#include "qemu/osdep.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "sysemu/hw_accel.h" #include "sysemu/runstate.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "qemu/module.h" #include "qemu/error-report.h" #include "exec/exec-all.h" #include "exec/tb-flush.h" #include "helper_regs.h" #include "hw/ppc/ppc.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_cpu_core.h" #include "mmu-hash64.h" #include "cpu-models.h" #include "trace.h" #include "kvm_ppc.h" #include "hw/ppc/fdt.h" #include "hw/ppc/spapr_ovec.h" #include "hw/ppc/spapr_numa.h" #include "mmu-book3s-v3.h" #include "hw/mem/memory-device.h" bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) { MachineState *machine = MACHINE(spapr); DeviceMemoryState *dms = machine->device_memory; if (addr < machine->ram_size) { return true; } if ((addr >= dms->base) && ((addr - dms->base) < memory_region_size(&dms->mr))) { return true; } return false; } /* Convert a return code from the KVM ioctl()s implementing resize HPT * into a PAPR hypercall return code */ static target_ulong resize_hpt_convert_rc(int ret) { if (ret >= 100000) { return H_LONG_BUSY_ORDER_100_SEC; } else if (ret >= 10000) { return H_LONG_BUSY_ORDER_10_SEC; } else if (ret >= 1000) { return H_LONG_BUSY_ORDER_1_SEC; } else if (ret >= 100) { return H_LONG_BUSY_ORDER_100_MSEC; } else if (ret >= 10) { return H_LONG_BUSY_ORDER_10_MSEC; } else if (ret > 0) { return H_LONG_BUSY_ORDER_1_MSEC; } switch (ret) { case 0: return H_SUCCESS; case -EPERM: return H_AUTHORITY; case -EINVAL: return H_PARAMETER; case -ENXIO: return H_CLOSED; case -ENOSPC: return H_PTEG_FULL; case -EBUSY: return H_BUSY; case -ENOMEM: return H_NO_MEM; default: return H_HARDWARE; } } static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; int shift = args[1]; uint64_t current_ram_size; int rc; if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { return H_AUTHORITY; } if (!spapr->htab_shift) { /* Radix guest, no HPT */ return H_NOT_AVAILABLE; } trace_spapr_h_resize_hpt_prepare(flags, shift); if (flags != 0) { return H_PARAMETER; } if (shift && ((shift < 18) || (shift > 46))) { return H_PARAMETER; } current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); /* We only allow the guest to allocate an HPT one order above what * we'd normally give them (to stop a small guest claiming a huge * chunk of resources in the HPT */ if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { return H_RESOURCE; } rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); if (rc != -ENOSYS) { return resize_hpt_convert_rc(rc); } if (kvm_enabled()) { return H_HARDWARE; } return softmmu_resize_hpt_prepare(cpu, spapr, shift); } static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) { int ret; cpu_synchronize_state(cs); ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); if (ret < 0) { error_report("failed to push sregs to KVM: %s", strerror(-ret)); exit(1); } } void push_sregs_to_kvm_pr(SpaprMachineState *spapr) { CPUState *cs; /* * This is a hack for the benefit of KVM PR - it abuses the SDR1 * slot in kvm_sregs to communicate the userspace address of the * HPT */ if (!kvm_enabled() || !spapr->htab) { return; } CPU_FOREACH(cs) { run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); } } static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong shift = args[1]; int rc; if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { return H_AUTHORITY; } if (!spapr->htab_shift) { /* Radix guest, no HPT */ return H_NOT_AVAILABLE; } trace_spapr_h_resize_hpt_commit(flags, shift); rc = kvmppc_resize_hpt_commit(cpu, flags, shift); if (rc != -ENOSYS) { rc = resize_hpt_convert_rc(rc); if (rc == H_SUCCESS) { /* Need to set the new htab_shift in the machine state */ spapr->htab_shift = shift; } return rc; } if (kvm_enabled()) { return H_HARDWARE; } return softmmu_resize_hpt_commit(cpu, spapr, flags, shift); } static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { cpu_synchronize_state(CPU(cpu)); cpu->env.spr[SPR_SPRG0] = args[0]; return H_SUCCESS; } static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { if (!ppc_has_spr(cpu, SPR_DABR)) { return H_HARDWARE; /* DABR register not available */ } cpu_synchronize_state(CPU(cpu)); if (ppc_has_spr(cpu, SPR_DABRX)) { cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ return H_RESERVED_DABR; } cpu->env.spr[SPR_DABR] = args[0]; return H_SUCCESS; } static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong dabrx = args[1]; if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) { return H_HARDWARE; } if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { return H_PARAMETER; } cpu_synchronize_state(CPU(cpu)); cpu->env.spr[SPR_DABRX] = dabrx; cpu->env.spr[SPR_DABR] = args[0]; return H_SUCCESS; } static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; hwaddr dst = args[1]; hwaddr src = args[2]; hwaddr len = TARGET_PAGE_SIZE; uint8_t *pdst, *psrc; target_long ret = H_SUCCESS; if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE | H_COPY_PAGE | H_ZERO_PAGE)) { qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", flags); return H_PARAMETER; } /* Map-in destination */ if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { return H_PARAMETER; } pdst = cpu_physical_memory_map(dst, &len, true); if (!pdst || len != TARGET_PAGE_SIZE) { return H_PARAMETER; } if (flags & H_COPY_PAGE) { /* Map-in source, copy to destination, and