/* * QEMU NVM Express Virtual Namespace * * Copyright (c) 2019 CNEX Labs * Copyright (c) 2020 Samsung Electronics * * Authors: * Klaus Jensen * * This work is licensed under the terms of the GNU GPL, version 2. See the * COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qemu/bitops.h" #include "system/system.h" #include "system/block-backend.h" #include "nvme.h" #include "trace.h" #define MIN_DISCARD_GRANULARITY (4 * KiB) #define NVME_DEFAULT_ZONE_SIZE (128 * MiB) void nvme_ns_init_format(NvmeNamespace *ns) { NvmeIdNs *id_ns = &ns->id_ns; NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm; BlockDriverInfo bdi; int npdg, ret; int64_t nlbas; ns->lbaf = id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(id_ns->flbas)]; ns->lbasz = 1 << ns->lbaf.ds; nlbas = ns->size / (ns->lbasz + ns->lbaf.ms); id_ns->nsze = cpu_to_le64(nlbas); /* no thin provisioning */ id_ns->ncap = id_ns->nsze; id_ns->nuse = id_ns->ncap; ns->moff = nlbas << ns->lbaf.ds; npdg = ns->blkconf.discard_granularity / ns->lbasz; ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi); if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) { npdg = bdi.cluster_size / ns->lbasz; } id_ns->npda = id_ns->npdg = npdg - 1; id_ns_nvm->npdal = npdg; id_ns_nvm->npdgl = npdg; } static int nvme_ns_init(NvmeNamespace *ns, Error **errp) { static uint64_t ns_count; NvmeIdNs *id_ns = &ns->id_ns; NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm; NvmeIdNsInd *id_ns_ind = &ns->id_ns_ind; uint8_t ds; uint16_t ms; int i; ns->csi = NVME_CSI_NVM; ns->status = 0x0; ns->id_ns.dlfeat = 0x1; /* support DULBE and I/O optimization fields */ id_ns->nsfeat |= (NVME_ID_NS_NSFEAT_DAE | NVME_ID_NS_NSFEAT_OPTPERF_ALL); if (ns->params.shared) { id_ns->nmic |= NVME_ID_NS_IND_NMIC_SHRNS; id_ns_ind->nmic = NVME_ID_NS_IND_NMIC_SHRNS; id_ns_ind->nstat = NVME_ID_NS_IND_NSTAT_NRDY; } /* Substitute a missing EUI-64 by an autogenerated one */ ++ns_count; if (!ns->params.eui64 && ns->params.eui64_default) { ns->params.eui64 = ns_count + NVME_EUI64_DEFAULT; } /* simple copy */ id_ns->mssrl = cpu_to_le16(ns->params.mssrl); id_ns->mcl = cpu_to_le32(ns->params.mcl); id_ns->msrc = ns->params.msrc; id_ns->eui64 = cpu_to_be64(ns->params.eui64); memcpy(&id_ns->nguid, &ns->params.nguid.data, sizeof(id_ns->nguid)); ds = 31 - clz32(ns->blkconf.logical_block_size); ms = ns->params.ms; id_ns->mc = NVME_ID_NS_MC_EXTENDED | NVME_ID_NS_MC_SEPARATE; if (ms && ns->params.mset) { id_ns->flbas |= NVME_ID_NS_FLBAS_EXTENDED; } id_ns->dpc = 0x1f; id_ns->dps = ns->params.pi; if (ns->params.pi && ns->params.pil) { id_ns->dps |= NVME_ID_NS_DPS_FIRST_EIGHT; } ns->pif = ns->params.pif; static const NvmeLBAF defaults[16] = { [0] = { .ds = 9 }, [1] = { .ds = 9, .ms = 8 }, [2] = { .ds = 9, .ms = 16 }, [3] = { .ds = 9, .ms = 64 }, [4] = { .ds = 12 }, [5] = { .ds = 12, .ms = 8 }, [6] = { .ds = 12, .ms = 16 }, [7] = { .ds = 12, .ms = 64 }, }; ns->nlbaf = 8; memcpy(&id_ns->lbaf, &defaults, sizeof(defaults)); for (i = 0; i < ns->nlbaf; i++) { NvmeLBAF *lbaf = &id_ns->lbaf[i]; if (lbaf->ds == ds) { if (lbaf->ms == ms) { id_ns->flbas |= i; goto lbaf_found; } } } /* add non-standard lba format */ id_ns->lbaf[ns->nlbaf].ds = ds; id_ns->lbaf[ns->nlbaf].ms = ms; ns->nlbaf++; id_ns->flbas |= i; lbaf_found: id_ns_nvm->elbaf[i] = (ns->pif & 0x3) << 7; id_ns->nlbaf = ns->nlbaf - 1; nvme_ns_init_format(ns); return 