/* * QEMU model of the Versal eFuse controller * * Copyright (c) 2020 Xilinx Inc. * Copyright (c) 2023 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/nvram/xlnx-versal-efuse.h" #include "qemu/log.h" #include "qapi/error.h" #include "migration/vmstate.h" #include "hw/qdev-properties.h" #ifndef XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG #define XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG 0 #endif REG32(WR_LOCK, 0x0) FIELD(WR_LOCK, LOCK, 0, 16) REG32(CFG, 0x4) FIELD(CFG, SLVERR_ENABLE, 5, 1) FIELD(CFG, MARGIN_RD, 2, 1) FIELD(CFG, PGM_EN, 1, 1) REG32(STATUS, 0x8) FIELD(STATUS, AES_USER_KEY_1_CRC_PASS, 11, 1) FIELD(STATUS, AES_USER_KEY_1_CRC_DONE, 10, 1) FIELD(STATUS, AES_USER_KEY_0_CRC_PASS, 9, 1) FIELD(STATUS, AES_USER_KEY_0_CRC_DONE, 8, 1) FIELD(STATUS, AES_CRC_PASS, 7, 1) FIELD(STATUS, AES_CRC_DONE, 6, 1) FIELD(STATUS, CACHE_DONE, 5, 1) FIELD(STATUS, CACHE_LOAD, 4, 1) FIELD(STATUS, EFUSE_2_TBIT, 2, 1) FIELD(STATUS, EFUSE_1_TBIT, 1, 1) FIELD(STATUS, EFUSE_0_TBIT, 0, 1) REG32(EFUSE_PGM_ADDR, 0xc) FIELD(EFUSE_PGM_ADDR, PAGE, 13, 4) FIELD(EFUSE_PGM_ADDR, ROW, 5, 8) FIELD(EFUSE_PGM_ADDR, COLUMN, 0, 5) REG32(EFUSE_RD_ADDR, 0x10) FIELD(EFUSE_RD_ADDR, PAGE, 13, 4) FIELD(EFUSE_RD_ADDR, ROW, 5, 8) REG32(EFUSE_RD_DATA, 0x14) REG32(TPGM, 0x18) FIELD(TPGM, VALUE, 0, 16) REG32(TRD, 0x1c) FIELD(TRD, VALUE, 0, 8) REG32(TSU_H_PS, 0x20) FIELD(TSU_H_PS, VALUE, 0, 8) REG32(TSU_H_PS_CS, 0x24) FIELD(TSU_H_PS_CS, VALUE, 0, 8) REG32(TRDM, 0x28) FIELD(TRDM, VALUE, 0, 8) REG32(TSU_H_CS, 0x2c) FIELD(TSU_H_CS, VALUE, 0, 8) REG32(EFUSE_ISR, 0x30) FIELD(EFUSE_ISR, APB_SLVERR, 31, 1) FIELD(EFUSE_ISR, CACHE_PARITY_E2, 14, 1) FIELD(EFUSE_ISR, CACHE_PARITY_E1, 13, 1) FIELD(EFUSE_ISR, CACHE_PARITY_E0S, 12, 1) FIELD(EFUSE_ISR, CACHE_PARITY_E0R, 11, 1) FIELD(EFUSE_ISR, CACHE_APB_SLVERR, 10, 1) FIELD(EFUSE_ISR, CACHE_REQ_ERROR, 9, 1) FIELD(EFUSE_ISR, MAIN_REQ_ERROR, 8, 1) FIELD(EFUSE_ISR, READ_ON_CACHE_LD, 7, 1) FIELD(EFUSE_ISR, CACHE_FSM_ERROR, 6, 1) FIELD(EFUSE_ISR, MAIN_FSM_ERROR, 5, 1) FIELD(EFUSE_ISR, CACHE_ERROR, 4, 1) FIELD(EFUSE_ISR, RD_ERROR, 3, 1) FIELD(EFUSE_ISR, RD_DONE, 2, 1) FIELD(EFUSE_ISR, PGM_ERROR, 1, 1) FIELD(EFUSE_ISR, PGM_DONE, 0, 1) REG32(EFUSE_IMR, 0x34) FIELD(EFUSE_IMR, APB_SLVERR, 31, 1) FIELD(EFUSE_IMR, CACHE_PARITY_E2, 14, 1) FIELD(EFUSE_IMR, CACHE_PARITY_E1, 13, 1) FIELD(EFUSE_IMR, CACHE_PARITY_E0S, 12, 1) FIELD(EFUSE_IMR, CACHE_PARITY_E0R, 11, 1) FIELD(EFUSE_IMR, CACHE_APB_SLVERR, 10, 1) FIELD(EFUSE_IMR, CACHE_REQ_ERROR, 9, 1) FIELD(EFUSE_IMR, MAIN_REQ_ERROR, 8, 1) FIELD(EFUSE_IMR, READ_ON_CACHE_LD, 7, 