unmap source again */ if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { ret = H_PARAMETER; goto unmap_out; } psrc = cpu_physical_memory_map(src, &len, false); if (!psrc || len != TARGET_PAGE_SIZE) { ret = H_PARAMETER; goto unmap_out; } memcpy(pdst, psrc, len); cpu_physical_memory_unmap(psrc, len, 0, len); } else if (flags & H_ZERO_PAGE) { memset(pdst, 0, len); /* Just clear the destination page */ } if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { kvmppc_dcbst_range(cpu, pdst, len); } if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { if (kvm_enabled()) { kvmppc_icbi_range(cpu, pdst, len); } else { tb_flush(CPU(cpu)); } } unmap_out: cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); return ret; } #define FLAGS_REGISTER_VPA 0x0000200000000000ULL #define FLAGS_REGISTER_DTL 0x0000400000000000ULL #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); uint16_t size; uint8_t tmp; if (vpa == 0) { hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); return H_HARDWARE; } if (vpa % env->dcache_line_size) { return H_PARAMETER; } /* FIXME: bounds check the address */ size = lduw_be_phys(cs->as, vpa + 0x4); if (size < VPA_MIN_SIZE) { return H_PARAMETER; } /* VPA is not allowed to cross a page boundary */ if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { return H_PARAMETER; } spapr_cpu->vpa_addr = vpa; tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); tmp |= VPA_SHARED_PROC_VAL; stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); return H_SUCCESS; } static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); if (spapr_cpu->slb_shadow_addr) { return H_RESOURCE; } if (spapr_cpu->dtl_addr) { return H_RESOURCE; } spapr_cpu->vpa_addr = 0; return H_SUCCESS; } static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); uint32_t size; if (addr == 0) { hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); return H_HARDWARE; } size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); if (size < 0x8) { return H_PARAMETER; } if ((addr / 4096) != ((addr + size - 1) / 4096)) { return H_PARAMETER; } if (!spapr_cpu->vpa_addr) { return H_RESOURCE; } spapr_cpu->slb_shadow_addr = addr; spapr_cpu->slb_shadow_size = size; return H_SUCCESS; } static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); spapr_cpu->slb_shadow_addr = 0; spapr_cpu->slb_shadow_size = 0; return H_SUCCESS; } static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); uint32_t size; if (addr == 0) { hcall_dprintf("Can't cope with DTL at logical 0\n"); return H_HARDWARE; } size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); if (size < 48) { return H_PARAMETER; } if (!spapr_cpu->vpa_addr) { return H_RESOURCE; } spapr_cpu->dtl_addr = addr; spapr_cpu->dtl_size = size; return H_SUCCESS; } static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); spapr_cpu->dtl_addr = 0; spapr_cpu->dtl_size = 0; return H_SUCCESS; } static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong procno = args[1]; target_ulong vpa = args[2]; target_ulong ret = H_PARAMETER; PowerPCCPU *tcpu; tcpu = spapr_find_cpu(procno); if (!tcpu) { return H_PARAMETER; } switch (flags) { case FLAGS_REGISTER_VPA: ret = register_vpa(tcpu, vpa); break; case FLAGS_DEREGISTER_VPA: ret = deregister_vpa(tcpu, vpa); break; case FLAGS_REGISTER_SLBSHADOW: ret = register_slb_shadow(tcpu, vpa); break; case FLAGS_DEREGISTER_SLBSHADOW: ret = deregister_slb_shadow(tcpu, vpa); break; case FLAGS_REGISTER_DTL: ret = register_dtl(tcpu, vpa); break; case FLAGS_DEREGISTER_DTL: ret = deregister_dtl(tcpu, vpa); break; } return ret; } static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; CPUState *cs = CPU(cpu); SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); env->msr |= (1ULL << MSR_EE); hreg_compute_hflags(env); ppc_maybe_interrupt(env); if (spapr_cpu->prod) { spapr_cpu->prod = false; return H_SUCCESS; } if (!cpu_has_work(cs)) { cs->halted = 1; cs->exception_index = EXCP_HLT; cs->exit_request = 1; ppc_maybe_interrupt(env); } return H_SUCCESS; } /* * Confer to self, aka join. Cede could use the same pattern as well, if * EXCP_HLT can be changed to ECXP_HALTED. */ static target_ulong h_confer_self(PowerPCCPU *cpu) { CPUState *cs = CPU(cpu); SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); if (spapr_cpu->prod) { spapr_cpu->prod = false; return H_SUCCESS; } cs->halted = 1; cs->exception_index = EXCP_HALTED; cs->exit_request = 1; ppc_maybe_interrupt(&cpu->env); return H_SUCCESS; } static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUPPCState *env = &cpu->env; CPUState *cs; bool last_unjoined = true; if (env->msr & (1ULL << MSR_EE)) { return H_BAD_MODE; } /* * Must not join the last CPU running. Interestingly, no such restriction * for H_CONFER-to-self, but that is probably not intended to be used * when H_JOIN is available. */ CPU_FOREACH(cs) { PowerPCCPU *c = POWERPC_CPU(cs); CPUPPCState *e = &c->env; if (c == cpu) { continue; } /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { last_unjoined = false; break; } } if (last_unjoined) { return H_CONTINUE; } return h_confer_self(cpu); } static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_long target = args[0]; uint32_t dispatch = args[1]; CPUState *cs = CPU(cpu); SpaprCpuState *spapr_cpu; /* * -1 means confer to all other CPUs without dispatch counter check, * otherwise it's a targeted confer. */ if (target != -1) { PowerPCCPU *target_cpu = spapr_find_cpu(target); uint32_t target_dispatch; if (!target_cpu) { return H_PARAMETER; } /* * target == self is a special case, we wait until prodded, without * dispatch counter check. */ if (cpu == target_cpu) { return h_confer_self(cpu); } spapr_cpu = spapr_cpu_state(target_cpu); if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { return H_SUCCESS; } target_dispatch = ldl_be_phys(cs->as, spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); if (target_dispatch != dispatch) { return H_SUCCESS; } /* * The targeted confer does not do anything special beyond yielding * the current vCPU, but even this should be better than nothing. * At least for single-threaded tcg, it gives the target a chance to * run before we run again. Multi-threaded tcg does not really do * anything with EXCP_YIELD yet. */ } cs->exception_index = EXCP_YIELD; cs->exit_request = 1; cpu_loop_exit(cs); return H_SUCCESS; } static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_long target = args[0]; PowerPCCPU *tcpu; CPUState *cs; SpaprCpuState *spapr_cpu; tcpu = spapr_find_cpu(target); cs = CPU(tcpu); if (!cs) { return H_PARAMETER; } spapr_cpu = spapr_cpu_state(tcpu); spapr_cpu->prod = true; cs->halted = 0; ppc_maybe_interrupt(&cpu->env); qemu_cpu_kick(cs); return H_SUCCESS; } static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong rtas_r3 = args[0]; uint32_t token = rtas_ld(rtas_r3, 0); uint32_t nargs = rtas_ld(rtas_r3, 1); uint32_t nret = rtas_ld(rtas_r3, 2); return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, nret, rtas_r3 + 12 + 4*nargs); } static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong size = args[0]; target_ulong addr = args[1]; switch (size) { case 1: args[0] = ldub_phys(cs->as, addr); return H_SUCCESS; case 2: args[0] = lduw_phys(cs->as, addr); return H_SUCCESS; case 4: args[0] = ldl_phys(cs->as, addr); return H_SUCCESS; case 8: args[0] = ldq_phys(cs->as, addr); return H_SUCCESS; } return H_PARAMETER; } static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong size = args[0]; target_ulong addr = args[1]; target_ulong val = args[2]; switch (size) { case 1: stb_phys(cs->as, addr, val); return H_SUCCESS; case 2: stw_phys(cs->as, addr, val); return H_SUCCESS; case 4: stl_phys(cs->as, addr, val); return H_SUCCESS; case 8: stq_phys(cs->as, addr, val); return H_SUCCESS; } return H_PARAMETER; } static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { CPUState *cs = CPU(cpu); target_ulong dst = args[0]; /* Destination address */ target_ulong src = args[1]; /* Source address */ target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ target_ulong count = args[3]; /* Element count */ target_ulong op = args[4]; /* 0 = copy, 1 = invert */ uint64_t tmp; unsigned int mask = (1 << esize) - 1; int step = 1 << esize; if (count > 0x80000000) { return H_PARAMETER; } if ((dst & mask) || (src & mask) || (op > 1)) { return H_PARAMETER; } if (dst >= src && dst < (src + (count << esize))) { dst = dst + ((count - 1) << esize); src = src + ((count - 1) << esize); step = -step; } while (count--) { switch (esize) { case 0: tmp = ldub_phys(cs->as, src); break; case 1: tmp = lduw_phys(cs->as, src); break; case 2: tmp = ldl_phys(cs->as, src); break; case 3: tmp = ldq_phys(cs->as, src); break; default: return H_PARAMETER; } if (op == 1) { tmp = ~tmp; } switch (esize) { case 0: stb_phys(cs->as, dst, tmp); break; case 1: stw_phys(cs->as, dst, tmp); break; case 2: stl_phys(cs->as, dst, tmp); break; case 3: stq_phys(cs->as, dst, tmp); break; } dst = dst + step; src = src + step; } return H_SUCCESS; } static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { /* Nothing to do on emulation, KVM will trap this in the kernel */ return H_SUCCESS; } static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { /* Nothing to do on emulation, KVM will trap this in the kernel */ return H_SUCCESS; } static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong mflags, target_ulong value1, target_ulong value2) { if (value1) { return H_P3; } if (value2) { return H_P4; } switch (mflags) { case H_SET_MODE_ENDIAN_BIG: spapr_set_all_lpcrs(0, LPCR_ILE); spapr_pci_switch_vga(spapr, true); return H_SUCCESS; case H_SET_MODE_ENDIAN_LITTLE: spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); spapr_pci_switch_vga(spapr, false); return H_SUCCESS; } return H_UNSUPPORTED_FLAG; } static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, target_ulong mflags, target_ulong value1, target_ulong value2) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); if (!(pcc->insns_flags2 & PPC2_ISA207S)) { return H_P2; } if (value1) { return H_P3; } if (value2) { return H_P4; } if (mflags == 1) { /* AIL=1 is reserved in POWER8/POWER9/POWER10 */ return H_UNSUPPORTED_FLAG; } if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) { /* AIL=2 is reserved in POWER10 (ISA v3.1) */ return H_UNSUPPORTED_FLAG; } spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); return H_SUCCESS; } static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong resource = args[1]; target_ulong ret = H_P2; switch (resource) { case H_SET_MODE_RESOURCE_LE: ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]); break; case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], args[2], args[3]); break; } return ret; } static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", opcode, " (H_CLEAN_SLB)"); return H_FUNCTION; } static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", opcode, " (H_INVALIDATE_PID)"); return H_FUNCTION; } static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, uint64_t patbe_old, uint64_t patbe_new) { /* * We have 4 Options: * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing * HASH->RADIX : Free HPT * RADIX->HASH : Allocate HPT * NOTHING->HASH : Allocate HPT * Note: NOTHING implies the case where we said the guest could choose * later and so assumed radix and now it's called H_REG_PROC_TBL */ if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { /* We assume RADIX, so this catches all the "Do Nothing" cases */ } else if (!