/* * QEMU generic PPC hardware System Emulator * * Copyright (c) 2003-2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #include "m48t59.h" extern FILE *logfile; extern int loglevel; /*****************************************************************************/ /* PowerPC internal fake IRQ controller * used to manage multiple sources hardware events */ /* XXX: should be protected */ void ppc_set_irq (void *opaque, int n_IRQ, int level) { CPUState *env; env = opaque; if (level) { env->pending_interrupts |= 1 << n_IRQ; cpu_interrupt(env, CPU_INTERRUPT_HARD); } else { env->pending_interrupts &= ~(1 << n_IRQ); if (env->pending_interrupts == 0) cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } #if 0 printf("%s: %p n_IRQ %d level %d => pending %08x req %08x\n", __func__, env, n_IRQ, level, env->pending_interrupts, env->interrupt_request); #endif } /* External IRQ callback from OpenPIC IRQ controller */ void ppc_openpic_irq (void *opaque, int n_IRQ, int level) { switch (n_IRQ) { case OPENPIC_EVT_INT: n_IRQ = PPC_INTERRUPT_EXT; break; case OPENPIC_EVT_CINT: /* On PowerPC BookE, critical input use vector 0 */ n_IRQ = PPC_INTERRUPT_RESET; break; case OPENPIC_EVT_MCK: n_IRQ = PPC_INTERRUPT_MCK; break; case OPENPIC_EVT_DEBUG: n_IRQ = PPC_INTERRUPT_DEBUG; break; case OPENPIC_EVT_RESET: qemu_system_reset_request(); return; } ppc_set_irq(opaque, n_IRQ, level); } /*****************************************************************************/ /* PPC time base and decrementer emulation */ //#define DEBUG_TB struct ppc_tb_t { /* Time base management */ int64_t tb_offset; /* Compensation */ uint32_t tb_freq; /* TB frequency */ /* Decrementer management */ uint64_t decr_next; /* Tick for next decr interrupt */ struct QEMUTimer *decr_timer; void *opaque; }; static inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env) { /* TB time in tb periods */ return muldiv64(qemu_get_clock(vm_clock) + tb_env->tb_offset, tb_env->tb_freq, ticks_per_sec); } uint32_t cpu_ppc_load_tbl (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env); #ifdef DEBUG_TB { static int last_time; int now; now = time(NULL); if (last_time != now) { last_time = now; printf("%s: tb=0x%016lx %d %08lx\n", __func__, tb, now, tb_env->tb_offset); } } #endif return tb & 0xFFFFFFFF; } uint32_t cpu_ppc_load_tbu (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env); #ifdef DEBUG_TB printf("%s: tb=0x%016lx\n", __func__, tb); #endif return tb >> 32; } static void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t value) { tb_env->tb_offset = muldiv64(value, ticks_per_sec, tb_env->tb_freq) - qemu_get_clock(vm_clock); #ifdef DEBUG_TB printf("%s: tb=0x%016lx offset=%08x\n", __func__, value); #endif } void cpu_ppc_store_tbu (CPUState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; cpu_ppc_store_tb(tb_env, ((uint64_t)value << 32) | cpu_ppc_load_tbl(env)); } void cpu_ppc_store_tbl (CPUState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; cpu_ppc_store_tb(tb_env, ((uint64_t)cpu_ppc_load_tbu(env) << 32) | value); } uint32_t cpu_ppc_load_decr (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint32_t decr; int64_t diff; diff = tb_env->decr_next - qemu_get_clock(vm_clock); if (diff >= 0) decr = muldiv64(diff, tb_env->tb_freq, ticks_per_sec); else decr = -muldiv64(-diff, tb_env->tb_freq, ticks_per_sec); #if defined(DEBUG_TB) printf("%s: 0x%08x\n", __func__, decr); #endif return decr; } /* When decrementer expires, * all we need to do is generate or queue a CPU exception */ static inline void cpu_ppc_decr_excp (CPUState *env) { /* Raise it */ #ifdef DEBUG_TB printf("raise decrementer exception\n"); #endif ppc_set_irq(env, PPC_INTERRUPT_DECR, 1); } static void _cpu_ppc_store_decr (CPUState *env, uint32_t decr, uint32_t value, int is_excp) { ppc_tb_t *tb_env = env->tb_env; uint64_t now, next; #ifdef DEBUG_TB printf("%s: 0x%08x => 0x%08x\n", __func__, decr, value); #endif now = qemu_get_clock(vm_clock); next = now + muldiv64(value, ticks_per_sec, tb_env->tb_freq); if (is_excp) next += tb_env->decr_next - now; if (next == now) next++; tb_env->decr_next = next; /* Adjust timer */ qemu_mod_timer(tb_env->decr_timer, next); /* If we set a negative value and the decrementer was positive, * raise an exception. */ if ((value & 0x80000000) && !