/* * Nuvoton NPCM7xx/8xx GMAC Module * * Copyright 2024 Google LLC * Authors: * Hao Wu * Nabih Estefan * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * Unsupported/unimplemented features: * - MII is not implemented, MII_ADDR.BUSY and MII_DATA always return zero * - Precision timestamp (PTP) is not implemented. */ #include "qemu/osdep.h" #include "hw/registerfields.h" #include "hw/net/mii.h" #include "hw/net/npcm_gmac.h" #include "migration/vmstate.h" #include "net/checksum.h" #include "net/eth.h" #include "net/net.h" #include "qemu/cutils.h" #include "qemu/log.h" #include "qemu/units.h" #include "sysemu/dma.h" #include "trace.h" REG32(NPCM_DMA_BUS_MODE, 0x1000) REG32(NPCM_DMA_XMT_POLL_DEMAND, 0x1004) REG32(NPCM_DMA_RCV_POLL_DEMAND, 0x1008) REG32(NPCM_DMA_RX_BASE_ADDR, 0x100c) REG32(NPCM_DMA_TX_BASE_ADDR, 0x1010) REG32(NPCM_DMA_STATUS, 0x1014) REG32(NPCM_DMA_CONTROL, 0x1018) REG32(NPCM_DMA_INTR_ENA, 0x101c) REG32(NPCM_DMA_MISSED_FRAME_CTR, 0x1020) REG32(NPCM_DMA_HOST_TX_DESC, 0x1048) REG32(NPCM_DMA_HOST_RX_DESC, 0x104c) REG32(NPCM_DMA_CUR_TX_BUF_ADDR, 0x1050) REG32(NPCM_DMA_CUR_RX_BUF_ADDR, 0x1054) REG32(NPCM_DMA_HW_FEATURE, 0x1058) REG32(NPCM_GMAC_MAC_CONFIG, 0x0) REG32(NPCM_GMAC_FRAME_FILTER, 0x4) REG32(NPCM_GMAC_HASH_HIGH, 0x8) REG32(NPCM_GMAC_HASH_LOW, 0xc) REG32(NPCM_GMAC_MII_ADDR, 0x10) REG32(NPCM_GMAC_MII_DATA, 0x14) REG32(NPCM_GMAC_FLOW_CTRL, 0x18) REG32(NPCM_GMAC_VLAN_FLAG, 0x1c) REG32(NPCM_GMAC_VERSION, 0x20) REG32(NPCM_GMAC_WAKEUP_FILTER, 0x28) REG32(NPCM_GMAC_PMT, 0x2c) REG32(NPCM_GMAC_LPI_CTRL, 0x30) REG32(NPCM_GMAC_TIMER_CTRL, 0x34) REG32(NPCM_GMAC_INT_STATUS, 0x38) REG32(NPCM_GMAC_INT_MASK, 0x3c) REG32(NPCM_GMAC_MAC0_ADDR_HI, 0x40) REG32(NPCM_GMAC_MAC0_ADDR_LO, 0x44) REG32(NPCM_GMAC_MAC1_ADDR_HI, 0x48) REG32(NPCM_GMAC_MAC1_ADDR_LO, 0x4c) REG32(NPCM_GMAC_MAC2_ADDR_HI, 0x50) REG32(NPCM_GMAC_MAC2_ADDR_LO, 0x54) REG32(NPCM_GMAC_MAC3_ADDR_HI, 0x58) REG32(NPCM_GMAC_MAC3_ADDR_LO, 0x5c) REG32(NPCM_GMAC_RGMII_STATUS, 0xd8) REG32(NPCM_GMAC_WATCHDOG, 0xdc) REG32(NPCM_GMAC_PTP_TCR, 0x700) REG32(NPCM_GMAC_PTP_SSIR, 0x704) REG32(NPCM_GMAC_PTP_STSR, 0x708) REG32(NPCM_GMAC_PTP_STNSR, 0x70c) REG32(NPCM_GMAC_PTP_STSUR, 0x710) REG32(NPCM_GMAC_PTP_STNSUR, 0x714) REG32(NPCM_GMAC_PTP_TAR, 0x718) REG32(NPCM_GMAC_PTP_TTSR, 0x71c) /* Register Fields */ #define NPCM_GMAC_MII_ADDR_BUSY BIT(0) #define NPCM_GMAC_MII_ADDR_WRITE BIT(1) #define NPCM_GMAC_MII_ADDR_GR(rv) extract16((rv), 6, 5) #define NPCM_GMAC_MII_ADDR_PA(rv) extract16((rv), 11, 5) #define NPCM_GMAC_INT_MASK_LPIIM BIT(10) #define NPCM_GMAC_INT_MASK_PMTM BIT(3) #define NPCM_GMAC_INT_MASK_RGIM BIT(0) #define NPCM_DMA_BUS_MODE_SWR BIT(0) static const uint32_t npcm_gmac_cold_reset_values[NPCM_GMAC_NR_REGS] = { /* Reduce version to 3.2 so that the kernel can enable interrupt. */ [R_NPCM_GMAC_VERSION] = 0x00001032, [R_NPCM_GMAC_TIMER_CTRL] = 0x03e80000, [R_NPCM_GMAC_MAC0_ADDR_HI] = 0x8000ffff, [R_NPCM_GMAC_MAC0_ADDR_LO] = 0xffffffff, [R_NPCM_GMAC_MAC1_ADDR_HI] = 0x0000ffff, [R_NPCM_GMAC_MAC1_ADDR_LO] = 0xffffffff, [R_NPCM_GMAC_MAC2_ADDR_HI] = 0x0000ffff, [R_NPCM_GMAC_MAC2_ADDR_LO] = 0xffffffff, [R_NPCM_GMAC_MAC3_ADDR_HI] = 0x0000ffff, [R_NPCM_GMAC_MAC3_ADDR_LO] = 0xffffffff, [R_NPCM_GMAC_PTP_TCR] = 