(patbe_old & PATE1_GR)) { /* HASH->RADIX : Free HPT */ spapr_free_hpt(spapr); } else if (!(patbe_new & PATE1_GR)) { /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ spapr_setup_hpt(spapr); } return; } #define FLAGS_MASK 0x01FULL #define FLAG_MODIFY 0x10 #define FLAG_REGISTER 0x08 #define FLAG_RADIX 0x04 #define FLAG_HASH_PROC_TBL 0x02 #define FLAG_GTSE 0x01 static target_ulong h_register_process_table(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong flags = args[0]; target_ulong proc_tbl = args[1]; target_ulong page_size = args[2]; target_ulong table_size = args[3]; target_ulong update_lpcr = 0; target_ulong table_byte_size; uint64_t cproc; if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ return H_PARAMETER; } if (flags & FLAG_MODIFY) { if (flags & FLAG_REGISTER) { /* Check process table alignment */ table_byte_size = 1ULL << (table_size + 12); if (proc_tbl & (table_byte_size - 1)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: process table not properly aligned: proc_tbl 0x" TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n", __func__, proc_tbl, table_byte_size); } if (flags & FLAG_RADIX) { /* Register new RADIX process table */ if (proc_tbl & 0xfff || proc_tbl >> 60) { return H_P2; } else if (page_size) { return H_P3; } else if (table_size > 24) { return H_P4; } cproc = PATE1_GR | proc_tbl | table_size; } else { /* Register new HPT process table */ if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ /* TODO - Not Supported */ /* Technically caused by flag bits => H_PARAMETER */ return H_PARAMETER; } else { /* Hash with SLB */ if (proc_tbl >> 38) { return H_P2; } else if (page_size & ~0x7) { return H_P3; } else if (table_size > 24) { return H_P4; } } cproc = (proc_tbl << 25) | page_size << 5 | table_size; } } else { /* Deregister current process table */ /* * Set to benign value: (current GR) | 0. This allows * deregistration in KVM to succeed even if the radix bit * in flags doesn't match the radix bit in the old PATE. */ cproc = spapr->patb_entry & PATE1_GR; } } else { /* Maintain current registration */ if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { /* Technically caused by flag bits => H_PARAMETER */ return H_PARAMETER; /* Existing Process Table Mismatch */ } cproc = spapr->patb_entry; } /* Check if we need to setup OR free the hpt */ spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); spapr->patb_entry = cproc; /* Save new process table */ /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ update_lpcr |= (LPCR_UPRT | LPCR_HR); else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ update_lpcr |= LPCR_UPRT; if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ update_lpcr |= LPCR_GTSE; spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); if (kvm_enabled()) { return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, flags & FLAG_GTSE, cproc); } return H_SUCCESS; } #define H_SIGNAL_SYS_RESET_ALL -1 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_long target = args[0]; CPUState *cs; if (target < 0) { /* Broadcast */ if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { return H_PARAMETER; } CPU_FOREACH(cs) { PowerPCCPU *c = POWERPC_CPU(cs); if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { if (c == cpu) { continue; } } run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); } return H_SUCCESS; } else { /* Unicast */ cs = CPU(spapr_find_cpu(target)); if (cs) { run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); return H_SUCCESS; } return H_PARAMETER; } } /* Returns either a logical PVR or zero if none was found */ static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat, target_ulong *addr, bool *raw_mode_supported) { bool explicit_match = false; /* Matched the CPU's real PVR */ uint32_t best_compat = 0; int i; /* * We scan the supplied table of PVRs looking for two things * 1. Is our real CPU PVR in the list? * 2. What's the "best" listed logical PVR */ for (i = 0; i < 512; ++i) { uint32_t pvr, pvr_mask; pvr_mask = ldl_be_phys(&address_space_memory, *addr); pvr = ldl_be_phys(&address_space_memory, *addr + 4); *addr += 8; if (~pvr_mask & pvr) { break; /* Terminator record */ } if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { explicit_match = true; } else { if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { best_compat = pvr; } } } *raw_mode_supported = explicit_match; /* Parsing finished */ trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); return best_compat; } static target_ulong do_client_architecture_support(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong vec, target_ulong fdt_bufsize) { target_ulong ov_table; /* Working address in data buffer */ uint32_t