu->slb_shadow_addr = addr; spapr_cpu->slb_shadow_size = size; return H_SUCCESS; } static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); spapr_cpu->slb_shadow_addr = 0; spapr_cpu->slb_shadow_size = 0; return H_SUCCESS; } static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); uint32_t size; if (addr == 0) { hcall_dprintf("Can't cope with DTL at logical 0\n"); return H_HARDWARE; } size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); if (size < 48) { return H_PARAMETER; } if (!spapr_cpu->vpa_addr) { return H_RESOURCE; } spapr_cpu->dtl_addr = addr; spapr_cpu->dtl_size = size; return H_SUCCESS; } static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); spapr_cpu->dtl_addr = 0; spapr_cpu->dtl_size = 0; return H_SUCCESS; } static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong procno = args[1]; target_ulong vpa = args[2]; target_ulong ret = H_PARAMETER; PowerPCCPU *tcpu; tcpu = spapr_find_cpu(procno); if (!tcpu) { return H_PARAMETER; } switch (flags) { case FLAGS_REGISTER_VPA: ret = register_vpa(tcpu, vpa); break; case FLAGS_DEREGISTER_VPA: ret = deregister_vpa(tcpu, vpa); break; case FLAGS_REGISTER_SLBSHADOW: ret = register_slb_shadow(tcpu, vpa); break; case FLAGS_DEREGISTER_SLBSHADOW: ret = deregister_slb_shadow(tcpu, vpa); break; case FLAGS_REGISTER_DTL: ret = register_dtl(tcpu, vpa); break; case FLAGS_DEREGISTER_DTL: ret = deregister_dtl(tcpu, vpa); break; } return ret; } static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; CPUState *cs = CPU(cpu); SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); env->msr |= (1ULL << MSR_EE); hreg_compute_hflags(env); if (spapr_cpu->prod) { spapr_cpu->prod = false; return H_SUCCESS; } if (!cpu_has_work(cs)) { cs->halted = 1; cs->exception_index = EXCP_HLT; cs->exit_request = 1; } return H_SUCCESS; } /* * Confer to self, aka join. Cede could use the same pattern as well, if * EXCP_HLT can be changed to ECXP_HALTED. */ static target_ulong h_confer_self(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); if (spapr_cpu->prod) { spapr_cpu->prod = false; return H_SUCCESS; } cs->halted = 1; cs->exception_index = EXCP_HALTED; cs->exit_request = 1; return H_SUCCESS; } static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; CPUState *cs; bool last_unjoined = true; if (env->msr & (1ULL << MSR_EE)) { return H_BAD_MODE; } /* * Must not join the last CPU running. Interestingly, no such restriction * for H_CONFER-to-self, but that is probably not intended to be used * when H_JOIN is available. */ CPU_FOREACH(cs) { PowerPCCPU *c = POWERPC_CPU(cs); CPUPPCState *e = &c->env; if (c == cpu) { continue; } /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { last_unjoined = false; break; } } if (last_unjoined) { return H_CONTINUE; } return h_confer_self(cpu); } static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_long target = args[0]; uint32_t dispatch = args[1]; CPUState *cs = CPU(cpu); SpaprCpuState *spapr_cpu; /* * -1 means confer to all other CPUs without dispatch counter check, * otherwise it's a targeted confer. */ if (target != -1) { PowerPCCPU *target_cpu = spapr_find_cpu(target); uint32_t target_dispatch; if (!target_cpu) { return H_PARAMETER; } /* * target == self is a special case, we wait until prodded, without * dispatch counter check. */ if (cpu == target_cpu) { return h_confer_self(cpu); } spapr_cpu = spapr_cpu_state(target_cpu); if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { return H_SUCCESS; } target_dispatch = ldl_be_phys(cs->as, spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); if (target_dispatch != dispatch) { return H_SUCCESS; } /* * The targeted confer does not do anything special beyond yielding * the current vCPU, but even this should be better than nothing. * At least for single-threaded tcg, it gives the target a chance to * run before we run again. Multi-threaded tcg does not really do * anything with EXCP_YIELD yet. */ } cs->exception_index = EXCP_YIELD; cs->exit_request = 1; cpu_loop_exit(cs); return H_SUCCESS; } static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_long target = args[0]; PowerPCCPU *tcpu; CPUState *cs; SpaprCpuState *spapr_cpu; tcpu = spapr_find_cpu(target); cs = CPU(tcpu); if (!cs) { return H_PARAMETER; } spapr_cpu = spapr_cpu_state(tcpu); spapr_cpu->prod = true; cs->halted = 0; qemu_cpu_kick(cs); return