1) FIELD(EFUSE_IMR, CACHE_FSM_ERROR, 6, 1) FIELD(EFUSE_IMR, MAIN_FSM_ERROR, 5, 1) FIELD(EFUSE_IMR, CACHE_ERROR, 4, 1) FIELD(EFUSE_IMR, RD_ERROR, 3, 1) FIELD(EFUSE_IMR, RD_DONE, 2, 1) FIELD(EFUSE_IMR, PGM_ERROR, 1, 1) FIELD(EFUSE_IMR, PGM_DONE, 0, 1) REG32(EFUSE_IER, 0x38) FIELD(EFUSE_IER, APB_SLVERR, 31, 1) FIELD(EFUSE_IER, CACHE_PARITY_E2, 14, 1) FIELD(EFUSE_IER, CACHE_PARITY_E1, 13, 1) FIELD(EFUSE_IER, CACHE_PARITY_E0S, 12, 1) FIELD(EFUSE_IER, CACHE_PARITY_E0R, 11, 1) FIELD(EFUSE_IER, CACHE_APB_SLVERR, 10, 1) FIELD(EFUSE_IER, CACHE_REQ_ERROR, 9, 1) FIELD(EFUSE_IER, MAIN_REQ_ERROR, 8, 1) FIELD(EFUSE_IER, READ_ON_CACHE_LD, 7, 1) FIELD(EFUSE_IER, CACHE_FSM_ERROR, 6, 1) FIELD(EFUSE_IER, MAIN_FSM_ERROR, 5, 1) FIELD(EFUSE_IER, CACHE_ERROR, 4, 1) FIELD(EFUSE_IER, RD_ERROR, 3, 1) FIELD(EFUSE_IER, RD_DONE, 2, 1) FIELD(EFUSE_IER, PGM_ERROR, 1, 1) FIELD(EFUSE_IER, PGM_DONE, 0, 1) REG32(EFUSE_IDR, 0x3c) FIELD(EFUSE_IDR, APB_SLVERR, 31, 1) FIELD(EFUSE_IDR, CACHE_PARITY_E2, 14, 1) FIELD(EFUSE_IDR, CACHE_PARITY_E1, 13, 1) FIELD(EFUSE_IDR, CACHE_PARITY_E0S, 12, 1) FIELD(EFUSE_IDR, CACHE_PARITY_E0R, 11, 1) FIELD(EFUSE_IDR, CACHE_APB_SLVERR, 10, 1) FIELD(EFUSE_IDR, CACHE_REQ_ERROR, 9, 1) FIELD(EFUSE_IDR, MAIN_REQ_ERROR, 8, 1) FIELD(EFUSE_IDR, READ_ON_CACHE_LD, 7, 1) FIELD(EFUSE_IDR, CACHE_FSM_ERROR, 6, 1) FIELD(EFUSE_IDR, MAIN_FSM_ERROR, 5, 1) FIELD(EFUSE_IDR, CACHE_ERROR, 4, 1) FIELD(EFUSE_IDR, RD_ERROR, 3, 1) FIELD(EFUSE_IDR, RD_DONE, 2, 1) FIELD(EFUSE_IDR, PGM_ERROR, 1, 1) FIELD(EFUSE_IDR, PGM_DONE, 0, 1) REG32(EFUSE_CACHE_LOAD, 0x40) FIELD(EFUSE_CACHE_LOAD, LOAD, 0, 1) REG32(EFUSE_PGM_LOCK, 0x44) FIELD(EFUSE_PGM_LOCK, SPK_ID_LOCK, 0, 1) REG32(EFUSE_AES_CRC, 0x48) REG32(EFUSE_AES_USR_KEY0_CRC, 0x4c) REG32(EFUSE_AES_USR_KEY1_CRC, 0x50) REG32(EFUSE_PD, 0x54) REG32(EFUSE_ANLG_OSC_SW_1LP, 0x60) REG32(EFUSE_TEST_CTRL, 0x100) #define R_MAX (R_EFUSE_TEST_CTRL + 1) #define R_WR_LOCK_UNLOCK_PASSCODE (0xDF0D) /* * eFuse layout references: * https://github.com/Xilinx/embeddedsw/blob/release-2019.2/lib/sw_services/xilnvm/src/xnvm_efuse_hw.h */ #define BIT_POS_OF(A_) \ ((uint32_t)((A_) & (R_EFUSE_PGM_ADDR_ROW_MASK | \ R_EFUSE_PGM_ADDR_COLUMN_MASK))) #define BIT_POS(R_, C_) \ ((uint32_t)((R_EFUSE_PGM_ADDR_ROW_MASK \ & ((R_) << R_EFUSE_PGM_ADDR_ROW_SHIFT)) \ | \ (R_EFUSE_PGM_ADDR_COLUMN_MASK \ & ((C_) << R_EFUSE_PGM_ADDR_COLUMN_SHIFT)))) #define EFUSE_TBIT_POS(A_) (BIT_POS_OF(A_) >= BIT_POS(0, 28)) #define EFUSE_ANCHOR_ROW (0) #define EFUSE_ANCHOR_3_COL (27) #define EFUSE_ANCHOR_1_COL (1) #define EFUSE_AES_KEY_START BIT_POS(12, 0) #define EFUSE_AES_KEY_END