0; } static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp) { bool read_only; if (!blkconf_blocksizes(&ns->blkconf, errp)) { return -1; } read_only = !blk_supports_write_perm(ns->blkconf.blk); if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) { return -1; } if (ns->blkconf.discard_granularity == -1) { ns->blkconf.discard_granularity = MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY); } ns->size = blk_getlength(ns->blkconf.blk); if (ns->size < 0) { error_setg_errno(errp, -ns->size, "could not get blockdev size"); return -1; } return 0; } static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp) { uint64_t zone_size, zone_cap; /* Make sure that the values of ZNS properties are sane */ if (ns->params.zone_size_bs) { zone_size = ns->params.zone_size_bs; } else { zone_size = NVME_DEFAULT_ZONE_SIZE; } if (ns->params.zone_cap_bs) { zone_cap = ns->params.zone_cap_bs; } else { zone_cap = zone_size; } if (zone_cap > zone_size) { error_setg(errp, "zone capacity %"PRIu64"B exceeds " "zone size %"PRIu64"B", zone_cap, zone_size); return -1; } if (zone_size < ns->lbasz) { error_setg(errp, "zone size %"PRIu64"B too small, " "must be at least %zuB", zone_size, ns->lbasz); return -1; } if (zone_cap < ns->lbasz) { error_setg(errp, "zone capacity %"PRIu64"B too small, " "must be at least %zuB", zone_cap, ns->lbasz); return -1; } /* * Save the main zone geometry values to avoid * calculating them later again. */ ns->zone_size = zone_size / ns->lbasz; ns->zone_capacity = zone_cap / ns->lbasz; ns->num_zones = le64_to_cpu(ns->id_ns.nsze) / ns->zone_size; /* Do a few more sanity checks of ZNS properties */ if (!ns->num_zones) { error_setg(errp, "insufficient drive capacity, must be at least the size " "of one zone (%"PRIu64"B)", zone_size); return -1; } return 0; } static void nvme_ns_zoned_init_state(NvmeNamespace *ns) { uint64_t start = 0, zone_size = ns->zone_size; uint64_t capacity = ns->num_zones * zone_size; NvmeZone *zone; int i; ns->zone_array = g_new0(NvmeZone, ns->num_zones); if (ns->params.zd_extension_size) { ns->zd_extensions = g_malloc0(ns->params.zd_extension_size * ns->num_zones); } QTAILQ_INIT(&ns->exp_open_zones); QTAILQ_INIT(&ns->imp_open_zones); QTAILQ_INIT(&ns->closed_zones); QTAILQ_INIT(&ns->full_zones); zone = ns->zone_array; for (i = 0; i < ns->num_zones; i++, zone++) { if (start + zone_size > capacity) { zone_size = capacity - start; } zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE; nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); zone->d.za = 0; zone->d.zcap = ns->zone_capacity; zone->d.zslba = start; zone->d.wp = start; zone->w_ptr = start; start += zone_size; } ns->zone_size_log2 = 0; if (is_power_of_2(ns->zone_size)) { ns->zone_size_log2 = 63 - clz64(ns->zone_size); } } static void nvme_ns_init_zoned(NvmeNamespace *ns) { NvmeIdNsZoned *id_ns_z; int i; nvme_ns_zoned_init_state(ns); id_ns_z = g_new0(NvmeIdNsZoned, 1); /* MAR/MOR are zeroes-based, FFFFFFFFFh means no limit */ id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1); id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1); id_ns_z->zoc = 0; id_ns_z->ozcs = ns->params.cross_zone_read ? NVME_ID_NS_ZONED_OZCS_RAZB : 0x00; for (i = 0; i <= ns->id_ns.nlbaf; i++) { id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size); id_ns_z->lbafe[i].zdes = ns->params.zd_extension_size >> 6; /* Units of 64B */ } if (ns->params.zrwas) { ns->zns.numzrwa = ns->params.numzrwa ? ns->params.numzrwa : ns->num_zones; ns->zns.zrwas = ns->params.zrwas >> ns->lbaf.ds; ns->zns.zrwafg = ns->params.zrwafg >> ns->lbaf.ds; id_ns_z->ozcs |= NVME_ID_NS_ZONED_OZCS_ZRWASUP; id_ns_z->zrwacap = NVME_ID_NS_ZONED_ZRWACAP_EXPFLUSHSUP; id_ns_z->numzrwa = cpu_to_le32(ns->params.numzrwa); id_ns_z->zrwas = cpu_to_le16(ns->zns.zrwas); id_ns_z->zrwafg = cpu_to_le16(ns->zns.zrwafg); } id_ns_z->ozcs = cpu_to_le16(id_ns_z->ozcs); ns->csi = NVME_CSI_ZONED; ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size); ns->id_ns.ncap = ns->id_ns.nsze; ns->id_ns.nuse = ns->id_ns.ncap; /* * The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated" * status of logical blocks. Since the spec defines that logical blocks * SHALL be deallocated when then zone is in the Empty or Offline states, * we can only support DULBE if the zone size is a multiple of the * calculated NPDG. */ if (ns->zone_size % (ns->id_ns.npdg + 1)) { warn_report("the zone size (%"PRIu64" blocks) is not a multiple of " "the calculated deallocation granularity (%d blocks); " "DULBE support disabled", ns->zone_size, ns->id_ns.npdg + 1); ns->id_ns.nsfeat &= ~0x4; } ns->id_ns_zoned = id_ns_z; } static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone) { uint8_t state; zone->w_ptr = zone->d.wp; state = nvme_get_zone_state(zone); if (zone->d.wp != zone->d.zslba || (zone->d.za & NVME_ZA_ZD_EXT_VALID)) { if (state != NVME_ZONE_STATE_CLOSED) { trace_pci_nvme_clear_ns_close(state, zone->d.zslba); nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED); } nvme_aor_inc_active(ns); QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry); } else { trace_pci_nvme_clear_ns_reset(state, zone->d.zslba); if (zone->d.za & NVME_ZA_ZRWA_VALID) { zone->d.za &= ~NVME_ZA_ZRWA_VALID; ns->zns.numzrwa++; } nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); } } /* * Close all the zones that are currently open. */ static void nvme_zoned_ns_shutdown(NvmeNamespace *ns) { NvmeZone *zone, *next; QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { QTAILQ_REMOVE(&ns->closed_zones, zone, entry); nvme_aor_dec_active(ns); nvme_clear_zone(ns, zone); } QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); nvme_aor_dec_open(ns); nvme_aor_dec_active(ns); nvme_clear_zone(ns, zone); } QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); nvme_aor_dec_open(ns); nvme_aor_dec_active(ns); nvme_clear_zone(ns, zone); } assert(ns->nr_open_zones == 0); } static NvmeRuHandle *nvme_find_ruh_by_attr(NvmeEnduranceGroup *endgrp, uint8_t ruha, uint16_t *ruhid) { for (uint16_t i = 0; i < endgrp->fdp.nruh; i++) { NvmeRuHandle *ruh = &endgrp->fdp.ruhs[i]; if (ruh->ruha == ruha) { *ruhid = i; return ruh; } } return NULL; } static bool nvme_ns_init_fdp(NvmeNamespace *ns, Error **errp) { NvmeEnduranceGroup *endgrp = ns->endgrp; NvmeRuHandle *ruh; uint8_t lbafi = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas); g_autofree unsigned int *ruhids = NULL; unsigned int n, m, *ruhid; const char *endptr, *token; char *r, *p; uint16_t *ph; if (!ns->params.fdp.ruhs) { ns->fdp.nphs = 1; ph = ns->fdp.phs = g_new(uint16_t, 1); ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_CTRL, ph); if (!ruh) { ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_UNUSED, ph); if (!ruh) { error_setg(errp, "no unused reclaim unit handles left"); return