cas_pvr; SpaprOptionVector *ov1_guest, *ov5_guest; bool guest_radix; bool raw_mode_supported = false; bool guest_xive; CPUState *cs; void *fdt; uint32_t max_compat = spapr->max_compat_pvr; /* CAS is supposed to be called early when only the boot vCPU is active. */ CPU_FOREACH(cs) { if (cs == CPU(cpu)) { continue; } if (!cs->halted) { warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); return H_MULTI_THREADS_ACTIVE; } } cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported); if (!cas_pvr && (!raw_mode_supported || max_compat)) { /* * We couldn't find a suitable compatibility mode, and either * the guest doesn't support "raw" mode for this CPU, or "raw" * mode is disabled because a maximum compat mode is set. */ error_report("Couldn't negotiate a suitable PVR during CAS"); return H_HARDWARE; } /* Update CPUs */ if (cpu->compat_pvr != cas_pvr) { Error *local_err = NULL; if (ppc_set_compat_all(cas_pvr, &local_err) < 0) { /* We fail to set compat mode (likely because running with KVM PR), * but maybe we can fallback to raw mode if the guest supports it. */ if (!raw_mode_supported) { error_report_err(local_err); return H_HARDWARE; } error_free(local_err); } } /* For the future use: here @ov_table points to the first option vector */ ov_table = vec; ov1_guest = spapr_ovec_parse_vector(ov_table, 1); if (!ov1_guest) { warn_report("guest didn't provide option vector 1"); return H_PARAMETER; } ov5_guest = spapr_ovec_parse_vector(ov_table, 5); if (!ov5_guest) { spapr_ovec_cleanup(ov1_guest); warn_report("guest didn't provide option vector 5"); return H_PARAMETER; } if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { error_report("guest requested hash and radix MMU, which is invalid."); exit(EXIT_FAILURE); } if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { error_report("guest requested an invalid interrupt mode"); exit(EXIT_FAILURE); } guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); /* * HPT resizing is a bit of a special case, because when enabled * we assume an HPT guest will support it until it says it * doesn't, instead of assuming it won't support it until it says * it does. Strictly speaking that approach could break for * guests which don't make a CAS call, but those are so old we * don't care about them. Without that assumption we'd have to * make at least a temporary allocation of an HPT sized for max * memory, which could be impossibly difficult under KVM HV if * maxram is large. */ if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { error_report( "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); exit(1); } if (spapr->htab_shift < maxshift) { /* Guest doesn't know about HPT resizing, so we * pre-emptively resize for the maximum permitted RAM. At * the point this is called, nothing should have been * entered into the existing HPT */ spapr_reallocate_hpt(spapr, maxshift, &error_fatal); push_sregs_to_kvm_pr(spapr); } } /* NOTE: there are actually a number of ov5 bits where input from the * guest is always zero, and the platform/QEMU enables them independently * of guest input. To model these properly we'd want some sort of mask, * but since they only currently apply to memory migration as defined * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need * to worry about this for now. */ /* full range of negotiated ov5 capabilities */ spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); spapr_ovec_cleanup(ov5_guest); spapr_check_mmu_mode(guest_radix); spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); spapr_ovec_cleanup(ov1_guest); /* * Check for NUMA affinity conditions now that we know which NUMA * affinity the guest will use. */ spapr_numa_associativity_check(spapr); /* * Ensure the guest asks for an interrupt mode we support; * otherwise terminate the boot. */ if (guest_xive) { if (!spapr->irq->xive) { error_report( "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); exit(EXIT_FAILURE); } } else { if (!spapr->irq->xics) { error_report( "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); exit(EXIT_FAILURE); } } spapr_irq_update_active_intc(spapr); /* * Process all pending hot-plug/unplug requests now. An updated full * rendered FDT will be returned to the guest. */ spapr_drc_reset_all(spapr); spapr_clear_pending_hotplug_events(spapr); /* * If spapr_machine_reset() did not set up a HPT but one is necessary * (because the guest isn't going to use radix) then set it up here. */ if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { /* legacy hash or new hash: */ spapr_setup_hpt(spapr); } fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize); g_free(spapr->fdt_blob); spapr->fdt_size = fdt_totalsize(fdt); spapr->fdt_initial_size = spapr->fdt_size; spapr->fdt_blob = fdt; /* * Set the machine->fdt pointer again since we just freed * it above (by freeing spapr->fdt_blob). We set this * pointer to enable support for the 'dumpdtb' QMP/HMP * command. */ MACHINE(spapr)->fdt = fdt; return H_SUCCESS; } static target_ulong h_client_architecture_support(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong vec = ppc64_phys_to_real(args[0]); target_ulong fdt_buf = args[1]; target_ulong fdt_bufsize = args[2]; target_ulong ret; SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; if (fdt_bufsize < sizeof(hdr)) { error_report("SLOF provided insufficient CAS buffer " TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); exit(EXIT_FAILURE); } fdt_bufsize -= sizeof(hdr); ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize); if (ret == H_SUCCESS) { _FDT((fdt_pack(spapr->fdt_blob))); spapr->fdt_size = fdt_totalsize(spapr->fdt_blob); spapr->fdt_initial_size = spapr->fdt_size; cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob, spapr->fdt_size); trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr)); } return ret; } target_ulong spapr_vof_client_architecture_support(MachineState *ms, CPUState *cs, target_ulong ovec_addr) { SpaprMachineState *spapr = SPAPR_MACHINE(ms); target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr, ovec_addr, FDT_MAX_SIZE); /* * This adds stdout and generates phandles for boottime and CAS FDTs. * It is alright to update the FDT here as do_client_architecture_support() * does not pack it. */ spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob); return ret; } static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & ~H_CPU_CHAR_THR_RECONF_TRIG; uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); uint8_t count_cache_flush_assist = spapr_get_cap(spapr, SPAPR_CAP_CCF_ASSIST); switch (safe_cache) { case SPAPR_CAP_WORKAROUND: characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; break; case SPAPR_CAP_FIXED: behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY; behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS; break; default: /* broken */ assert(safe_cache == SPAPR_CAP_BROKEN); behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; break; } switch (safe_bounds_check) { case SPAPR_CAP_WORKAROUND: characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; break; case SPAPR_CAP_FIXED: break; default: /* broken */ assert(safe_bounds_check == SPAPR_CAP_BROKEN); behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; break; } switch (safe_indirect_branch) { case SPAPR_CAP_FIXED_NA: break; case SPAPR_CAP_FIXED_CCD: characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; break; case SPAPR_CAP_FIXED_IBS: characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; break; case SPAPR_CAP_WORKAROUND: behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; if (count_cache_flush_assist) { characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; } break; default: /* broken */ assert(safe_indirect_branch == SPAPR_CAP_BROKEN); break; } args[0] = characteristics; args[1] = behaviour; return H_SUCCESS; } static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong dt = ppc64_phys_to_real(args[0]); struct fdt_header hdr = { 0 }; unsigned cb; SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); void *fdt; cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); cb = fdt32_to_cpu(hdr.totalsize); if (!smc->update_dt_enabled) { return H_SUCCESS; } /* Check that the fdt did not grow out of proportion */ if (cb > spapr->fdt_initial_size * 2) { trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, fdt32_to_cpu(hdr.magic)); return H_PARAMETER; } fdt = g_malloc0(cb); cpu_physical_memory_read(dt, fdt, cb); /* Check the fdt consistency */ if (fdt_check_full(fdt, cb)) { trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, fdt32_to_cpu(hdr.magic)); return H_PARAMETER; } g_free(spapr->fdt_blob); spapr->fdt_size = cb; spapr->fdt_blob = fdt; trace_spapr_update_dt(cb); return H_SUCCESS; } static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) { spapr_hcall_fn *slot; if (opcode <= MAX_HCALL_OPCODE) { assert((opcode & 0x3) == 0); slot = &papr_hypercall_table[opcode / 4]; } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { /* we only have SVM-related hcall numbers assigned in multiples of 4 */ assert((opcode & 0x3) == 0); slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; } else { assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; } assert(!(*slot)); *slot = fn; } target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, target_ulong *args) { SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); if ((opcode <= MAX_HCALL_OPCODE) && ((opcode & 0x3) == 0)) { spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; if (fn) { return fn(cpu, spapr, opcode, args); } } else if ((opcode >= SVM_HCALL_BASE) && (opcode <= SVM_HCALL_MAX)) { spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; if (fn) { return fn(cpu, spapr, opcode, args); } } else if ((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)) { spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; if (fn) { return fn(cpu, spapr, opcode, args); } } qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", opcode); return H_FUNCTION; } #ifdef CONFIG_TCG #define PRTS_MASK 0x1f static target_ulong h_set_ptbl(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { target_ulong ptcr = args[0]; if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) { return H_FUNCTION; } if ((ptcr & PRTS_MASK) + 12 - 4 > 12) { return H_PARAMETER; } spapr->nested_ptcr = ptcr; /* Save new partition table */ return H_SUCCESS; } static target_ulong h_tlb_invalidate(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { /* * The spapr virtual hypervisor nested HV implementation retains no L2 * translation state except for TLB. And the TLB is always invalidated * across L1<->L2 transitions, so nothing is required here. */ return H_SUCCESS; } static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { /* * This HCALL is not required, L1 KVM will