/* * QEMU PowerPC PowerNV LPC controller * * Copyright (c) 2016, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "sysemu/sysemu.h" #include "target-ppc/cpu.h" #include "qapi/error.h" #include "qemu/log.h" #include "hw/ppc/pnv_lpc.h" #include "hw/ppc/pnv.h" #include "hw/ppc/fdt.h" #include enum { ECCB_CTL = 0, ECCB_RESET = 1, ECCB_STAT = 2, ECCB_DATA = 3, }; /* OPB Master LS registers */ #define OPB_MASTER_LS_IRQ_STAT 0x50 #define OPB_MASTER_IRQ_LPC 0x00000800 #define OPB_MASTER_LS_IRQ_MASK 0x54 #define OPB_MASTER_LS_IRQ_POL 0x58 #define OPB_MASTER_LS_IRQ_INPUT 0x5c /* LPC HC registers */ #define LPC_HC_FW_SEG_IDSEL 0x24 #define LPC_HC_FW_RD_ACC_SIZE 0x28 #define LPC_HC_FW_RD_1B 0x00000000 #define LPC_HC_FW_RD_2B 0x01000000 #define LPC_HC_FW_RD_4B 0x02000000 #define LPC_HC_FW_RD_16B 0x04000000 #define LPC_HC_FW_RD_128B 0x07000000 #define LPC_HC_IRQSER_CTRL 0x30 #define LPC_HC_IRQSER_EN 0x80000000 #define LPC_HC_IRQSER_QMODE 0x40000000 #define LPC_HC_IRQSER_START_MASK 0x03000000 #define LPC_HC_IRQSER_START_4CLK 0x00000000 #define LPC_HC_IRQSER_START_6CLK 0x01000000 #define LPC_HC_IRQSER_START_8CLK 0x02000000 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */ #define LPC_HC_IRQSTAT 0x38 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */ #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */ #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000 #define LPC_HC_IRQ_LRESET 0x00000400 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010 #define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008 #define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004 #define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002 #define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001 #define LPC_HC_ERROR_ADDRESS 0x40 #define LPC_OPB_SIZE 0x100000000ull #define ISA_IO_SIZE 0x00010000 #define ISA_MEM_SIZE 0x10000000 #define LPC_IO_OPB_ADDR 0xd0010000 #define LPC_IO_OPB_SIZE 0x00010000 #define LPC_MEM_OPB_ADDR 0xe0010000 #define LPC_MEM_OPB_SIZE 0x10000000 #define LPC_FW_OPB_ADDR 0xf0000000 #define LPC_FW_OPB_SIZE 0x10000000 #define LPC_OPB_REGS_OPB_ADDR 0xc0010000 #define LPC_OPB_REGS_OPB_SIZE 0x00002000 #define LPC_HC_REGS_OPB_ADDR 0xc0012000 #define LPC_HC_REGS_OPB_SIZE 0x00001000 /* * TODO: the "primary" cell should only be added on chip 0. This is * how skiboot chooses the default LPC controller on multichip * systems. * * It would be easly done if we can change the populate() interface to * replace the PnvXScomInterface parameter by a PnvChip one */ static int pnv_lpc_populate(PnvXScomInterface *dev, void *fdt, int xscom_offset) { const char compat[] = "ibm,power8-lpc\0ibm,lpc"; char *name; int offset; uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE; uint32_t reg[] = { cpu_to_be32(lpc_pcba), cpu_to_be32(PNV_XSCOM_LPC_SIZE) }; name = g_strdup_printf("isa@%x", lpc_pcba); offset = fdt_add_subnode(fdt, xscom_offset, name); _FDT(offset); g_free(name); _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2))); _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1))); _FDT((fdt_setprop(fdt, offset, "primary", NULL, 0))); _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); return 0; } /* * These read/write handlers of the OPB address space should be common * with the P9 LPC Controller which uses direct MMIOs. * * TODO: rework to use address_space_stq() and address_space_ldq() * instead. */ static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data, int sz) { bool success; /* XXX Handle access size limits and FW read caching here */ success = !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, data, sz, false); return success; } static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data, int sz) { bool success; /* XXX Handle access size limits here */ success = !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, data, sz, true); return success; } #define ECCB_CTL_READ (1ull << (63 - 15)) #define ECCB_CTL_SZ_LSH (63 - 7) #define ECCB_CTL_SZ_MASK (0xfull << ECCB_CTL_SZ_LSH) #define ECCB_CTL_ADDR_MASK 0xffffffffu; #define ECCB_STAT_OP_DONE (1ull << (63 - 52)) #define ECCB_STAT_OP_ERR (1ull << (63 - 52)) #define ECCB_STAT_RD_DATA_LSH (63 - 37) #define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH) static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd) { /* XXX Check for magic bits at the top, addr size etc... */ unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH; uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK; uint8_t data[4]; bool success; if (cmd & ECCB_CTL_READ) { success = opb_read(lpc, opb_addr, data, sz); if (success) { lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | (((uint64_t)data[0]) << 24 | ((uint64_t)data[1]) << 16 | ((uint64_t)data[2]) << 8 | ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH; } else { lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | (0xffffffffull << ECCB_STAT_RD_DATA_LSH); } } else { data[0] = lpc->eccb_data_reg >> 24; data[1] = lpc->eccb_data_reg >> 16; data[2] = lpc->eccb_data_reg >> 8; data[3] = lpc->eccb_data_reg; success = opb_write(lpc, opb_addr, data, sz); lpc->eccb_stat_reg = ECCB_STAT_OP_DONE; } /* XXX Which error bit (if any) to signal OPB error ? */ } static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size) { PnvLpcController *lpc = PNV_LPC(opaque); uint32_t offset = addr >> 3; uint64_t val = 0; switch (offset & 