(decr & 0x80000000)) cpu_ppc_decr_excp(env); } void cpu_ppc_store_decr (CPUState *env, uint32_t value) { _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0); } static void cpu_ppc_decr_cb (void *opaque) { _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1); } /* Set up (once) timebase frequency (in Hz) */ ppc_tb_t *cpu_ppc_tb_init (CPUState *env, uint32_t freq) { ppc_tb_t *tb_env; tb_env = qemu_mallocz(sizeof(ppc_tb_t)); if (tb_env == NULL) return NULL; env->tb_env = tb_env; if (tb_env->tb_freq == 0 || 1) { tb_env->tb_freq = freq; /* Create new timer */ tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env); /* There is a bug in Linux 2.4 kernels: * if a decrementer exception is pending when it enables msr_ee, * it's not ready to handle it... */ _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0); } return tb_env; } /* Specific helpers for POWER & PowerPC 601 RTC */ ppc_tb_t *cpu_ppc601_rtc_init (CPUState *env) { return cpu_ppc_tb_init(env, 7812500); } void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value) __attribute__ (( alias ("cpu_ppc_store_tbu") )); uint32_t cpu_ppc601_load_rtcu (CPUState *env) __attribute__ (( alias ("cpu_ppc_load_tbu") )); void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value) { cpu_ppc_store_tbl(env, value & 0x3FFFFF80); } uint32_t cpu_ppc601_load_rtcl (CPUState *env) { return cpu_ppc_load_tbl(env) & 0x3FFFFF80; } /*****************************************************************************/ /* Embedded PowerPC timers */ /* PIT, FIT & WDT */ typedef struct ppcemb_timer_t ppcemb_timer_t; struct ppcemb_timer_t { uint64_t pit_reload; /* PIT auto-reload value */ uint64_t fit_next; /* Tick for next FIT interrupt */ struct QEMUTimer *fit_timer; uint64_t wdt_next; /* Tick for next WDT interrupt */ struct QEMUTimer *wdt_timer; }; /* Fixed interval timer */ static void cpu_4xx_fit_cb (void *opaque) { CPUState *env; ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; uint64_t now, next; env = opaque; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; now = qemu_get_clock(vm_clock); switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { case 0: next = 1 << 9; break; case 1: next = 1 << 13; break; case 2: next = 1 << 17; break; case 3: next = 1 << 21; break; default: /* Cannot occur, but makes gcc happy */ return; } next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq); if (next == now) next++; qemu_mod_timer(ppcemb_timer->fit_timer, next); tb_env->decr_next = next; env->spr[SPR_40x_TSR] |= 1 << 26; if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) ppc_set_irq(env, PPC_INTERRUPT_FIT, 1); if (loglevel) { fprintf(logfile, "%s: ir %d TCR %08x TSR %08x\n", __func__, (env->spr[SPR_40x_TCR] >> 23) & 0x1, env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); } } /* Programmable interval timer */ static void cpu_4xx_pit_cb (void *opaque) { CPUState *env; ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; uint64_t now, next; env = opaque; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; now = qemu_get_clock(vm_clock); if ((env->spr[SPR_40x_TCR] >> 22) & 0x1) { /* Auto reload */ next = now + muldiv64(ppcemb_timer->pit_reload, ticks_per_sec, tb_env->tb_freq); if (next == now) next++; qemu_mod_timer(tb_env->decr_timer, next); tb_env->decr_next = next; } env->spr[SPR_40x_TSR] |= 1 << 27; if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) ppc_set_irq(env, PPC_INTERRUPT_PIT, 1); if (loglevel) { fprintf(logfile, "%s: ar %d ir %d TCR %08x TSR %08x %08lx\n", __func__, (env->spr[SPR_40x_TCR] >> 22) & 0x1, (env->spr[SPR_40x_TCR] >> 26) & 0x1, env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], ppcemb_timer->pit_reload); } } /* Watchdog timer */ static void cpu_4xx_wdt_cb (void *opaque) { CPUState *env; ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; uint64_t now, next; env = opaque; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; now = qemu_get_clock(vm_clock); switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { case 0: next = 1 << 17; break; case 1: next = 1 << 21; break; case 2: next = 1 << 25; break; case 3: next = 1 << 29; break; default: /* Cannot occur, but makes gcc happy */ return; } next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq); if (next == now) next++; if (loglevel) { fprintf(logfile, "%s: TCR %08x TSR %08x\n", __func__, env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); } switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { case 0x0: case 0x1: qemu_mod_timer(ppcemb_timer->wdt_timer, next); ppcemb_timer->wdt_next = next; env->spr[SPR_40x_TSR] |= 1 << 31; break; case 0x2: qemu_mod_timer(ppcemb_timer->wdt_timer, next); ppcemb_timer->wdt_next = next; env->spr[SPR_40x_TSR] |= 1 << 30; if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) ppc_set_irq(env, PPC_INTERRUPT_WDT, 1); break; case 0x3: env->spr[SPR_40x_TSR] &= ~0x30000000; env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { case 0x0: /* No reset */ break; case 0x1: /* Core reset */ case 0x2: /* Chip reset */ case 0x3: /* System reset */ qemu_system_reset_request(); return; } } } void store_40x_pit (CPUState *env, target_ulong val) { ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; uint64_t now, next; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; if (loglevel) fprintf(logfile, "%s %p %p\n", __func__, tb_env, ppcemb_timer); ppcemb_timer->pit_reload = val; if (val == 0) { /* Stop PIT */ if (loglevel) fprintf(logfile, "%s: stop PIT\n", __func__); qemu_del_timer(tb_env->decr_timer); } else { if (loglevel) fprintf(logfile, "%s: start PIT 0x%08x\n", __func__, val); now = qemu_get_clock(vm_clock); next = now + muldiv64(val, ticks_per_sec, tb_env->tb_freq); if (next == now) next++; qemu_mod_timer(tb_env->decr_timer, next); tb_env->decr_next = next; } } target_ulong load_40x_pit (CPUState *env) { return cpu_ppc_load_decr(env); } void store_booke_tsr (CPUState *env, target_ulong val) { env->spr[SPR_40x_TSR] = val & 0xFC000000; } void store_booke_tcr (CPUState *env, target_ulong val) { /* We don't update timers now. Maybe we should... */ env->spr[SPR_40x_TCR] = val & 0xFF800000; } void ppc_emb_timers_init (CPUState *env) { ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; tb_env = env->tb_env; ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t)); tb_env->opaque = ppcemb_timer; if (loglevel) fprintf(logfile, "%s %p %p\n", __func__, tb_env, ppcemb_timer); if (ppcemb_timer != NULL) { /* We use decr timer for PIT */ tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env); ppcemb_timer->fit_timer = qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env); ppcemb_timer->wdt_timer = qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env); } } #if 0 /*****************************************************************************/ /* Handle system reset (for now, just stop emulation) */ void cpu_ppc_reset (CPUState *env) { printf("Reset asked... Stop emulation\n"); abort(); } #endif /*****************************************************************************/ /* Debug port */ void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val) { addr &= 0xF; switch (addr) { case 0: printf("%c", val); break; case 1: printf("\n"); fflush(stdout); break; case 2: printf("Set loglevel to %04x\n", val); cpu_set_log(val | 0x100); break; } } /*****************************************************************************/ /* NVRAM helpers */ void NVRAM_set_byte (m48t59_t *nvram, uint32_t addr, uint8_t value) { m48t59_write(nvram, addr, value); } uint8_t NVRAM_get_byte (m48t59_t *nvram, uint32_t addr) { return m48t59_read(nvram, addr); } void NVRAM_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value) { m48t59_write(nvram, addr, value >> 8); m48t59_write(nvram, addr + 1, value & 0xFF); } uint16_t NVRAM_get_word (m48t59_t *nvram, uint32_t addr) { uint16_t tmp; tmp = m48t59_read(nvram, addr) << 8; tmp |= m48t59_read(nvram, addr + 1); return tmp; } void NVRAM_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value) { m48t59_write(nvram, addr, value >> 24); m48t59_write(nvram, addr + 1, (value >> 16) & 0xFF); m48t59_write(nvram, addr + 2, (value >> 8) & 0xFF); m48t59_write(nvram, addr + 3, value & 0xFF); } uint32_t NVRAM_get_lword (m48t59_t *nvram, uint32_t addr) { uint32_t tmp; tmp = m48t59_read(nvram, addr) << 24; tmp |= m48t59_read(nvram, addr + 1) << 16; tmp |= m48t59_read(nvram, addr + 2) << 8; tmp |= m48t59_read(nvram, addr + 3); return tmp; } void NVRAM_set_string (m48t59_t *nvram, uint32_t addr, const unsigned char *str, uint32_t max) { int i; for (i = 0; i < max && str[i] != '\0'; i++) { m48t59_write(nvram, addr + i, str[i]); } m48t59_write(nvram, addr + max - 1, '\0'); } int NVRAM_get_string (m48t59_t *nvram, uint8_t *dst, uint16_t addr, int max) { int i; memset(dst, 0, max); for (i = 0; i < max; i++) { dst[i] = NVRAM_get_byte(nvram, addr + i); if (dst[i] == '\0') break; } return i; } static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value) { uint16_t tmp; uint16_t pd, pd1, pd2; tmp = prev >> 8; pd = prev ^ value; pd1 = pd & 0x000F; pd2 = ((pd >> 4) & 0x000F) ^ pd1; tmp ^= (pd1 << 3) | (pd1 << 8); tmp ^= pd2 | (pd2 << 7) | (pd2 << 12); return tmp; } uint16_t NVRAM_compute_crc (m48t59_t *nvram, uint32_t start, uint32_t count) { uint32_t i; uint16_t crc = 0xFFFF; int odd; odd = count & 1; count &= ~1; for (i = 0; i != count; i++) { crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i)); } if (odd) { crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8); } return crc; } #define CMDLINE_ADDR 0x017ff000 int PPC_NVRAM_set_params (m48t59_t *nvram, uint16_t NVRAM_size, const unsigned char *arch, uint32_t RAM_size, int boot_device, uint32_t kernel_image, uint32_t kernel_size, const char *cmdline, uint32_t initrd_image, uint32_t initrd_size, uint32_t NVRAM_image, int width, int height, int depth) { uint16_t crc; /* Set parameters for Open Hack'Ware BIOS */ NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16); NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */ NVRAM_set_word(nvram, 0x14, NVRAM_size); NVRAM_set_string(nvram, 0x20, arch, 16); NVRAM_set_lword(nvram, 0x30, RAM_size); NVRAM_set_byte(nvram, 0x34, boot_device); NVRAM_set_lword(nvram, 0x38, kernel_image); NVRAM_set_lword(nvram, 0x3C, kernel_size); if (cmdline) { /* XXX: put the cmdline in NVRAM too ? */ strcpy(phys_ram_base + CMDLINE_ADDR, cmdline); NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR); NVRAM_set_lword(nvram, 0x44, strlen(cmdline)); } else { NVRAM_set_lword(nvram, 0x40, 0); NVRAM_set_lword(nvram, 0x44, 0); } NVRAM_set_lword(nvram, 0x48, initrd_image); NVRAM_set_lword(nvram, 0x4C, initrd_size); NVRAM_set_lword(nvram, 0x50, NVRAM_image); NVRAM_set_word(nvram, 0x54, width); NVRAM_set_word(nvram, 0x56, height); NVRAM_set_word(nvram, 0x58, depth); crc = NVRAM_compute_crc(nvram, 0x00, 0xF8); NVRAM_set_word(nvram, 0xFC, crc); return 0; }