BIT_POS(19, 31) #define EFUSE_USER_KEY_0_START BIT_POS(20, 0) #define EFUSE_USER_KEY_0_END BIT_POS(27, 31) #define EFUSE_USER_KEY_1_START BIT_POS(28, 0) #define EFUSE_USER_KEY_1_END BIT_POS(35, 31) #define EFUSE_RD_BLOCKED_START EFUSE_AES_KEY_START #define EFUSE_RD_BLOCKED_END EFUSE_USER_KEY_1_END #define EFUSE_GLITCH_DET_WR_LK BIT_POS(4, 31) #define EFUSE_PPK0_WR_LK BIT_POS(43, 6) #define EFUSE_PPK1_WR_LK BIT_POS(43, 7) #define EFUSE_PPK2_WR_LK BIT_POS(43, 8) #define EFUSE_AES_WR_LK BIT_POS(43, 11) #define EFUSE_USER_KEY_0_WR_LK BIT_POS(43, 13) #define EFUSE_USER_KEY_1_WR_LK BIT_POS(43, 15) #define EFUSE_PUF_SYN_LK BIT_POS(43, 16) #define EFUSE_DNA_WR_LK BIT_POS(43, 27) #define EFUSE_BOOT_ENV_WR_LK BIT_POS(43, 28) #define EFUSE_PGM_LOCKED_START BIT_POS(44, 0) #define EFUSE_PGM_LOCKED_END BIT_POS(51, 31) #define EFUSE_PUF_PAGE (2) #define EFUSE_PUF_SYN_START BIT_POS(129, 0) #define EFUSE_PUF_SYN_END BIT_POS(255, 27) #define EFUSE_KEY_CRC_LK_ROW (43) #define EFUSE_AES_KEY_CRC_LK_MASK ((1U << 9) | (1U << 10)) #define EFUSE_USER_KEY_0_CRC_LK_MASK (1U << 12) #define EFUSE_USER_KEY_1_CRC_LK_MASK (1U << 14) /* * A handy macro to return value of an array element, * or a specific default if given index is out of bound. */ #define ARRAY_GET(A_, I_, D_) \ ((unsigned int)(I_) < ARRAY_SIZE(A_) ? (A_)[I_] : (D_)) QEMU_BUILD_BUG_ON(R_MAX != ARRAY_SIZE(((XlnxVersalEFuseCtrl *)0)->regs)); typedef struct XlnxEFuseLkSpec { uint16_t row; uint16_t lk_bit; } XlnxEFuseLkSpec; static void efuse_imr_update_irq(XlnxVersalEFuseCtrl *s) { bool pending = s->regs[R_EFUSE_ISR] & ~s->regs[R_EFUSE_IMR]; qemu_set_irq(s->irq_efuse_imr, pending); } static void efuse_isr_postw(RegisterInfo *reg, uint64_t val64) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); efuse_imr_update_irq(s); } static uint64_t efuse_ier_prew(RegisterInfo *reg, uint64_t val64) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); uint32_t val = val64; s->regs[R_EFUSE_IMR] &= ~val; efuse_imr_update_irq(s); return 0; } static uint64_t efuse_idr_prew(RegisterInfo *reg, uint64_t val64) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); uint32_t val = val64; s->regs[R_EFUSE_IMR] |= val; efuse_imr_update_irq(s); return 0; } static void efuse_status_tbits_sync(XlnxVersalEFuseCtrl *s) { uint32_t check = xlnx_efuse_tbits_check(s->efuse); uint32_t val = s->regs[R_STATUS]; val = FIELD_DP32(val, STATUS, EFUSE_0_TBIT, !!(check & (1 << 0))); val = FIELD_DP32(val, STATUS, EFUSE_1_TBIT, !!(check & (1 << 1))); val = FIELD_DP32(val, STATUS, EFUSE_2_TBIT, !!