H_SUCCESS; } static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong rtas_r3 = args[0]; uint32_t token = rtas_ld(rtas_r3, 0); uint32_t nargs = rtas_ld(rtas_r3, 1); uint32_t nret = rtas_ld(rtas_r3, 2); return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, nret, rtas_r3 + 12 + 4*nargs); } static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong size = args[0]; target_ulong addr = args[1]; switch (size) { case 1: args[0] = ldub_phys(cs->as, addr); return H_SUCCESS; case 2: args[0] = lduw_phys(cs->as, addr); return H_SUCCESS; case 4: args[0] = ldl_phys(cs->as, addr); return H_SUCCESS; case 8: args[0] = ldq_phys(cs->as, addr); return H_SUCCESS; } return H_PARAMETER; } static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong size = args[0]; target_ulong addr = args[1]; target_ulong val = args[2]; switch (size) { case 1: stb_phys(cs->as, addr, val); return H_SUCCESS; case 2: stw_phys(cs->as, addr, val); return H_SUCCESS; case 4: stl_phys(cs->as, addr, val); return H_SUCCESS; case 8: stq_phys(cs->as, addr, val); return H_SUCCESS; } return H_PARAMETER; } static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong dst = args[0]; /* Destination address */ target_ulong src = args[1]; /* Source address */ target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ target_ulong count = args[3]; /* Element count */ target_ulong op = args[4]; /* 0 = copy, 1 = invert */ uint64_t tmp; unsigned int mask = (1 << esize) - 1; int step = 1 << esize; if (count > 0x80000000) { return H_PARAMETER; } if ((dst & mask) || (src & mask) || (op > 1)) { return H_PARAMETER; } if (dst >= src && dst < (src + (count << esize))) { dst = dst + ((count - 1) << esize); src = src + ((count - 1) << esize); step = -step; } while (count--) { switch (esize) { case 0: tmp = ldub_phys(cs->as, src); break; case 1: tmp = lduw_phys(cs->as, src); break; case 2: tmp = ldl_phys(cs->as, src); break; case 3: tmp = ldq_phys(cs->as, src); break; default: return H_PARAMETER; } if (op == 1) { tmp = ~tmp; } switch (esize) { case 0: stb_phys(cs->as, dst, tmp); break; case 1: stw_phys(cs->as, dst, tmp); break; case 2: stl_phys(cs->as, dst, tmp); break; case 3: stq_phys(cs->as, dst, tmp); break; } dst = dst + step; src = src + step; } return H_SUCCESS; } static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { /* Nothing to do on emulation, KVM will trap this in the kernel */ return H_SUCCESS; } static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { /* Nothing to do on emulation, KVM will trap this in the kernel */ return H_SUCCESS; } static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, target_ulong mflags, target_ulong value1, target_ulong value2) { if (value1) { return H_P3; } if (value2) { return H_P4; } switch (mflags) { case H_SET_MODE_ENDIAN_BIG: spapr_set_all_lpcrs(0, LPCR_ILE); spapr_pci_switch_vga(true); return H_SUCCESS; case H_SET_MODE_ENDIAN_LITTLE: spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); spapr_pci_switch_vga(false); return H_SUCCESS; } return H_UNSUPPORTED_FLAG; } static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, target_ulong mflags, target_ulong value1, target_ulong value2) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); if (!(pcc->insns_flags2 & PPC2_ISA207S)) { return H_P2; } if (value1) { return H_P3; } if (value2) { return H_P4; } if (mflags == AIL_RESERVED) { return H_UNSUPPORTED_FLAG; } spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); return H_SUCCESS; } static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong resource = args[1]; target_ulong ret = H_P2; switch (resource) { case H_SET_MODE_RESOURCE_LE: ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); break; case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], args[2], args[3]); break; } return ret; } static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", opcode, " (H_CLEAN_SLB)"); return H_FUNCTION; } static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", opcode, " (H_INVALIDATE_PID)"); return H_FUNCTION; } static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, uint64_t patbe_old, uint64_t patbe_new) { /* * We have 4 Options: * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing * HASH->RADIX : Free HPT * RADIX->HASH : Allocate HPT * NOTHING->HASH : Allocate HPT * Note: NOTHING implies the case where we said the guest could choose * later and so assumed radix and now it's called H_REG_PROC_TBL */ if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { /* We assume RADIX, so this catches all the "Do Nothing" cases */ } else if (!