3) { case ECCB_CTL: case ECCB_RESET: val = 0; break; case ECCB_STAT: val = lpc->eccb_stat_reg; lpc->eccb_stat_reg = 0; break; case ECCB_DATA: val = ((uint64_t)lpc->eccb_data_reg) << 32; break; } return val; } static void pnv_lpc_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvLpcController *lpc = PNV_LPC(opaque); uint32_t offset = addr >> 3; switch (offset & 3) { case ECCB_CTL: pnv_lpc_do_eccb(lpc, val); break; case ECCB_RESET: /* XXXX */ break; case ECCB_STAT: break; case ECCB_DATA: lpc->eccb_data_reg = val >> 32; break; } } static const MemoryRegionOps pnv_lpc_xscom_ops = { .read = pnv_lpc_xscom_read, .write = pnv_lpc_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size) { PnvLpcController *lpc = opaque; uint64_t val = 0xfffffffffffffffful; switch (addr) { case LPC_HC_FW_SEG_IDSEL: val = lpc->lpc_hc_fw_seg_idsel; break; case LPC_HC_FW_RD_ACC_SIZE: val = lpc->lpc_hc_fw_rd_acc_size; break; case LPC_HC_IRQSER_CTRL: val = lpc->lpc_hc_irqser_ctrl; break; case LPC_HC_IRQMASK: val = lpc->lpc_hc_irqmask; break; case LPC_HC_IRQSTAT: val = lpc->lpc_hc_irqstat; break; case LPC_HC_ERROR_ADDRESS: val = lpc->lpc_hc_error_addr; break; default: qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: Ox%" HWADDR_PRIx "\n", addr); } return val; } static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvLpcController *lpc = opaque; /* XXX Filter out reserved bits */ switch (addr) { case LPC_HC_FW_SEG_IDSEL: /* XXX Actually figure out how that works as this impact * memory regions/aliases */ lpc->lpc_hc_fw_seg_idsel = val; break; case LPC_HC_FW_RD_ACC_SIZE: lpc->lpc_hc_fw_rd_acc_size = val; break; case LPC_HC_IRQSER_CTRL: lpc->lpc_hc_irqser_ctrl = val; break; case LPC_HC_IRQMASK: lpc->lpc_hc_irqmask = val; break; case LPC_HC_IRQSTAT: lpc->lpc_hc_irqstat &= ~val; break; case LPC_HC_ERROR_ADDRESS: break; default: qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: Ox%" HWADDR_PRIx "\n", addr); } } static const MemoryRegionOps lpc_hc_ops = { .read = lpc_hc_read, .write = lpc_hc_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size) { PnvLpcController *lpc = opaque; uint64_t val = 0xfffffffffffffffful; switch (addr) { case OPB_MASTER_LS_IRQ_STAT: val = lpc->opb_irq_stat; break; case OPB_MASTER_LS_IRQ_MASK: val = lpc->opb_irq_mask; break; case OPB_MASTER_LS_IRQ_POL: val = lpc->opb_irq_pol; break; case OPB_MASTER_LS_IRQ_INPUT: val = lpc->opb_irq_input; break; default: qemu_log_mask(LOG_UNIMP, "OPB MASTER Unimplemented register: Ox%" HWADDR_PRIx "\n", addr); } return val; } static void opb_master_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvLpcController *lpc = opaque; switch (addr) { case OPB_MASTER_LS_IRQ_STAT: lpc->opb_irq_stat &= ~val; break; case OPB_MASTER_LS_IRQ_MASK: /* XXX Filter out reserved bits */ lpc->opb_irq_mask = val; break; case OPB_MASTER_LS_IRQ_POL: /* XXX Filter out reserved bits */ lpc->opb_irq_pol = val; break; case OPB_MASTER_LS_IRQ_INPUT: /* Read only */ break; default: qemu_log_mask(LOG_UNIMP, "OPB MASTER Unimplemented register: Ox%" HWADDR_PRIx "\n", addr); } } static const MemoryRegionOps opb_master_ops = { .read = opb_master_read, .write = opb_master_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static void pnv_lpc_realize(DeviceState *dev, Error **errp) { PnvLpcController *lpc = PNV_LPC(dev); /* Reg inits */ lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B; /* Create address space and backing MR for the OPB bus */ memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull); address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb"); /* Create ISA IO and Mem space regions which are the root of * the ISA bus (ie, ISA address spaces). We don't create a * separate one for FW which we alias to memory. */ memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE); memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE); /* Create windows from the OPB space to the ISA space */ memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io", &lpc->isa_io, 0, LPC_IO_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR, &lpc->opb_isa_io); memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem", &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR, &lpc->opb_isa_mem); memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw", &lpc->isa_mem, 0, LPC_FW_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR, &lpc->opb_isa_fw); /* Create MMIO regions for LPC HC and OPB registers */ memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops, lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR, &lpc->opb_master_regs); memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc, "lpc-hc", LPC_HC_REGS_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR, &lpc->lpc_hc_regs); /* XScom region for LPC registers */ pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(dev), &pnv_lpc_xscom_ops, lpc, "xscom-lpc", PNV_XSCOM_LPC_SIZE); } static void pnv_lpc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); xdc->populate = pnv_lpc_populate; dc->realize = pnv_lpc_realize; } static const TypeInfo pnv_lpc_info = { .name = TYPE_PNV_LPC, .parent = TYPE_DEVICE, .instance_size = sizeof(PnvLpcController), .class_init = pnv_lpc_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_PNV_XSCOM_INTERFACE }, { } } }; static void pnv_lpc_register_types(void) { type_register_static(&pnv_lpc_info); } type_init(pnv_lpc_register_types)