(check & (1 << 2))); s->regs[R_STATUS] = val; } static void efuse_anchor_bits_check(XlnxVersalEFuseCtrl *s) { unsigned page; if (!s->efuse || !s->efuse->init_tbits) { return; } for (page = 0; page < s->efuse->efuse_nr; page++) { uint32_t row = 0, bit; row = FIELD_DP32(row, EFUSE_PGM_ADDR, PAGE, page); row = FIELD_DP32(row, EFUSE_PGM_ADDR, ROW, EFUSE_ANCHOR_ROW); bit = FIELD_DP32(row, EFUSE_PGM_ADDR, COLUMN, EFUSE_ANCHOR_3_COL); if (!xlnx_efuse_get_bit(s->efuse, bit)) { xlnx_efuse_set_bit(s->efuse, bit); } bit = FIELD_DP32(row, EFUSE_PGM_ADDR, COLUMN, EFUSE_ANCHOR_1_COL); if (!xlnx_efuse_get_bit(s->efuse, bit)) { xlnx_efuse_set_bit(s->efuse, bit); } } } static void efuse_key_crc_check(RegisterInfo *reg, uint32_t crc, uint32_t pass_mask, uint32_t done_mask, unsigned first, uint32_t lk_mask) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); uint32_t r, lk_bits; /* * To start, assume both DONE and PASS, and clear PASS by xor * if CRC-check fails or CRC-check disabled by lock fuse. */ r = s->regs[R_STATUS] | done_mask | pass_mask; lk_bits = xlnx_efuse_get_row(s->efuse, EFUSE_KEY_CRC_LK_ROW) & lk_mask; if (lk_bits == 0 && xlnx_efuse_k256_check(s->efuse, crc, first)) { pass_mask = 0; } s->regs[R_STATUS] = r ^ pass_mask; } static void efuse_data_sync(XlnxVersalEFuseCtrl *s) { efuse_status_tbits_sync(s); } static int efuse_lk_spec_cmp(const void *a, const void *b) { uint16_t r1 = ((const XlnxEFuseLkSpec *)a)->row; uint16_t r2 = ((const XlnxEFuseLkSpec *)b)->row; return (r1 > r2) - (r1 < r2); } static void efuse_lk_spec_sort(XlnxVersalEFuseCtrl *s) { XlnxEFuseLkSpec *ary = s->extra_pg0_lock_spec; const uint32_t n8 = s->extra_pg0_lock_n16 * 2; const uint32_t sz = sizeof(ary[0]); const uint32_t cnt = n8 / sz; if (ary && cnt) { qsort(ary, cnt, sz, efuse_lk_spec_cmp); } } static uint32_t efuse_lk_spec_find(XlnxVersalEFuseCtrl *s, uint32_t row) { const XlnxEFuseLkSpec *ary = s->extra_pg0_lock_spec; const uint32_t n8 = s->extra_pg0_lock_n16 * 2; const uint32_t sz = sizeof(ary[0]); const uint32_t cnt = n8 / sz; const XlnxEFuseLkSpec *item = NULL; if (ary && cnt) { XlnxEFuseLkSpec k = { .row = row, }; item = bsearch(&k, ary, cnt, sz, efuse_lk_spec_cmp); } return item ? item->lk_bit : 0; } static uint32_t efuse_bit_locked(XlnxVersalEFuseCtrl *s, uint32_t bit) { /* Hard-coded locks */ static const uint16_t pg0_hard_lock[] = { [4] = EFUSE_GLITCH_DET_WR_LK, [37] = EFUSE_BOOT_ENV_WR_LK, [8 ... 11] = EFUSE_DNA_WR_LK, [12 ... 19] = EFUSE_AES_WR_LK, [20 ... 27] = EFUSE_USER_KEY_0_WR_LK, [28 ... 35] = EFUSE_USER_KEY_1_WR_LK, [64 ... 71] = EFUSE_PPK0_WR_LK, [72 ... 