(patbe_old & PATE1_GR)) { /* HASH->RADIX : Free HPT */ spapr_free_hpt(spapr); } else if (!(patbe_new & PATE1_GR)) { /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ spapr_setup_hpt_and_vrma(spapr); } return; } #define FLAGS_MASK 0x01FULL #define FLAG_MODIFY 0x10 #define FLAG_REGISTER 0x08 #define FLAG_RADIX 0x04 #define FLAG_HASH_PROC_TBL 0x02 #define FLAG_GTSE 0x01 static target_ulong h_register_process_table(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong proc_tbl = args[1]; target_ulong page_size = args[2]; target_ulong table_size = args[3]; target_ulong update_lpcr = 0; uint64_t cproc; if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ return H_PARAMETER; } if (flags & FLAG_MODIFY) { if (flags & FLAG_REGISTER) { if (flags & FLAG_RADIX) { /* Register new RADIX process table */ if (proc_tbl & 0xfff || proc_tbl >> 60) { return H_P2; } else if (page_size) { return H_P3; } else if (table_size > 24) { return H_P4; } cproc = PATE1_GR | proc_tbl | table_size; } else { /* Register new HPT process table */ if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ /* TODO - Not Supported */ /* Technically caused by flag bits => H_PARAMETER */ return H_PARAMETER; } else { /* Hash with SLB */ if (proc_tbl >> 38) { return H_P2; } else if (page_size & ~0x7) { return H_P3; } else if (table_size > 24) { return H_P4; } } cproc = (proc_tbl << 25) | page_size << 5 | table_size; } } else { /* Deregister current process table */ /* * Set to benign value: (current GR) | 0. This allows * deregistration in KVM to succeed even if the radix bit * in flags doesn't match the radix bit in the old PATE. */ cproc = spapr->patb_entry & PATE1_GR; } } else { /* Maintain current registration */ if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { /* Technically caused by flag bits => H_PARAMETER */ return H_PARAMETER; /* Existing Process Table Mismatch */ } cproc = spapr->patb_entry; } /* Check if we need to setup OR free the hpt */ spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); spapr->patb_entry = cproc; /* Save new process table */ /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ update_lpcr |= (LPCR_UPRT | LPCR_HR); else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ update_lpcr |= LPCR_UPRT; if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ update_lpcr |= LPCR_GTSE; spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); if (kvm_enabled()) { return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, flags & FLAG_GTSE, cproc); } return H_SUCCESS; } #define H_SIGNAL_SYS_RESET_ALL -1 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_long target = args[0]; CPUState *cs; if (target < 0) { /* Broadcast */ if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { return H_PARAMETER; } CPU_FOREACH(cs) { PowerPCCPU *c = POWERPC_CPU(cs); if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { if (c == cpu) { continue; } } run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); } return H_SUCCESS; } else { /* Unicast */ cs = CPU(spapr_find_cpu(target)); if (cs) { run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); return H_SUCCESS; } return H_PARAMETER; } } static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu, target_ulong *addr, bool *raw_mode_supported, Error **errp) { bool explicit_match = false; /* Matched the CPU's real PVR */ uint32_t max_compat = spapr->max_compat_pvr; uint32_t best_compat = 0; int i; /* * We scan the supplied table of PVRs looking for two things * 1. Is our real CPU PVR in the list? * 2. What's the "best" listed logical PVR */ for (i = 0; i < 512; ++i) { uint32_t pvr, pvr_mask; pvr_mask = ldl_be_phys(&address_space_memory, *addr); pvr = ldl_be_phys(&address_space_memory, *addr + 4); *addr += 8; if (~pvr_mask & pvr) { break; /* Terminator record */ } if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { explicit_match = true; } else { if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { best_compat = pvr; } } } if ((best_compat == 0) && (!explicit_match || max_compat)) { /* We couldn't find a suitable compatibility mode, and either * the guest doesn't support "raw" mode for this CPU, or raw * mode is disabled