/* * Nokia N-series internet tablets. * * Copyright (C) 2007 Nokia Corporation * Written by Andrzej Zaborowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include "qemu-common.h" #include "sysemu.h" #include "omap.h" #include "arm-misc.h" #include "irq.h" #include "console.h" #include "boards.h" #include "i2c.h" #include "devices.h" #include "flash.h" #include "hw.h" /* Nokia N8x0 support */ struct n800_s { struct omap_mpu_state_s *cpu; struct rfbi_chip_s blizzard; struct uwire_slave_s *ts; i2c_bus *i2c; int keymap[0x80]; struct tusb_s *usb; void *retu; void *tahvo; }; /* GPIO pins */ #define N800_TUSB_ENABLE_GPIO 0 #define N800_MMC2_WP_GPIO 8 #define N800_UNKNOWN_GPIO0 9 /* out */ #define N800_UNKNOWN_GPIO1 10 /* out */ #define N800_CAM_TURN_GPIO 12 #define N800_BLIZZARD_POWERDOWN_GPIO 15 #define N800_MMC1_WP_GPIO 23 #define N8X0_ONENAND_GPIO 26 #define N800_UNKNOWN_GPIO2 53 /* out */ #define N8X0_TUSB_INT_GPIO 58 #define N800_BT_WKUP_GPIO 61 #define N800_STI_GPIO 62 #define N8X0_CBUS_SEL_GPIO 64 #define N8X0_CBUS_CLK_GPIO 65 /* sure? */ #define N8X0_CBUS_DAT_GPIO 66 #define N800_WLAN_IRQ_GPIO 87 #define N800_BT_RESET_GPIO 92 #define N800_TEA5761_CS_GPIO 93 #define N800_UNKNOWN_GPIO 94 #define N800_CAM_ACT_GPIO 95 #define N800_MMC_CS_GPIO 96 #define N800_WLAN_PWR_GPIO 97 #define N8X0_BT_HOST_WKUP_GPIO 98 #define N800_UNKNOWN_GPIO3 101 /* out */ #define N810_KB_LOCK_GPIO 102 #define N800_TSC_TS_GPIO 103 #define N810_TSC2005_GPIO 106 #define N800_HEADPHONE_GPIO 107 #define N8X0_RETU_GPIO 108 #define N800_TSC_KP_IRQ_GPIO 109 #define N810_KEYBOARD_GPIO 109 #define N800_BAT_COVER_GPIO 110 #define N810_SLIDE_GPIO 110 #define N8X0_TAHVO_GPIO 111 #define N800_UNKNOWN_GPIO4 112 /* out */ #define N810_TSC_RESET_GPIO 118 #define N800_TSC_RESET_GPIO 119 /* ? */ #define N8X0_TMP105_GPIO 125 /* Config */ #define XLDR_LL_UART 1 /* Addresses on the I2C bus */ #define N8X0_TMP105_ADDR 0x48 #define N8X0_MENELAUS_ADDR 0x72 /* Chipselects on GPMC NOR interface */ #define N8X0_ONENAND_CS 0 #define N8X0_USB_ASYNC_CS 1 #define N8X0_USB_SYNC_CS 4 static void n800_mmc_cs_cb(void *opaque, int line, int level) { /* TODO: this seems to actually be connected to the menelaus, to * which also both MMC slots connect. */ omap_mmc_enable((struct omap_mmc_s *) opaque, !level); printf("%s: MMC slot %i active\n", __FUNCTION__, level + 1); } static void n800_gpio_setup(struct n800_s *s) { qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->cpu->mmc, 1); omap2_gpio_out_set(s->cpu->gpif, N800_MMC_CS_GPIO, mmc_cs[0]); qemu_irq_lower(omap2_gpio_in_get(s->cpu->gpif, N800_BAT_COVER_GPIO)[0]); } static void n8x0_nand_setup(struct n800_s *s) { /* Either ec40xx or ec48xx are OK for the ID */ omap_gpmc_attach(s->cpu->gpmc, N8X0_ONENAND_CS, 0, onenand_base_update, onenand_base_unmap, onenand_init(0xec4800, 1, omap2_gpio_in_get(s->cpu->gpif, N8X0_ONENAND_GPIO)[0])); } static void n800_i2c_setup(struct n800_s *s) { qemu_irq tmp_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TMP105_GPIO)[0]; /* Attach the CPU on one end of our I2C bus. */ s->i2c = omap_i2c_bus(s->cpu->i2c[0]); /* Attach a menelaus PM chip */ i2c_set_slave_address( twl92230_init(s->i2c, s->cpu->irq[0][OMAP_INT_24XX_SYS_NIRQ]), N8X0_MENELAUS_ADDR); /* Attach a TMP105 PM chip (A0 wired to ground) */ i2c_set_slave_address(tmp105_init(s->i2c, tmp_irq), N8X0_TMP105_ADDR); } /* Touchscreen and keypad controller */ #define RETU_KEYCODE 61 /* F3 */ static void n800_key_event(void *opaque, int keycode) { struct n800_s *s = (struct n800_s *) opaque; int code = s->keymap[keycode & 0x7f]; if (code == -1) { if ((keycode & 0x7f) == RETU_KEYCODE) retu_key_event(s->retu, !