take a slow path and walk the * page tables manually to do the data copy. */ return H_FUNCTION; } /* * When this handler returns, the environment is switched to the L2 guest * and TCG begins running that. spapr_exit_nested() performs the switch from * L2 back to L1 and returns from the H_ENTER_NESTED hcall. */ static target_ulong h_enter_nested(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); target_ulong hv_ptr = args[0]; target_ulong regs_ptr = args[1]; target_ulong hdec, now = cpu_ppc_load_tbl(env); target_ulong lpcr, lpcr_mask; struct kvmppc_hv_guest_state *hvstate; struct kvmppc_hv_guest_state hv_state; struct kvmppc_pt_regs *regs; hwaddr len; uint64_t cr; int i; if (spapr->nested_ptcr == 0) { return H_NOT_AVAILABLE; } len = sizeof(*hvstate); hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false, MEMTXATTRS_UNSPECIFIED); if (len != sizeof(*hvstate)) { address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false); return H_PARAMETER; } memcpy(&hv_state, hvstate, len); address_space_unmap(CPU(cpu)->as, hvstate, len, len, false); /* * We accept versions 1 and 2. Version 2 fields are unused because TCG * does not implement DAWR*. */ if (hv_state.version > HV_GUEST_STATE_VERSION) { return H_PARAMETER; } spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1); if (!spapr_cpu->nested_host_state) { return H_NO_MEM; } memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState)); len = sizeof(*regs); regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false, MEMTXATTRS_UNSPECIFIED); if (!regs || len != sizeof(*regs)) { address_space_unmap(CPU(cpu)->as, regs, len, 0, false); g_free(spapr_cpu->nested_host_state); return H_P2; } len = sizeof(env->gpr); assert(len == sizeof(regs->gpr)); memcpy(env->gpr, regs->gpr, len); env->lr = regs->link; env->ctr = regs->ctr; cpu_write_xer(env, regs->xer); cr = regs->ccr; for (i = 7; i >= 0; i--) { env->crf[i] = cr & 15; cr >>= 4; } env->msr = regs->msr; env->nip = regs->nip; address_space_unmap(CPU(cpu)->as, regs, len, len, false); env->cfar = hv_state.cfar; assert(env->spr[SPR_LPIDR] == 0); env->spr[SPR_LPIDR] = hv_state.lpid; lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER; lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask); lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE; lpcr &= ~LPCR_LPES0; env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask; env->spr[SPR_PCR] = hv_state.pcr; /* hv_state.amor is not used */ env->spr[SPR_DPDES] = hv_state.dpdes; env->spr[SPR_HFSCR] = hv_state.hfscr; hdec = hv_state.hdec_expiry - now; spapr_cpu->nested_tb_offset = hv_state.tb_offset; /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/ env->spr[SPR_SRR0] = hv_state.srr0; env->spr[SPR_SRR1] = hv_state.srr1; env->spr[SPR_SPRG0] = hv_state.sprg[0]; env->spr[SPR_SPRG1] = hv_state.sprg[1]; env->spr[SPR_SPRG2] = hv_state.sprg[2]; env->spr[SPR_SPRG3] = hv_state.sprg[3]; env->spr[SPR_BOOKS_PID] = hv_state.pidr; env->spr[SPR_PPR] = hv_state.ppr; cpu_ppc_hdecr_init(env); cpu_ppc_store_hdecr(env, hdec); /* * The hv_state.vcpu_token is not needed. It is used by the KVM * implementation to remember which L2 vCPU last ran on which physical * CPU so as to invalidate process scope translations if it is moved * between physical CPUs. For now TLBs are always flushed on L1<->L2 * transitions so this is not a problem. * * Could validate that the same vcpu_token does not attempt to run on * different L1 vCPUs at the same time, but that would be a L1 KVM bug * and it's not obviously worth a new data structure to do it. */ env->tb_env->tb_offset += spapr_cpu->nested_tb_offset; spapr_cpu->in_nested = true; hreg_compute_hflags(env); ppc_maybe_interrupt(env); tlb_flush(cs); env->reserve_addr = -1; /* Reset the reservation */ /* * The spapr hcall helper sets env->gpr[3] to the return value, but at * this point the L1 is not returning from the hcall but rather we * start running the L2, so r3 must not be clobbered, so return env->gpr[3] * to leave it unchanged. */ return env->gpr[3]; } void spapr_exit_nested(PowerPCCPU *cpu, int excp) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */ target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4]; target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5]; struct kvmppc_hv_guest_state *hvstate; struct kvmppc_pt_regs *regs; hwaddr len; uint64_t cr; int i; assert(spapr_cpu->in_nested); cpu_ppc_hdecr_exit(env); len = sizeof(*hvstate); hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true, MEMTXATTRS_UNSPECIFIED); if (len != sizeof(*hvstate)) { address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true); r3_return = H_PARAMETER; goto out_restore_l1; } hvstate->cfar = env->cfar; hvstate->lpcr = env->spr[SPR_LPCR]; hvstate->pcr = env->spr[SPR_PCR]; hvstate->dpdes = env->spr[SPR_DPDES]; hvstate->hfscr = env->spr[SPR_HFSCR]; if (excp == POWERPC_EXCP_HDSI) { hvstate->hdar = env->spr[SPR_HDAR]; hvstate->hdsisr = env->spr[SPR_HDSISR]; hvstate->asdr = env->spr[SPR_ASDR]; } else if (excp == POWERPC_EXCP_HISI) { hvstate->asdr = env->spr[SPR_ASDR]; } /* HEIR should be implemented for HV mode and saved here. */ hvstate->srr0 = env->spr[SPR_SRR0]; hvstate->srr1 = env->spr[SPR_SRR1]; hvstate->sprg[0] = env->spr[SPR_SPRG0]; hvstate->sprg[1] = env->spr[SPR_SPRG1]; hvstate->sprg[2] = env->spr[SPR_SPRG2]; hvstate->sprg[3] = env->spr[SPR_SPRG3]; hvstate->pidr = env->spr[SPR_BOOKS_PID]; hvstate->ppr = env->spr[SPR_PPR]; /* Is it okay to specify write length larger than actual data written? */ address_space_unmap(CPU(cpu)->as, hvstate, len, len, true); len = sizeof(*regs); regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true, MEMTXATTRS_UNSPECIFIED); if (!regs || len != sizeof(*regs)) { address_space_unmap(CPU(cpu)->as, regs, len, 0, true); r3_return = H_P2; goto out_restore_l1; } len = sizeof(env->gpr); assert(len == sizeof(regs->gpr)); memcpy(regs->gpr, env->gpr, len); regs->link = env->lr; regs->ctr = env->ctr; regs->xer = cpu_read_xer(env); cr = 0; for (i = 0; i < 8; i++) { cr |= (env->crf[i] & 15) << (4 * (7 - i)); } regs->ccr = cr; if (excp == POWERPC_EXCP_MCHECK || excp == POWERPC_EXCP_RESET || excp == POWERPC_EXCP_SYSCALL) { regs->nip = env->spr[SPR_SRR0]; regs->msr = env->spr[SPR_SRR1] & env->msr_mask; } else { regs->nip = env->spr[SPR_HSRR0]; regs->msr = env->spr[SPR_HSRR1] & env->msr_mask; } /* Is it okay to specify write length larger than actual data written? */ address_space_unmap(CPU(cpu)->as, regs, len, len, true); out_restore_l1: memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr)); env->lr = spapr_cpu->nested_host_state->lr; env->ctr = spapr_cpu->nested_host_state->ctr; memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf)); env->cfar = spapr_cpu->nested_host_state->cfar; env->xer = spapr_cpu->nested_host_state->xer; env->so = spapr_cpu->nested_host_state->so; env->ov = spapr_cpu->nested_host_state->ov; env->ov32 = spapr_cpu->nested_host_state->ov32; env->ca32 = spapr_cpu->nested_host_state->ca32; env->msr = spapr_cpu->nested_host_state->msr; env->nip = spapr_cpu->nested_host_state->nip; assert(env->spr[SPR_LPIDR] != 0); env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR]; env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR]; env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR]; env->spr[SPR_DPDES] = 0; env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR]; env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0]; env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1]; env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0]; env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1]; env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2]; env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3]; env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID]; env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR]; /* * Return the interrupt vector address from H_ENTER_NESTED to the L1 * (or error code). */ env->gpr[3] = r3_return; env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset; spapr_cpu->in_nested = false; hreg_compute_hflags(env); ppc_maybe_interrupt(env); tlb_flush(cs); env->reserve_addr = -1; /* Reset the reservation */ g_free(spapr_cpu->nested_host_state); spapr_cpu->nested_host_state = NULL; } static void hypercall_register_nested(void) { spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl); spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested); spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate); spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest); } static void hypercall_register_softmmu(void) { /* DO NOTHING */ } #else void spapr_exit_nested(PowerPCCPU *cpu, int excp) { g_assert_not_reached(); } static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { g_assert_not_reached(); } static void hypercall_register_nested(void) { /* DO NOTHING */ } static void hypercall_register_softmmu(void) { /* hcall-pft */ spapr_register_hypercall(H_ENTER, h_softmmu); spapr_register_hypercall(H_REMOVE, h_softmmu); spapr_register_hypercall(H_PROTECT, h_softmmu); spapr_register_hypercall(H_READ, h_softmmu); /* hcall-bulk */ spapr_register_hypercall(H_BULK_REMOVE, h_softmmu); } #endif static void hypercall_register_types(void) { hypercall_register_softmmu(); /* hcall-hpt-resize */ spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); /* hcall-splpar */ spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); spapr_register_hypercall(H_CEDE, h_cede); spapr_register_hypercall(H_CONFER, h_confer); spapr_register_hypercall(H_PROD, h_prod); /* hcall-join */ spapr_register_hypercall(H_JOIN, h_join); spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); /* processor register resource access h-calls */ spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); spapr_register_hypercall(H_SET_DABR, h_set_dabr); spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); spapr_register_hypercall(H_PAGE_INIT, h_page_init); spapr_register_hypercall(H_SET_MODE, h_set_mode); /* In Memory Table MMU h-calls */ spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); /* hcall-get-cpu-characteristics */ spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, h_get_cpu_characteristics); /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate * here between the "CI" and the "CACHE" variants, they will use whatever * mapping attributes qemu is using. When using KVM, the kernel will * enforce the attributes more strongly */ spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); /* qemu/KVM-PPC specific hcalls */ spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); /* ibm,client-architecture-support support */ spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); hypercall_register_nested(); } type_init(hypercall_register_types)