because a maximum compat mode is set */ error_setg(errp, "Couldn't negotiate a suitable PVR during CAS"); return 0; } *raw_mode_supported = explicit_match; /* Parsing finished */ trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); return best_compat; } static bool spapr_transient_dev_before_cas(void) { Object *drc_container; ObjectProperty *prop; ObjectPropertyIterator iter; drc_container = container_get(object_get_root(), "/dr-connector"); object_property_iter_init(&iter, drc_container); while ((prop = object_property_iter_next(&iter))) { SpaprDrc *drc; if (!strstart(prop->type, "link<", NULL)) { continue; } drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, prop->name, NULL)); if (spapr_drc_transient(drc)) { return true; } } return false; } static target_ulong h_client_architecture_support(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { /* Working address in data buffer */ target_ulong addr = ppc64_phys_to_real(args[0]); target_ulong fdt_buf = args[1]; target_ulong fdt_bufsize = args[2]; target_ulong ov_table; uint32_t cas_pvr; SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old; bool guest_radix; Error *local_err = NULL; bool raw_mode_supported = false; bool guest_xive; CPUState *cs; /* CAS is supposed to be called early when only the boot vCPU is active. */ CPU_FOREACH(cs) { if (cs == CPU(cpu)) { continue; } if (!cs->halted) { warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); return H_MULTI_THREADS_ACTIVE; } } cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err); if (local_err) { error_report_err(local_err); return H_HARDWARE; } /* Update CPUs */ if (cpu->compat_pvr != cas_pvr) { ppc_set_compat_all(cas_pvr, &local_err); if (local_err) { /* We fail to set compat mode (likely because running with KVM PR), * but maybe we can fallback to raw mode if the guest supports it. */ if (!raw_mode_supported) { error_report_err(local_err); return H_HARDWARE; } error_free(local_err); local_err = NULL; } } /* For the future use: here @ov_table points to the first option vector */ ov_table = addr; ov1_guest = spapr_ovec_parse_vector(ov_table, 1); if (!ov1_guest) { warn_report("guest didn't provide option vector 1"); return H_PARAMETER; } ov5_guest = spapr_ovec_parse_vector(ov_table, 5); if (!ov5_guest) { warn_report("guest didn't provide option vector 5"); return H_PARAMETER; } if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { error_report("guest requested hash and radix MMU, which is invalid."); exit(EXIT_FAILURE); } if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { error_report("guest requested an invalid interrupt mode"); exit(EXIT_FAILURE); } /* The radix/hash bit in byte 24 requires special handling: */ guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); /* * HPT resizing is a bit of a special case, because when enabled * we assume an HPT guest will support it until it says it * doesn't, instead of assuming it won't support it until it says * it does. Strictly speaking that approach could break for * guests which don't make a CAS call, but those are so old we * don't care about them. Without that assumption we'd have to * make at least a temporary allocation of an HPT sized for max * memory, which could be impossibly difficult under KVM HV if * maxram is large. */ if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { error_report( "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); exit(1); } if (spapr->htab_shift < maxshift) { /* Guest doesn't know about HPT resizing, so we * pre-emptively resize for the maximum permitted RAM. At * the point this is called, nothing should have been * entered into the existing HPT */ spapr_reallocate_hpt(spapr, maxshift, &error_fatal); push_sregs_to_kvm_pr(spapr); } } /* NOTE: there are actually a number of ov5 bits where input from the * guest is always zero, and the platform/QEMU enables them independently * of guest input. To model these properly we'd want some sort of mask, * but since they only currently apply to memory migration as defined * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need * to worry about this for now. */ ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); /* also clear the radix/hash bit from the current ov5_cas bits to * be in sync with the newly ov5 bits. Else the radix bit will be * seen as being removed and this will generate a reset