(keycode & 0x80)); return; } tsc210x_key_event(s->ts, code, !(keycode & 0x80)); } static const int n800_keys[16] = { -1, 72, /* Up */ 63, /* Home (F5) */ -1, 75, /* Left */ 28, /* Enter */ 77, /* Right */ -1, 1, /* Cycle (ESC) */ 80, /* Down */ 62, /* Menu (F4) */ -1, 66, /* Zoom- (F8) */ 64, /* FS (F6) */ 65, /* Zoom+ (F7) */ -1, }; static struct mouse_transform_info_s n800_pointercal = { .x = 800, .y = 480, .a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 }, }; static void n800_tsc_setup(struct n800_s *s) { int i; /* XXX: are the three pins inverted inside the chip between the * tsc and the cpu (N4111)? */ qemu_irq penirq = 0; /* NC */ qemu_irq kbirq = omap2_gpio_in_get(s->cpu->gpif, N800_TSC_KP_IRQ_GPIO)[0]; qemu_irq dav = omap2_gpio_in_get(s->cpu->gpif, N800_TSC_TS_GPIO)[0]; s->ts = tsc2301_init(penirq, kbirq, dav, 0); for (i = 0; i < 0x80; i ++) s->keymap[i] = -1; for (i = 0; i < 0x10; i ++) if (n800_keys[i] >= 0) s->keymap[n800_keys[i]] = i; qemu_add_kbd_event_handler(n800_key_event, s); tsc210x_set_transform(s->ts, &n800_pointercal); } /* LCD MIPI DBI-C controller (URAL) */ struct mipid_s { int resp[4]; int param[4]; int p; int pm; int cmd; int sleep; int booster; int te; int selfcheck; int partial; int normal; int vscr; int invert; int onoff; int gamma; uint32_t id; }; static void mipid_reset(struct mipid_s *s) { if (!s->sleep) fprintf(stderr, "%s: Display off\n", __FUNCTION__); s->pm = 0; s->cmd = 0; s->sleep = 1; s->booster = 0; s->selfcheck = (1 << 7) | /* Register loading OK. */ (1 << 5) | /* The chip is attached. */ (1 << 4); /* Display glass still in one piece. */ s->te = 0; s->partial = 0; s->normal = 1; s->vscr = 0; s->invert = 0; s->onoff = 1; s->gamma = 0; } static uint32_t mipid_txrx(void *opaque, uint32_t cmd) { struct mipid_s *s = (struct mipid_s *) opaque; uint8_t ret; if (s->p >= sizeof(s->resp) / sizeof(*s->resp)) ret = 0; else ret = s->resp[s->p ++]; if (s->pm --> 0) s->param[s->pm] = cmd; else s->cmd = cmd; switch (s->cmd) { case 0x00: /* NOP */ break; case 0x01: /* SWRESET */ mipid_reset(s); break; case 0x02: /* BSTROFF */ s->booster = 0; break; case 0x03: /* BSTRON */ s->booster = 1; break; case 0x04: /* RDDID */ s->p = 0; s->resp[0] = (s->id >> 16) & 0xff; s->resp[1] = (s->id >> 8) & 0xff; s->resp[2] = (s->id >> 0) & 0xff; break; case 0x06: /* RD_RED */ case 0x07: /* RD_GREEN */ /* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so * for the bootloader one needs to change this. */ case 0x08: /* RD_BLUE */ s->p = 0; /* TODO: return first pixel components */ s->resp[0] = 0x01; break; case 0x09: /* RDDST */ s->p = 0; s->resp[0] = s->booster << 7; s->resp[1] = (5 << 4) | (s->partial << 2) | (s->sleep << 1) | s->normal; s->resp[2] = (s->vscr << 7) | (s->invert << 5) | (s->onoff << 2) | (s->te << 1) | (s->gamma >> 2); s->resp[3] = s->gamma << 6; break; case 0x0a: /* RDDPM */ s->p = 0; s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) | (s->partial << 5) | (s->sleep << 6) | (s->booster << 7); break; case 0x0b: /* RDDMADCTR */ s->p = 0; s->resp[0] = 0; break; case 0x0c: /* RDDCOLMOD */ s->p = 0; s->resp[0] = 5; /* 65K colours */ break; case 0x0d: /* RDDIM */ s->p = 0; s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma; break; case 0x0e: /* RDDSM */ s->p = 0; s->resp[0] = s->te << 7; break; case 0x0f: /* RDDSDR */ s->p = 0; s->resp[0] = s->selfcheck; break; case 0x10: /* SLPIN */ s->sleep = 1; break; case 0x11: /* SLPOUT */ s->sleep = 0; s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */ break; case 0x12: /* PTLON */ s->partial = 1; s->normal = 0; s->vscr = 0; break; case 0x13: /* NORON */ s->partial = 0; s->normal = 1; s->vscr = 0; break; case 0x20: /* INVOFF */ s->invert = 0; break; case 0x21: /* INVON */ s->invert = 1; break; case 0x22: /* APOFF */ case 0x23: /* APON */ goto bad_cmd; case 0x25: /* WRCNTR */ if (s->pm < 0) s->pm = 1; goto bad_cmd; case 0x26: /* GAMSET */ if (!s->pm) s->gamma = ffs(s->param[0] & 0xf) - 1; else if (s->pm < 0) s->pm = 1; break; case 0x28: /* DISPOFF */ s->onoff = 0; fprintf(stderr, "%s: Display off\n", __FUNCTION__); break; case 0x29: /* DISPON */ s->onoff = 1; fprintf(stderr, "%s: Display on\n", __FUNCTION__); break; case 0x2a: /* CASET */ case 0x2b: /* RASET */ case 0x2c: /* RAMWR */ case 0x2d: /* RGBSET */ case 0x2e: /* RAMRD */ case 0x30: /* PTLAR */ case 0x33: /* SCRLAR */ goto bad_cmd; case 0x34: /* TEOFF */ s->te = 0; break; case 0x35: /* TEON */ if (!s->pm) s->te = 1; else if (s->pm < 0) s->pm = 1; break; case 0x36: /* MADCTR */ goto bad_cmd; case 0x37: /* VSCSAD */ s->partial = 0; s->normal = 0; s->vscr = 1; break; case 0x38: /* IDMOFF */ case 0x39: /* IDMON */ case 0x3a: /* COLMOD */ goto bad_cmd; case 0xb0: /* CLKINT / DISCTL */ case 0xb1: /* CLKEXT */ if (s->pm < 0) s->pm = 2; break; case 0xb4: /* FRMSEL */ break; case 0xb5: /* FRM8SEL */ case 0xb6: /* TMPRNG / INIESC */ case 0xb7: /* TMPHIS / NOP2 */ case 0xb8: /* TMPREAD / MADCTL */ case 0xba: /* DISTCTR */ case 0xbb: /* EPVOL */ goto bad_cmd; case 0xbd: /* Unknown */ s->p = 0; s->resp[0] = 0; s->resp[1] = 1; break; case 0xc2: /* IFMOD */ if (s->pm < 0) s->pm = 2; break; case 0xc6: /* PWRCTL */ case 0xc7: /* PPWRCTL */ case 0xd0: /* EPWROUT */ case 0xd1: /* EPWRIN */ case 0xd4: /* RDEV */ case 0xd5: /* RDRR */ goto bad_cmd; case 0xda: /* RDID1 */ s->p = 0; s->resp[0] = (s->id >> 16) & 0xff; break; case 0xdb: /* RDID2 */ s->p = 0; s->resp[0] = (s->id >> 8) & 0xff; break; case 0xdc: /* RDID3 */ s->p = 0; s->resp[0] = (s->id >> 0) & 0xff; break; default: bad_cmd: fprintf(stderr, "%s: unknown command %02x\n", __FUNCTION__, s->cmd); break; } return ret; } static void *mipid_init(void) { struct mipid_s *s = (struct mipid_s *) qemu_mallocz(sizeof(*s)); s->id = 0x838f03; mipid_reset(s); return s; } static void n800_spi_setup(struct n800_s *s) { void *tsc2301 = s->ts->opaque; void *mipid = mipid_init(); omap_mcspi_attach(s->cpu->mcspi[0], tsc210x_txrx, tsc2301, 0); omap_mcspi_attach(s->cpu->mcspi[0], mipid_txrx, mipid, 1); } /* This task is normally performed by the bootloader. If we're loading * a kernel directly, we need to enable the Blizzard ourselves. */ static void n800_dss_init(struct rfbi_chip_s *chip) { uint8_t *fb_blank; chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */ chip->write(chip->opaque, 1, 0x64); chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */ chip->write(chip->opaque, 1, 0x1e); chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */ chip->write(chip->opaque, 1, 0xe0); chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */ chip->write(chip->opaque, 1, 0x01); chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */ chip->write(chip->opaque, 1, 0x06); chip->write(chip->opaque, 0, 0x68); /* Display