false; } ruh->ruha = NVME_RUHA_CTRL; ruh->lbafi = lbafi; ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds; for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) { ruh->rus[rg].ruamw = ruh->ruamw; } } else if (ruh->lbafi != lbafi) { error_setg(errp, "lba format index of controller assigned " "reclaim unit handle does not match namespace lba " "format index"); return false; } return true; } ruhid = ruhids = g_new0(unsigned int, endgrp->fdp.nruh); r = p = strdup(ns->params.fdp.ruhs); /* parse the placement handle identifiers */ while ((token = qemu_strsep(&p, ";")) != NULL) { if (qemu_strtoui(token, &endptr, 0, &n) < 0) { error_setg(errp, "cannot parse reclaim unit handle identifier"); free(r); return false; } m = n; /* parse range */ if (*endptr == '-') { token = endptr + 1; if (qemu_strtoui(token, NULL, 0, &m) < 0) { error_setg(errp, "cannot parse reclaim unit handle identifier"); free(r); return false; } if (m < n) { error_setg(errp, "invalid reclaim unit handle identifier range"); free(r); return false; } } for (; n <= m; n++) { if (ns->fdp.nphs++ == endgrp->fdp.nruh) { error_setg(errp, "too many placement handles"); free(r); return false; } *ruhid++ = n; } } free(r); /* verify that the ruhids are unique */ for (unsigned int i = 0; i < ns->fdp.nphs; i++) { for (unsigned int j = i + 1; j < ns->fdp.nphs; j++) { if (ruhids[i] == ruhids[j]) { error_setg(errp, "duplicate reclaim unit handle identifier: %u", ruhids[i]); return false; } } } ph = ns->fdp.phs = g_new(uint16_t, ns->fdp.nphs); ruhid = ruhids; /* verify the identifiers */ for (unsigned int i = 0; i < ns->fdp.nphs; i++, ruhid++, ph++) { if (*ruhid >= endgrp->fdp.nruh) { error_setg(errp, "invalid reclaim unit handle identifier"); return false; } ruh = &endgrp->fdp.ruhs[*ruhid]; switch (ruh->ruha) { case NVME_RUHA_UNUSED: ruh->ruha = NVME_RUHA_HOST; ruh->lbafi = lbafi; ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds; for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) { ruh->rus[rg].ruamw = ruh->ruamw; } break; case NVME_RUHA_HOST: if (ruh->lbafi != lbafi) { error_setg(errp, "lba format index of host assigned" "reclaim unit handle does not match namespace " "lba format index"); return false; } break; case NVME_RUHA_CTRL: error_setg(errp, "reclaim unit handle is controller assigned"); return false; default: abort(); } *ph = *ruhid; } return true; } static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp) { unsigned int pi_size; if (!ns->blkconf.blk) { error_setg(errp, "block backend not configured"); return -1; } if (ns->params.pi) { if (ns->params.pi > NVME_ID_NS_DPS_TYPE_3) { error_setg(errp, "invalid 'pi' value"); return -1; } switch (ns->params.pif) { case NVME_PI_GUARD_16: pi_size = 8; break; case NVME_PI_GUARD_64: pi_size = 16; break; default: error_setg(errp, "invalid 'pif'"); return -1; } if (ns->params.ms < pi_size) { error_setg(errp, "at least %u bytes of metadata required to " "enable protection information", pi_size); return -1; } } if (ns->params.nsid > NVME_MAX_NAMESPACES) { error_setg(errp, "invalid namespace id (must be between 0 and %d)", NVME_MAX_NAMESPACES); return -1; } if (ns->params.zoned && ns->endgrp && ns->endgrp->fdp.enabled) { error_setg(errp, "cannot be a zoned- in an FDP configuration"); return -1; } if (ns->params.zoned) { if (ns->params.max_active_zones) { if (ns->params.max_open_zones > ns->params.max_active_zones) { error_setg(errp, "max_open_zones (%u) exceeds " "max_active_zones (%u)", ns->params.max_open_zones, ns->params.max_active_zones); return -1; } if (!ns->params.max_open_zones) { ns->params.max_open_zones = ns->params.max_active_zones; } } if (ns->params.zd_extension_size) { if (ns->params.zd_extension_size & 0x3f) { error_setg(errp, "zone descriptor extension size must be a " "multiple of 64B"); return -1; } if ((ns->params.zd_extension_size >> 6) > 0xff) { error_setg(errp, "zone descriptor extension size is too large"); return -1; } } if (ns->params.zrwas) { if (ns->params.zrwas % ns->blkconf.logical_block_size) { error_setg(errp, "zone random write area size (zoned.zrwas " "%"PRIu64") must be a multiple of the logical " "block size (logical_block_size %"PRIu32")", ns->params.zrwas, ns->blkconf.logical_block_size); return -1; } if (ns->params.zrwafg == -1) { ns->params.zrwafg = ns->blkconf.logical_block_size; } if (ns->params.zrwas % ns->params.zrwafg) { error_setg(errp, "zone random write area size (zoned.zrwas " "%"PRIu64") must be a multiple of the zone random " "write area flush granularity (zoned.zrwafg, " "%"PRIu64")", ns->params.zrwas, ns->params.zrwafg); return -1; } if (ns->params.max_active_zones) { if (ns->params.numzrwa > ns->params.max_active_zones) { error_setg(errp, "number of zone random write area " "resources (zoned.numzrwa, %d) must be less " "than or equal to maximum active resources " "(zoned.max_active_zones, %d)", ns->params.numzrwa, ns->params.max_active_zones); return -1; } } } } return 0; } int nvme_ns_setup(NvmeNamespace *ns, Error **errp) { if (nvme_ns_check_constraints(ns, errp)) { return -1; } if (nvme_ns_init_blk(ns, errp)) { return -1; } if (nvme_ns_init(ns, errp)) { return -1; } if (ns->params.zoned) { if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) { return -1; } nvme_ns_init_zoned(ns); } if (ns->endgrp && ns->endgrp->fdp.enabled) { if (!nvme_ns_init_fdp(ns, errp)) { return -1; } } return 0; } void nvme_ns_drain(NvmeNamespace *ns) { blk_drain(ns->blkconf.blk); } void nvme_ns_shutdown(NvmeNamespace *ns) { blk_flush(ns->blkconf.blk); if (ns->params.zoned) { nvme_zoned_ns_shutdown(ns); } } void nvme_ns_cleanup(NvmeNamespace *ns) { if (ns->params.zoned) { g_free(ns->id_ns_zoned); g_free(ns->zone_array); g_free(ns->zd_extensions); } if (ns->endgrp && ns->endgrp->fdp.enabled) { g_free(ns->fdp.phs); } } static void nvme_ns_unrealize(DeviceState *dev) { NvmeNamespace *ns = NVME_NS(dev); nvme_ns_drain(ns); nvme_ns_shutdown(ns); nvme_ns_cleanup(ns); } static void nvme_ns_realize(DeviceState *dev, Error **errp) { NvmeNamespace *ns = NVME_NS(dev); BusState *s = qdev_get_parent_bus(dev); NvmeCtrl *n = NVME(s->parent); NvmeSubsystem *subsys = n->subsys; uint32_t nsid = ns->params.nsid; int i; if (!n->subsys) { /* If no subsys, the ns cannot be attached to more than one ctrl. */ ns->params.shared = false; if (ns->params.detached) { error_setg(errp, "detached requires that the nvme device is " "linked to an nvme-subsys device"); return; } } else { /* * If this namespace belongs to a subsystem (through a link on the * controller device), reparent the device. */ if (!qdev_set_parent_bus(dev, &subsys->bus.parent_bus, errp)) { return; } ns->subsys = subsys; ns->endgrp = &subsys->endgrp; } if (nvme_ns_setup(ns, errp)) { return; } if (!nsid) { for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { if (nvme_ns(n, i) || nvme_subsys_ns(subsys, i)) { continue; } nsid = ns->params.nsid = i; break; } if (!nsid) { error_setg(errp, "no free namespace id"); return; } } else { if (nvme_ns(n, nsid) || nvme_subsys_ns(subsys, nsid)) { error_setg(errp, "namespace id '%d' already allocated", nsid); return; } } if (subsys) { subsys->namespaces[nsid] = ns; ns->id_ns.endgid = cpu_to_le16(0x1); ns->id_ns_ind.endgrpid = cpu_to_le16(0x1); if (ns->params.detached) { return; } if (ns->params.shared) { for (i = 0; i < ARRAY_SIZE(subsys->ctrls); i++) { NvmeCtrl *ctrl = subsys->ctrls[i]; if (ctrl && ctrl != SUBSYS_SLOT_RSVD) { nvme_attach_ns(ctrl, ns); } } return; } } nvme_attach_ns(n, ns); } static const Property nvme_ns_props[] = { DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf), DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false), DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, true), DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0), DEFINE_PROP_UUID_NODEFAULT("uuid", NvmeNamespace, params.uuid), DEFINE_PROP_NGUID_NODEFAULT("nguid", NvmeNamespace, params.nguid), DEFINE_PROP_UINT64("eui64", NvmeNamespace, params.eui64, 0), DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0), DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0), DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0), DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0), DEFINE_PROP_UINT8("pif", NvmeNamespace, params.pif, 0), DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128), DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128), DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127), DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false), DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs, NVME_DEFAULT_ZONE_SIZE), DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs, 0), DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace, params.cross_zone_read, false), DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace, params.max_active_zones, 0), DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace, params.max_open_zones, 0), DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace, params.zd_extension_size, 0), DEFINE_PROP_UINT32("zoned.numzrwa", NvmeNamespace, params.numzrwa, 0), DEFINE_PROP_SIZE("zoned.zrwas", NvmeNamespace, params.zrwas, 0), DEFINE_PROP_SIZE("zoned.zrwafg", NvmeNamespace, params.zrwafg, -1), DEFINE_PROP_BOOL("eui64-default", NvmeNamespace, params.eui64_default, false), DEFINE_PROP_STRING("fdp.ruhs", NvmeNamespace, params.fdp.ruhs), }; static void nvme_ns_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); dc->bus_type = TYPE_NVME_BUS; dc->realize = nvme_ns_realize; dc->unrealize = nvme_ns_unrealize; device_class_set_props(dc, nvme_ns_props); dc->desc = "Virtual NVMe namespace"; } static void nvme_ns_instance_init(Object *obj) { NvmeNamespace *ns = NVME_NS(obj); char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid); device_add_bootindex_property(obj, &ns->bootindex, "bootindex", bootindex, DEVICE(obj)); g_free(bootindex); } static const TypeInfo nvme_ns_info = { .name = TYPE_NVME_NS, .parent = TYPE_DEVICE, .class_init = nvme_ns_class_init, .instance_size = sizeof(NvmeNamespace), .instance_init = nvme_ns_instance_init, }; static void nvme_ns_register_types(void) { type_register_static(&nvme_ns_info); } type_init(nvme_ns_register_types)