79] = EFUSE_PPK1_WR_LK, [80 ... 87] = EFUSE_PPK2_WR_LK, }; uint32_t row = FIELD_EX32(bit, EFUSE_PGM_ADDR, ROW); uint32_t lk_bit = ARRAY_GET(pg0_hard_lock, row, 0); return lk_bit ? lk_bit : efuse_lk_spec_find(s, row); } static bool efuse_pgm_locked(XlnxVersalEFuseCtrl *s, unsigned int bit) { unsigned int lock = 1; /* Global lock */ if (!ARRAY_FIELD_EX32(s->regs, CFG, PGM_EN)) { goto ret_lock; } /* Row lock */ switch (FIELD_EX32(bit, EFUSE_PGM_ADDR, PAGE)) { case 0: if (ARRAY_FIELD_EX32(s->regs, EFUSE_PGM_LOCK, SPK_ID_LOCK) && bit >= EFUSE_PGM_LOCKED_START && bit <= EFUSE_PGM_LOCKED_END) { goto ret_lock; } lock = efuse_bit_locked(s, bit); break; case EFUSE_PUF_PAGE: if (bit < EFUSE_PUF_SYN_START || bit > EFUSE_PUF_SYN_END) { lock = 0; goto ret_lock; } lock = EFUSE_PUF_SYN_LK; break; default: lock = 0; goto ret_lock; } /* Row lock by an efuse bit */ if (lock) { lock = xlnx_efuse_get_bit(s->efuse, lock); } ret_lock: return lock != 0; } static void efuse_pgm_addr_postw(RegisterInfo *reg, uint64_t val64) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); unsigned bit = val64; bool ok = false; /* Always zero out PGM_ADDR because it is write-only */ s->regs[R_EFUSE_PGM_ADDR] = 0; /* * Indicate error if bit is write-protected (or read-only * as guarded by efuse_set_bit()). * * Keep it simple by not modeling program timing. * * Note: model must NEVER clear the PGM_ERROR bit; it is * up to guest to do so (or by reset). */ if (efuse_pgm_locked(s, bit)) { g_autofree char *path = object_get_canonical_path(OBJECT(s)); qemu_log_mask(LOG_GUEST_ERROR, "%s: Denied setting of efuse<%u, %u, %u>\n", path, FIELD_EX32(bit, EFUSE_PGM_ADDR, PAGE), FIELD_EX32(bit, EFUSE_PGM_ADDR, ROW), FIELD_EX32(bit, EFUSE_PGM_ADDR, COLUMN)); } else if (xlnx_efuse_set_bit(s->efuse, bit)) { ok = true; if (EFUSE_TBIT_POS(bit)) { efuse_status_tbits_sync(s); } } if (!ok) { ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, PGM_ERROR, 1); } ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, PGM_DONE, 1); efuse_imr_update_irq(s); } static void efuse_rd_addr_postw(RegisterInfo *reg, uint64_t val64) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); unsigned bit = val64; bool denied; /* Always zero out RD_ADDR because it is write-only */ s->regs[R_EFUSE_RD_ADDR] = 0; /* * Indicate error if row is read-blocked. * * Note: model must NEVER clear the RD_ERROR bit; it is * up to guest to do so (or by reset). */ s->regs[R_EFUSE_RD_DATA] = xlnx_versal_efuse_read_row(s->efuse, bit, &denied); if (denied) { g_autofree char *path = object_get_canonical_path(OBJECT(s)); qemu_log_mask(LOG_GUEST_ERROR, "%s: Denied reading of efuse<%u, %u>\n", path, FIELD_EX32(bit, EFUSE_RD_ADDR, PAGE), FIELD_EX32(bit, EFUSE_RD_ADDR, ROW)); ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, RD_ERROR, 1); } ARRAY_FIELD_DP32(s->regs, EFUSE_ISR, RD_DONE, 1); efuse_imr_update_irq(s); return; } static uint64_t efuse_cache_load_prew(RegisterInfo *reg, uint64_t val64) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); if (val64 & R_EFUSE_CACHE_LOAD_LOAD_MASK) { efuse_data_sync(s); ARRAY_FIELD_DP32(s->regs, STATUS, CACHE_DONE, 1); efuse_imr_update_irq(s); } return 0; } static uint64_t efuse_pgm_lock_prew(RegisterInfo *reg, uint64_t val64) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(reg->opaque); /* Ignore all other bits */ val64 = FIELD_EX32(val64, EFUSE_PGM_LOCK, SPK_ID_LOCK); /* Once the bit is written 1, only reset will clear it to 0 */ val64 |= ARRAY_FIELD_EX32(s->regs, EFUSE_PGM_LOCK, SPK_ID_LOCK); return val64; } static void efuse_aes_crc_postw(RegisterInfo *reg, uint64_t val64) { efuse_key_crc_check(reg, val64, R_STATUS_AES_CRC_PASS_MASK, R_STATUS_AES_CRC_DONE_MASK, EFUSE_AES_KEY_START, EFUSE_AES_KEY_CRC_LK_MASK); } static void efuse_aes_u0_crc_postw(RegisterInfo *reg, uint64_t val64) { efuse_key_crc_check(reg, val64, R_STATUS_AES_USER_KEY_0_CRC_PASS_MASK, R_STATUS_AES_USER_KEY_0_CRC_DONE_MASK, EFUSE_USER_KEY_0_START, EFUSE_USER_KEY_0_CRC_LK_MASK); } static void efuse_aes_u1_crc_postw(RegisterInfo *reg, uint64_t val64) { efuse_key_crc_check(reg, val64, R_STATUS_AES_USER_KEY_1_CRC_PASS_MASK, R_STATUS_AES_USER_KEY_1_CRC_DONE_MASK, EFUSE_USER_KEY_1_START, EFUSE_USER_KEY_1_CRC_LK_MASK); } static uint64_t efuse_wr_lock_prew(RegisterInfo *reg, uint64_t val) { return val != R_WR_LOCK_UNLOCK_PASSCODE; } static const RegisterAccessInfo efuse_ctrl_regs_info[] = { { .name = "WR_LOCK", .addr = A_WR_LOCK, .reset = 0x1, .pre_write = efuse_wr_lock_prew, },{ .name = "CFG", .addr = A_CFG, .rsvd = 0x9, },{ .name = "STATUS", .addr = A_STATUS, .rsvd = 0x8, .ro = 0xfff, },{ .name = "EFUSE_PGM_ADDR", .addr = A_EFUSE_PGM_ADDR, .post_write = efuse_pgm_addr_postw, },{ .name = "EFUSE_RD_ADDR", .addr = A_EFUSE_RD_ADDR, .rsvd = 0x1f, .post_write = efuse_rd_addr_postw, },{ .name = "EFUSE_RD_DATA", .addr = A_EFUSE_RD_DATA, .ro = 0xffffffff, },{ .name = "TPGM", .addr = A_TPGM, },{ .name = "TRD", .addr = A_TRD, .reset = 0x19, },{ .name = "TSU_H_PS", .addr = A_TSU_H_PS, .reset = 0xff, },{ .name = "TSU_H_PS_CS", .addr = A_TSU_H_PS_CS, .reset = 0x11, },{ .name = "TRDM", .addr = A_TRDM, .reset = 0x3a, },{ .name = "TSU_H_CS", .addr = A_TSU_H_CS, .reset = 0x16, },{ .name = "EFUSE_ISR", .addr = A_EFUSE_ISR, .rsvd = 0x7fff8000, .w1c = 0x80007fff, .post_write = efuse_isr_postw, },{ .name = "EFUSE_IMR", .addr = A_EFUSE_IMR, .reset = 0x80007fff, .rsvd = 0x7fff8000, .ro = 0xffffffff, },{ .name = "EFUSE_IER", .addr = A_EFUSE_IER, .rsvd = 0x7fff8000, .pre_write = efuse_ier_prew, },{ .name = "EFUSE_IDR", .addr = A_EFUSE_IDR, .rsvd = 0x7fff8000, .pre_write = efuse_idr_prew, },{ .name = "EFUSE_CACHE_LOAD", .addr = A_EFUSE_CACHE_LOAD, .pre_write = efuse_cache_load_prew, },{ .name = "EFUSE_PGM_LOCK", .addr = A_EFUSE_PGM_LOCK, .pre_write = efuse_pgm_lock_prew, },{ .name = "EFUSE_AES_CRC", .addr = A_EFUSE_AES_CRC, .post_write = efuse_aes_crc_postw, },{ .name = "EFUSE_AES_USR_KEY0_CRC", .addr = A_EFUSE_AES_USR_KEY0_CRC, .post_write = efuse_aes_u0_crc_postw, },{ .name = "EFUSE_AES_USR_KEY1_CRC", .addr = A_EFUSE_AES_USR_KEY1_CRC, .post_write = efuse_aes_u1_crc_postw, },{ .name = "EFUSE_PD", .addr = A_EFUSE_PD, .ro = 0xfffffffe, },{ .name = "EFUSE_ANLG_OSC_SW_1LP", .addr = A_EFUSE_ANLG_OSC_SW_1LP, },{ .name = "EFUSE_TEST_CTRL", .addr = A_EFUSE_TEST_CTRL, .reset = 0x8, } }; static void efuse_ctrl_reg_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { RegisterInfoArray *reg_array = opaque; XlnxVersalEFuseCtrl *s; Object *dev; assert(reg_array != NULL); dev = reg_array->mem.owner; assert(dev); s = XLNX_VERSAL_EFUSE_CTRL(dev); if (addr != A_WR_LOCK && s->regs[R_WR_LOCK]) { g_autofree char *path = object_get_canonical_path(OBJECT(s)); qemu_log_mask(LOG_GUEST_ERROR, "%s[reg_0x%02lx]: Attempt to write locked register.\n", path, (long)addr); } else { register_write_memory(opaque, addr, data, size); } } static void efuse_ctrl_register_reset(RegisterInfo *reg) { if (!reg->data || !reg->access) { return; } /* Reset must not trigger some registers' writers */ switch (reg->access->addr) { case A_EFUSE_AES_CRC: case A_EFUSE_AES_USR_KEY0_CRC: case A_EFUSE_AES_USR_KEY1_CRC: *(uint32_t *)reg->data = reg->access->reset; return; } register_reset(reg); } static void efuse_ctrl_reset_hold(Object *obj, ResetType type) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(obj); unsigned int i; for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) { efuse_ctrl_register_reset(&s->regs_info[i]); } efuse_anchor_bits_check(s); efuse_data_sync(s); efuse_imr_update_irq(s); } static const MemoryRegionOps efuse_ctrl_ops = { .read = register_read_memory, .write = efuse_ctrl_reg_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static void efuse_ctrl_realize(DeviceState *dev, Error **errp) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(dev); const uint32_t lks_sz = sizeof(XlnxEFuseLkSpec) / 2; if (!s->efuse) { g_autofree char *path = object_get_canonical_path(OBJECT(s)); error_setg(errp, "%s.efuse: link property not connected to XLNX-EFUSE", path); return; } /* Sort property-defined pgm-locks for bsearch lookup */ if ((s->extra_pg0_lock_n16 % lks_sz) != 0) { g_autofree char *path = object_get_canonical_path(OBJECT(s)); error_setg(errp, "%s.pg0-lock: array property item-count not multiple of %u", path, lks_sz); return; } efuse_lk_spec_sort(s); } static void efuse_ctrl_init(Object *obj) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); s->reg_array = register_init_block32(DEVICE(obj), efuse_ctrl_regs_info, ARRAY_SIZE(efuse_ctrl_regs_info), s->regs_info, s->regs, &efuse_ctrl_ops, XLNX_VERSAL_EFUSE_CTRL_ERR_DEBUG, R_MAX * 4); sysbus_init_mmio(sbd, &s->reg_array->mem); sysbus_init_irq(sbd, &s->irq_efuse_imr); } static void efuse_ctrl_finalize(Object *obj) { XlnxVersalEFuseCtrl *s = XLNX_VERSAL_EFUSE_CTRL(obj); register_finalize_block(s->reg_array); g_free(s->extra_pg0_lock_spec); } static const VMStateDescription vmstate_efuse_ctrl = { .name = TYPE_XLNX_VERSAL_EFUSE_CTRL, .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, XlnxVersalEFuseCtrl, R_MAX), VMSTATE_END_OF_LIST(), } }; static const Property efuse_ctrl_props[] = { DEFINE_PROP_LINK("efuse", XlnxVersalEFuseCtrl, efuse, TYPE_XLNX_EFUSE, XlnxEFuse *), DEFINE_PROP_ARRAY("pg0-lock", XlnxVersalEFuseCtrl, extra_pg0_lock_n16, extra_pg0_lock_spec, qdev_prop_uint16, uint16_t), DEFINE_PROP_END_OF_LIST(), }; static void efuse_ctrl_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); rc->phases.hold = efuse_ctrl_reset_hold; dc->realize = efuse_ctrl_realize; dc->vmsd = &vmstate_efuse_ctrl; device_class_set_props(dc, efuse_ctrl_props); } static const TypeInfo efuse_ctrl_info = { .name = TYPE_XLNX_VERSAL_EFUSE_CTRL, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(XlnxVersalEFuseCtrl), .class_init = efuse_ctrl_class_init, .instance_init = efuse_ctrl_init, .instance_finalize = efuse_ctrl_finalize, }; static void efuse_ctrl_register_types(void) { type_register_static(&efuse_ctrl_info); } type_init(efuse_ctrl_register_types) /* * Retrieve a row, with unreadable bits returned as 0. */ uint32_t xlnx_versal_efuse_read_row(XlnxEFuse *efuse, uint32_t bit, bool *denied) { bool dummy; if (!denied) { denied = &dummy; } if (bit >= EFUSE_RD_BLOCKED_START && bit <= EFUSE_RD_BLOCKED_END) { *denied = true; return 0; } *denied = false; return xlnx_efuse_get_row(efuse, bit); }