Mode register */ chip->write(chip->opaque, 1, 1); /* Enable bit */ chip->write(chip->opaque, 0, 0x6c); chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */ chip->write(chip->opaque, 1, 0x03); /* Input X End Position */ chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */ chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */ chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */ chip->write(chip->opaque, 1, 0x03); /* Output X End Position */ chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */ chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */ chip->write(chip->opaque, 1, 0x01); /* Input Data Format */ chip->write(chip->opaque, 1, 0x01); /* Data Source Select */ fb_blank = memset(qemu_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2); /* Display Memory Data Port */ chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800); free(fb_blank); } static void n800_dss_setup(struct n800_s *s, DisplayState *ds) { s->blizzard.opaque = s1d13745_init(0, ds); s->blizzard.block = s1d13745_write_block; s->blizzard.write = s1d13745_write; s->blizzard.read = s1d13745_read; omap_rfbi_attach(s->cpu->dss, 0, &s->blizzard); } static void n800_cbus_setup(struct n800_s *s) { qemu_irq dat_out = omap2_gpio_in_get(s->cpu->gpif, N8X0_CBUS_DAT_GPIO)[0]; qemu_irq retu_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_RETU_GPIO)[0]; qemu_irq tahvo_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TAHVO_GPIO)[0]; struct cbus_s *cbus = cbus_init(dat_out); omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_CLK_GPIO, cbus->clk); omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_DAT_GPIO, cbus->dat); omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_SEL_GPIO, cbus->sel); cbus_attach(cbus, s->retu = retu_init(retu_irq, 1)); cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1)); } static void n800_usb_power_cb(void *opaque, int line, int level) { struct n800_s *s = opaque; tusb6010_power(s->usb, level); } static void n800_usb_setup(struct n800_s *s) { qemu_irq tusb_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TUSB_INT_GPIO)[0]; qemu_irq tusb_pwr = qemu_allocate_irqs(n800_usb_power_cb, s, 1)[0]; struct tusb_s *tusb = tusb6010_init(tusb_irq); /* Using the NOR interface */ omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_ASYNC_CS, tusb6010_async_io(tusb), 0, 0, tusb); omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_SYNC_CS, tusb6010_sync_io(tusb), 0, 0, tusb); s->usb = tusb; omap2_gpio_out_set(s->cpu->gpif, N800_TUSB_ENABLE_GPIO, tusb_pwr); } /* This task is normally performed by the bootloader. If we're loading * a kernel directly, we need to set up GPMC mappings ourselves. */ static void n800_gpmc_init(struct n800_s *s) { uint32_t config7 = (0xf << 8) | /* MASKADDRESS */ (1 << 6) | /* CSVALID */ (4 << 0); /* BASEADDRESS */ cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */ (void *) &config7, sizeof(config7)); } /* Setup sequence done by the bootloader */ static void n800_boot_init(void *opaque) { struct n800_s *s = (struct n800_s *) opaque; uint32_t buf; /* PRCM setup */ #define omap_writel(addr, val) \ buf = (val); \ cpu_physical_memory_write(addr, (void *) &buf, sizeof(buf)) omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */ omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */ omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */ omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */ omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */ omap_writel(0x48008098, 0); /* PRCM_POLCTRL */ omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */ omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */ omap_writel(0x48008158, 1); /* RM_RSTST_MPU */ omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */ omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */ omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */ omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */ omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */ omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */ omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */ omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */ omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */ omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */ omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */ omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */ omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */ omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */ omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */ omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */ omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */ omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */ omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */ omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */ omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */ omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */ omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */ omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */ omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */ omap_writel(0x48008540, /* CM_CLKSEL1_PLL */ (0x78 << 12) | (6 << 8)); omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */ /* GPMC setup */ n800_gpmc_init(s); /* Video setup */ n800_dss_init(&s->blizzard); /* CPU setup */ s->cpu->env->regs[15] = s->cpu->env->boot_info->loader_start; s->cpu->env->GE = 0x5; } #define OMAP_TAG_NOKIA_BT 0x4e01 #define OMAP_TAG_WLAN_CX3110X 0x4e02 #define OMAP_TAG_CBUS 0x4e03 #define OMAP_TAG_EM_ASIC_BB5 0x4e04 static int n800_atag_setup(struct arm_boot_info *info, void *p) { uint8_t *b; uint16_t *w; uint32_t *l; w = p; stw_raw(w ++, OMAP_TAG_UART); /* u16 tag */ stw_raw(w ++, 4); /* u16 len */ stw_raw(w ++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */ w ++; stw_raw(w ++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */ stw_raw(w ++, 4); /* u16 len */ stw_raw(w ++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */ stw_raw(w ++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */ stw_raw(w ++, OMAP_TAG_CBUS); /* u16 tag */ stw_raw(w ++, 8); /* u16 len */ stw_raw(w ++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */ stw_raw(w ++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */ stw_raw(w ++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */ w ++; stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ stw_raw(w ++, 20); /* u16 len */ strcpy((void *) w, "bat_cover"); /* char name[12] */ w += 6; stw_raw(w ++, N800_BAT_COVER_GPIO); /* u16 gpio */ stw_raw(w ++, 0x01); stw_raw(w ++, 0); stw_raw(w ++, 0); stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ stw_raw(w ++, 20); /* u16 len */ strcpy((void *) w, "cam_act"); /* char name[12] */ w += 6; stw_raw(w ++, N800_CAM_ACT_GPIO); /* u16 gpio */ stw_raw(w ++, 0x20); stw_raw(w ++, 0); stw_raw(w ++, 0); stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ stw_raw(w ++, 20); /* u16 len */ strcpy((void *) w, "cam_turn"); /* char name[12] */ w += 6; stw_raw(w ++, N800_CAM_TURN_GPIO); /* u16 gpio */ stw_raw(w ++, 0x21); stw_raw(w ++, 0); stw_raw(w ++, 0); stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ stw_raw(w ++, 20); /* u16 len */ strcpy((void *) w, "headphone"); /* char name[12] */ w += 6; stw_raw(w ++, N800_HEADPHONE_GPIO); /* u16 gpio */ stw_raw(w ++, 0x11); stw_raw(w ++, 0); stw_raw(w ++, 0); stw_raw(w ++, OMAP_TAG_NOKIA_BT); /* u16 tag */ stw_raw(w ++, 12); /* u16 len */ b = (void *) w; stb_raw(b ++, 0x01); /* u8 chip_type (CSR) */ stb_raw(b ++, N800_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */ stb_raw(b ++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */ stb_raw(b ++, N800_BT_RESET_GPIO); /* u8 reset_gpio */ stb_raw(b ++, 1); /* u8 bt_uart */ memset(b, 0, 6); /* u8 bd_addr[6] */ b += 6; stb_raw(b ++, 0x02); /* u8 bt_sysclk (38.4) */ w = (void *) b; stw_raw(w ++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */ stw_raw(w ++, 8); /* u16 len */ stw_raw(w ++, 0x25); /* u8 chip_type */ stw_raw(w ++, N800_WLAN_PWR_GPIO); /* s16 power_gpio */ stw_raw(w ++, N800_WLAN_IRQ_GPIO); /* s16 irq_gpio */ stw_raw(w ++, -1); /* s16 spi_cs_gpio */ stw_raw(w ++, OMAP_TAG_MMC); /* u16 tag */ stw_raw(w ++, 16); /* u16 len */ stw_raw(w ++, 0xf); /* unsigned flags */ stw_raw(w ++, -1); /* s16 power_pin */ stw_raw(w ++, -1); /* s16 switch_pin */ stw_raw(w ++, -1); /* s16 wp_pin */ stw_raw(w ++, 0); /* unsigned flags */ stw_raw(w ++, 0); /* s16 power_pin */ stw_raw(w ++, 0); /* s16 switch_pin */ stw_raw(w ++, 0); /* s16 wp_pin */ stw_raw(w ++, OMAP_TAG_TEA5761); /* u16 tag */ stw_raw(w ++, 4); /* u16 len */ stw_raw(w ++, N800_TEA5761_CS_GPIO); /* u16 enable_gpio */ w ++; stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */ stw_raw(w ++, 28); /* u16 len */ strcpy((void *) w, "bootloader"); /* char name[16] */ l = (void *) (w + 8); stl_raw(l ++, 0x00020000); /* unsigned int size */ stl_raw(l ++, 0x00000000); /* unsigned int offset */ stl_raw(l ++, 0x3); /* unsigned int mask_flags */ w = (void *) l; stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */ stw_raw(w ++, 28); /* u16 len */ strcpy((void *) w, "config"); /* char name[16] */ l = (void *) (w + 8); stl_raw(l ++, 0x00060000); /* unsigned int size */ stl_raw(l ++, 0x00020000); /* unsigned int offset */ stl_raw(l ++, 0x0); /* unsigned int mask_flags */ w = (void *) l; stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */ stw_raw(w ++, 28); /* u16 len */ strcpy((void *) w, "kernel"); /* char name[16] */ l = (void *) (w + 8); stl_raw(l ++, 0x00200000); /* unsigned int size */ stl_raw(l ++, 0x00080000); /* unsigned int offset */ stl_raw(l ++, 0x0); /* unsigned int mask_flags */ w = (void *) l; stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */ stw_raw(w ++, 28); /* u16 len */ strcpy((void *) w, "initfs"); /* char name[16] */ l = (void *) (w + 8); stl_raw(l ++, 0x00200000); /* unsigned int size */ stl_raw(l ++, 0x00280000); /* unsigned int offset */ stl_raw(l ++, 0x3); /* unsigned int mask_flags */ w = (void *) l; stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */ stw_raw(w ++, 28); /* u16 len */ strcpy((void *) w, "rootfs"); /* char name[16] */ l = (void *) (w + 8); stl_raw(l ++, 0x0fb80000); /* unsigned int size */ stl_raw(l ++, 0x00480000); /* unsigned int offset */ stl_raw(l ++, 0x3); /* unsigned int