loop */ spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300); /* full range of negotiated ov5 capabilities */ spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); spapr_ovec_cleanup(ov5_guest); /* capabilities that have been added since CAS-generated guest reset. * if capabilities have since been removed, generate another reset */ spapr->cas_reboot = !spapr_ovec_subset(ov5_cas_old, spapr->ov5_cas); spapr_ovec_cleanup(ov5_cas_old); /* Now that processing is finished, set the radix/hash bit for the * guest if it requested a valid mode; otherwise terminate the boot. */ if (guest_radix) { if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { error_report("Guest requested unavailable MMU mode (radix)."); exit(EXIT_FAILURE); } spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); } else { if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && !kvmppc_has_cap_mmu_hash_v3()) { error_report("Guest requested unavailable MMU mode (hash)."); exit(EXIT_FAILURE); } } spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); spapr_ovec_cleanup(ov1_guest); /* * Ensure the guest asks for an interrupt mode we support; * otherwise terminate the boot. */ if (guest_xive) { if (!spapr->irq->xive) { error_report( "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); exit(EXIT_FAILURE); } } else { if (!spapr->irq->xics) { error_report( "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); exit(EXIT_FAILURE); } } spapr_irq_update_active_intc(spapr); if (spapr_transient_dev_before_cas()) { spapr->cas_reboot = true; } if (!spapr->cas_reboot) { void *fdt; SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; /* If spapr_machine_reset() did not set up a HPT but one is necessary * (because the guest isn't going to use radix) then set it up here. */ if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { /* legacy hash or new hash: */ spapr_setup_hpt_and_vrma(spapr); } if (fdt_bufsize < sizeof(hdr)) { error_report("SLOF provided insufficient CAS buffer " TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); exit(EXIT_FAILURE); } fdt_bufsize -= sizeof(hdr); fdt = spapr_build_fdt(spapr, false, fdt_bufsize); _FDT((fdt_pack(fdt))); cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); cpu_physical_memory_write(fdt_buf + sizeof(hdr), fdt, fdt_totalsize(fdt)); trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); g_free(spapr->fdt_blob); spapr->fdt_size = fdt_totalsize(fdt); spapr->fdt_initial_size = spapr->fdt_size; spapr->fdt_blob = fdt; } if (spapr->cas_reboot) { qemu_system_reset_request(SHUTDOWN_CAUSE_SUBSYSTEM_RESET); } return H_SUCCESS; } static target_ulong h_home_node_associativity(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong procno = args[1]; PowerPCCPU *tcpu; int idx; /* only support procno from H_REGISTER_VPA */ if (flags != 0x1) { return H_FUNCTION; } tcpu = spapr_find_cpu(procno); if (tcpu == NULL) { return H_P2; } /* sequence is the same as in the "ibm,associativity" property */ idx = 0; #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ ((uint64_t)(b) & 0xffffffff)) args[idx++] = ASSOCIATIVITY(0, 0); args[idx++] = ASSOCIATIVITY(0, tcpu->node_id); args[idx++] = ASSOCIATIVITY(procno, -1); for ( ; idx < 6; idx++) { args[idx] = -1; } #undef ASSOCIATIVITY return H_SUCCESS; } static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & ~H_CPU_CHAR_THR_RECONF_TRIG; uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); uint8_t count_cache_flush_assist = spapr_get_cap(spapr, SPAPR_CAP_CCF_ASSIST); switch (safe_cache) { case SPAPR_CAP_WORKAROUND: characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; break; case SPAPR_CAP_FIXED: break; default: /* broken */ assert(safe_cache == SPAPR_CAP_BROKEN); behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; break; } switch (safe_bounds_check) { case SPAPR_CAP_WORKAROUND: characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; break; case SPAPR_CAP_FIXED: break; default: /* broken */ assert(safe_bounds_check == SPAPR_CAP_BROKEN); behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; break; } switch (safe_indirect_branch) { case SPAPR_CAP_FIXED_NA: break; case SPAPR_CAP_FIXED_CCD: characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; break; case SPAPR_CAP_FIXED_IBS: characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; break; case SPAPR_CAP_WORKAROUND: behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; if (count_cache_flush_assist) { characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; } break; default: /* broken */ assert(safe_indirect_branch == SPAPR_CAP_BROKEN); break; } args[0] = characteristics; args[1] = behaviour; return H_SUCCESS; } static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong dt = ppc64_phys_to_real(args[0]); struct fdt_header hdr = { 0 }; unsigned cb; SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); void *fdt; cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); cb = fdt32_to_cpu(hdr.totalsize); if (!smc->update_dt_enabled) { return H_SUCCESS; } /* Check that the fdt did not grow out of proportion */ if (cb > spapr->fdt_initial_size * 2) { trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, fdt32_to_cpu(hdr.magic)); return H_PARAMETER; } fdt = g_malloc0(cb); cpu_physical_memory_read(dt, fdt, cb); /* Check the fdt consistency */ if (fdt_check_full(fdt, cb)) { trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, fdt32_to_cpu(hdr.magic)); return H_PARAMETER; } g_free(spapr->fdt_blob); spapr->fdt_size = cb; spapr->fdt_blob = fdt; trace_spapr_update_dt(cb); return H_SUCCESS; } static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) { spapr_hcall_fn *slot; if (opcode <= MAX_HCALL_OPCODE) { assert((opcode & 0x3) == 0); slot = &papr_hypercall_table[opcode / 4]; } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { /* we only have SVM-related hcall numbers assigned in multiples of 4 */ assert((opcode & 0x3) == 0); slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; } else { assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; } assert(!(*slot)); *slot = fn; } target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, target_ulong *args) { SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); if ((opcode <= MAX_HCALL_OPCODE) && ((opcode & 0x3) == 0)) { spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; if (fn) { return fn(cpu, spapr, opcode, args); } } else if ((opcode >= SVM_HCALL_BASE) && (opcode <= SVM_HCALL_MAX)) { spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; if (fn) { return fn(cpu, spapr, opcode, args); } } else if ((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)) { spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; if (fn) { return fn(cpu, spapr, opcode, args); } } qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", opcode); return H_FUNCTION; } static void hypercall_register_types(void) { /* hcall-pft */ spapr_register_hypercall(H_ENTER, h_enter); spapr_register_hypercall(H_REMOVE, h_remove); spapr_register_hypercall(H_PROTECT, h_protect); spapr_register_hypercall(H_READ, h_read); /* hcall-bulk */ spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); /* hcall-hpt-resize */ spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); /* hcall-splpar */ spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); spapr_register_hypercall(H_CEDE, h_cede); spapr_register_hypercall(H_CONFER, h_confer); spapr_register_hypercall(H_PROD, h_prod); /* hcall-join */ spapr_register_hypercall(H_JOIN, h_join); spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); /* processor register resource access h-calls */ spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); spapr_register_hypercall(H_SET_DABR, h_set_dabr); spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); spapr_register_hypercall(H_PAGE_INIT, h_page_init); spapr_register_hypercall(H_SET_MODE, h_set_mode); /* In Memory Table MMU h-calls */ spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); /* hcall-get-cpu-characteristics */ spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, h_get_cpu_characteristics); /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate * here between the "CI" and the "CACHE" variants, they will use whatever * mapping attributes qemu is using. When using KVM, the kernel will * enforce the attributes more strongly */ spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); /* qemu/KVM-PPC specific hcalls */ spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); /* ibm,client-architecture-support support */ spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); /* Virtual Processor Home Node */ spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, h_home_node_associativity); } type_init(hypercall_register_types)