mask_flags */ w = (void *) l; stw_raw(w ++, OMAP_TAG_BOOT_REASON); /* u16 tag */ stw_raw(w ++, 12); /* u16 len */ #if 0 strcpy((void *) w, "por"); /* char reason_str[12] */ strcpy((void *) w, "charger"); /* char reason_str[12] */ strcpy((void *) w, "32wd_to"); /* char reason_str[12] */ strcpy((void *) w, "sw_rst"); /* char reason_str[12] */ strcpy((void *) w, "mbus"); /* char reason_str[12] */ strcpy((void *) w, "unknown"); /* char reason_str[12] */ strcpy((void *) w, "swdg_to"); /* char reason_str[12] */ strcpy((void *) w, "sec_vio"); /* char reason_str[12] */ strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */ #else strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ #endif w += 6; #if 0 /* N810 */ stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "product"); /* char component[12] */ w += 6; strcpy((void *) w, "RX-44"); /* char version[12] */ w += 6; stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "hw-build"); /* char component[12] */ w += 6; strcpy((void *) w, "QEMU"); /* char version[12] */ w += 6; stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "nolo"); /* char component[12] */ w += 6; strcpy((void *) w, "1.1.10-qemu"); /* char version[12] */ w += 6; #else stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "product"); /* char component[12] */ w += 6; strcpy((void *) w, "RX-34"); /* char version[12] */ w += 6; stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "hw-build"); /* char component[12] */ w += 6; strcpy((void *) w, "QEMU"); /* char version[12] */ w += 6; stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "nolo"); /* char component[12] */ w += 6; strcpy((void *) w, "1.1.6-qemu"); /* char version[12] */ w += 6; #endif stw_raw(w ++, OMAP_TAG_LCD); /* u16 tag */ stw_raw(w ++, 36); /* u16 len */ strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */ w += 8; strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */ w += 8; stw_raw(w ++, 5); /* TODO s16 nreset_gpio */ stw_raw(w ++, 16); /* u8 data_lines */ return (void *) w - p; } static struct arm_boot_info n800_binfo = { .loader_start = OMAP2_Q2_BASE, /* Actually two chips of 0x4000000 bytes each */ .ram_size = 0x08000000, .board_id = 0x4f7, .atag_board = n800_atag_setup, }; static void n800_init(int ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { struct n800_s *s = (struct n800_s *) qemu_mallocz(sizeof(*s)); int sdram_size = n800_binfo.ram_size; int onenandram_size = 0x00010000; if (ram_size < sdram_size + onenandram_size + OMAP242X_SRAM_SIZE) { fprintf(stderr, "This architecture uses %i bytes of memory\n", sdram_size + onenandram_size + OMAP242X_SRAM_SIZE); exit(1); } s->cpu = omap2420_mpu_init(sdram_size, NULL, cpu_model); n800_gpio_setup(s); n8x0_nand_setup(s); n800_i2c_setup(s); n800_tsc_setup(s); n800_spi_setup(s); n800_dss_setup(s, ds); n800_cbus_setup(s); if (usb_enabled) n800_usb_setup(s); /* Setup initial (reset) machine state */ /* Start at the OneNAND bootloader. */ s->cpu->env->regs[15] = 0; if (kernel_filename) { /* Or at the linux loader. */ n800_binfo.kernel_filename = kernel_filename; n800_binfo.kernel_cmdline = kernel_cmdline; n800_binfo.initrd_filename = initrd_filename; arm_load_kernel(s->cpu->env, &n800_binfo); qemu_register_reset(n800_boot_init, s); n800_boot_init(s); } dpy_resize(ds, 800, 480); } QEMUMachine n800_machine = { "n800", "Nokia N800 aka. RX-34 tablet (OMAP2420)", n800_init, (0x08000000 + 0x00010000 + OMAP242X_SRAM_SIZE) | RAMSIZE_FIXED, };