0x00002000, [R_NPCM_DMA_BUS_MODE] = 0x00020101, [R_NPCM_DMA_HW_FEATURE] = 0x100d4f37, }; static const uint16_t phy_reg_init[] = { [MII_BMCR] = MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000, [MII_BMSR] = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD | MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST | MII_BMSR_EXTCAP, [MII_PHYID1] = 0x0362, [MII_PHYID2] = 0x5e6a, [MII_ANAR] = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 | MII_ANAR_CSMACD, [MII_ANLPAR] = MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD | MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD, [MII_ANER] = 0x64 | MII_ANER_NWAY, [MII_ANNP] = 0x2001, [MII_CTRL1000] = MII_CTRL1000_FULL, [MII_STAT1000] = MII_STAT1000_FULL, [MII_EXTSTAT] = 0x3000, /* 1000BASTE_T full-duplex capable */ }; static void npcm_gmac_soft_reset(NPCMGMACState *gmac) { memcpy(gmac->regs, npcm_gmac_cold_reset_values, NPCM_GMAC_NR_REGS * sizeof(uint32_t)); /* Clear reset bits */ gmac->regs[R_NPCM_DMA_BUS_MODE] &= ~NPCM_DMA_BUS_MODE_SWR; } static void gmac_phy_set_link(NPCMGMACState *gmac, bool active) { /* Autonegotiation status mirrors link status. */ if (active) { gmac->phy_regs[0][MII_BMSR] |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP); } else { gmac->phy_regs[0][MII_BMSR] &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP); } } static bool gmac_can_receive(NetClientState *nc) { NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc)); /* If GMAC receive is disabled. */ if (!(gmac->regs[R_NPCM_GMAC_MAC_CONFIG] & NPCM_GMAC_MAC_CONFIG_RX_EN)) { return false; } /* If GMAC DMA RX is stopped. */ if (!(gmac->regs[R_NPCM_DMA_CONTROL] & NPCM_DMA_CONTROL_START_STOP_RX)) { return false; } return true; } /* * Function that updates the GMAC IRQ * It find the logical OR of the enabled bits for NIS (if enabled) * It find the logical OR of the enabled bits for AIS (if enabled) */ static void gmac_update_irq(NPCMGMACState *gmac) { /* * Check if the normal interrupts summary is enabled * if so, add the bits for the summary that are enabled */ if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] & (NPCM_DMA_INTR_ENAB_NIE_BITS)) { gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_NIS; } /* * Check if the abnormal interrupts summary is enabled * if so, add the bits for the summary that are enabled */ if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] & (NPCM_DMA_INTR_ENAB_AIE_BITS)) { gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_AIS; } /* Get the logical OR of both normal and abnormal interrupts */ int level = !!((gmac->regs[R_NPCM_DMA_STATUS] & gmac->regs[R_NPCM_DMA_INTR_ENA] & NPCM_DMA_STATUS_NIS) | (gmac->regs[R_NPCM_DMA_STATUS] & gmac->regs[R_NPCM_DMA_INTR_ENA] & NPCM_DMA_STATUS_AIS)); /* Set the IRQ */ trace_npcm_gmac_update_irq(DEVICE(gmac)->canonical_path, gmac->regs[R_NPCM_DMA_STATUS], gmac->regs[R_NPCM_DMA_INTR_ENA], level); qemu_set_irq(gmac->irq, level); } static int gmac_read_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc) { if (dma_memory_read(&address_space_memory, addr, desc, sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } desc->rdes0 = le32_to_cpu(desc->rdes0); desc->rdes1 = le32_to_cpu(desc->rdes1); desc->rdes2 = le32_to_cpu(desc->rdes2); desc->rdes3 = le32_to_cpu(desc->rdes3); return 0; } static int gmac_write_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc) { struct NPCMGMACRxDesc le_desc; le_desc.rdes0 = cpu_to_le32(desc->rdes0); le_desc.rdes1 = cpu_to_le32(desc->rdes1); le_desc.rdes2 = cpu_to_le32(desc->rdes2); le_desc.rdes3 = cpu_to_le32(desc->rdes3); if (dma_memory_write(&address_space_memory, addr, &le_desc, sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } return 0; } static int gmac_read_tx_desc(dma_addr_t addr, struct NPCMGMACTxDesc *desc) { if (dma_memory_read(&address_space_memory, addr, desc, sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } desc->tdes0 = le32_to_cpu(desc->tdes0); desc->tdes1 = le32_to_cpu(desc->tdes1); desc->tdes2 = le32_to_cpu(desc->tdes2); desc->tdes3 = le32_to_cpu(desc->tdes3); return 0; } static int gmac_write_tx_desc(dma_addr_t addr, struct NPCMGMACTxDesc *desc) { struct NPCMGMACTxDesc le_desc; le_desc.tdes0 = cpu_to_le32(desc->tdes0); le_desc.tdes1 = cpu_to_le32(desc->tdes1); le_desc.tdes2 = cpu_to_le32(desc->tdes2); le_desc.tdes3 = cpu_to_le32(desc->tdes3); if (dma_memory_write(&address_space_memory, addr, &le_desc, sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } return 0; } static int gmac_rx_transfer_frame_to_buffer(uint32_t rx_buf_len, uint32_t *left_frame, uint32_t rx_buf_addr, bool *eof_transferred, const uint8_t **frame_ptr, uint16_t *transferred) { uint32_t to_transfer; /* * Check that buffer is bigger than the frame being transfered * If bigger then transfer only whats left of frame * Else, fill frame with all the content possible */ if (rx_buf_len >= *left_frame) { to_transfer = *left_frame; *eof_transferred = true; } else { to_transfer = rx_buf_len; } /* write frame part to memory */ if (dma_memory_write(&address_space_memory, (uint64_t) rx_buf_addr, *frame_ptr, to_transfer, MEMTXATTRS_UNSPECIFIED)) { return -1; } /* update frame pointer and size of whats left of frame */ *frame_ptr += to_transfer; *left_frame -= to_transfer; *transferred += to_transfer; return 0; } static void gmac_dma_set_state(NPCMGMACState *gmac, int shift, uint32_t state) { gmac->regs[R_NPCM_DMA_STATUS] = deposit32(gmac->regs[R_NPCM_DMA_STATUS], shift, 3, state); } static ssize_t gmac_receive(NetClientState *nc, const uint8_t *buf, size_t len) { /* * Comments have steps that relate to the * receiving process steps in pg 386 */ NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc)); uint32_t left_frame = len; const uint8_t *frame_ptr = buf; uint32_t desc_addr; uint32_t rx_buf_len, rx_buf_addr; struct NPCMGMACRxDesc rx_desc; uint16_t transferred = 0; bool eof_transferred = false; trace_npcm_gmac_packet_receive(DEVICE(gmac)->canonical_path, len); if (!gmac_can_receive(nc)) { qemu_log_mask(LOG_GUEST_ERROR, "GMAC Currently is not able for Rx"); return -1; } if (!gmac->regs[R_NPCM_DMA_HOST_RX_DESC]) { gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_RX_BASE_ADDR]); } desc_addr = NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_HOST_RX_DESC]); /* step 1 */ gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_RUNNING_FETCHING_STATE); trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path, desc_addr); if (gmac_read_rx_desc(desc_addr, &rx_desc)) { qemu_log_mask(LOG_GUEST_ERROR, "RX Descriptor @ 0x%x cant be read\n", desc_addr); gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_SUSPENDED_STATE); return -1; } /* step 2 */ if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) { qemu_log_mask(LOG_GUEST_ERROR, "RX Descriptor @ 0x%x is owned by software\n", desc_addr); gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU; gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI; gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_SUSPENDED_STATE); gmac_update_irq(gmac); return len; } /* step 3 */ /* * TODO -- * Implement all frame filtering and processing (with its own interrupts) */ trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc, rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2, rx_desc.rdes3); /* Clear rdes0 for the incoming descriptor and set FS in first descriptor.*/ rx_desc.rdes0 = RX_DESC_RDES0_FIRST_DESC_MASK; gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_RUNNING_TRANSFERRING_STATE); /* Pad the frame with FCS as the kernel driver will strip it away. */ left_frame += ETH_FCS_LEN; /* repeat while we still have frame to transfer to memory */ while (!eof_transferred) { /* Return descriptor no matter what happens */ rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN; /* Set the frame to be an IPv4/IPv6 frame. */ rx_desc.rdes0 |= RX_DESC_RDES0_FRM_TYPE_MASK; /* step 4 */ rx_buf_len = RX_DESC_RDES1_BFFR1_SZ_MASK(rx_desc.rdes1); rx_buf_addr = rx_desc.rdes2; gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr; gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame, rx_buf_addr, &eof_transferred, &frame_ptr, &transferred); trace_npcm_gmac_packet_receiving_buffer(DEVICE(gmac)->canonical_path, rx_buf_len, rx_buf_addr); /* if we still have frame left and the second buffer is not chained */ if (!(rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) && \ !eof_transferred) { /* repeat process from above on buffer 2 */ rx_buf_len = RX_DESC_RDES1_BFFR2_SZ_MASK(rx_desc.rdes1); rx_buf_addr = rx_desc.rdes3; gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr; gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame, rx_buf_addr, &eof_transferred, &frame_ptr, &transferred); trace_npcm_gmac_packet_receiving_buffer( \ DEVICE(gmac)->canonical_path, rx_buf_len, rx_buf_addr); } /* update address for descriptor */ gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = rx_buf_addr; /* Return descriptor */ rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN; /* Update frame length transferred */ rx_desc.rdes0 |= ((uint32_t)transferred) << RX_DESC_RDES0_FRAME_LEN_SHIFT; trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc, rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2, rx_desc.rdes3); /* step 5 */ gmac_write_rx_desc(desc_addr, &rx_desc); trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc, rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2, rx_desc.rdes3); /* read new descriptor into rx_desc if needed*/ if (!eof_transferred) { /* Get next descriptor address (chained or sequential) */ if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) { desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR]; } else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) { desc_addr = rx_desc.rdes3; } else { desc_addr += sizeof(rx_desc); } trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path, desc_addr); if (gmac_read_rx_desc(desc_addr, &rx_desc)) { qemu_log_mask(LOG_GUEST_ERROR, "RX Descriptor @ 0x%x cant be read\n", desc_addr); gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU; gmac_update_irq(gmac); return len; } /* step 6 */ if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) { if (!(gmac->regs[R_NPCM_DMA_CONTROL] & \ NPCM_DMA_CONTROL_FLUSH_MASK)) { rx_desc.rdes0 |= RX_DESC_RDES0_DESC_ERR_MASK; } eof_transferred = true; } /* Clear rdes0 for the incoming descriptor */ rx_desc.rdes0 = 0; } } gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_RUNNING_CLOSING_STATE); rx_desc.rdes0 |= RX_DESC_RDES0_LAST_DESC_MASK; if (!(rx_desc.rdes1 & RX_DESC_RDES1_DIS_INTR_COMP_MASK)) { gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI; gmac_update_irq(gmac); } trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc, rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2, rx_desc.rdes3); /* step 8 */ gmac->regs[R_NPCM_DMA_CONTROL] |= NPCM_DMA_CONTROL_FLUSH_MASK; /* step 9 */ trace_npcm_gmac_packet_received(DEVICE(gmac)->canonical_path, left_frame); gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE); gmac_write_rx_desc(desc_addr, &rx_desc); /* Get next descriptor address (chained or sequential) */ if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) { desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR]; } else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) { desc_addr = rx_desc.rdes3; } else { desc_addr += sizeof(rx_desc); } gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = desc_addr; return len; } static int gmac_tx_get_csum(uint32_t tdes1) { uint32_t mask = TX_DESC_TDES1_CHKSM_INS_CTRL_MASK(tdes1); int csum = 0; if (likely(mask > 0)) { csum |= CSUM_IP; } if (likely(mask > 1)) { csum |= CSUM_TCP | CSUM_UDP; } return csum; } static void gmac_try_send_next_packet(NPCMGMACState *gmac) { /* * Comments about steps refer to steps for * transmitting in page 384 of datasheet */ uint16_t tx_buffer_size = 2048; g_autofree uint8_t *tx_send_buffer = g_malloc(tx_buffer_size); uint32_t desc_addr; struct NPCMGMACTxDesc tx_desc; uint32_t tx_buf_addr, tx_buf_len; uint16_t length = 0; uint8_t *buf = tx_send_buffer; uint32_t prev_buf_size = 0; int csum = 0; /* steps 1&2 */ if (!gmac->regs[R_NPCM_DMA_HOST_TX_DESC]) { gmac->regs[R_NPCM_DMA_HOST_TX_DESC] = NPCM_DMA_HOST_TX_DESC_MASK(gmac->regs[R_NPCM_DMA_TX_BASE_ADDR]); } desc_addr = gmac->regs[R_NPCM_DMA_HOST_TX_DESC]; while (true) { gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_TX_RUNNING_FETCHING_STATE); if (gmac_read_tx_desc(desc_addr, &tx_desc)) { qemu_log_mask(LOG_GUEST_ERROR, "TX Descriptor @ 0x%x can't be read\n", desc_addr); return; } /* step 3 */ trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path, desc_addr); trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &tx_desc, tx_desc.tdes0, tx_desc.tdes1, tx_desc.tdes2, tx_desc.tdes3); /* 1 = DMA Owned, 0 = Software Owned */ if (!(tx_desc.tdes0 & TX_DESC_TDES0_OWN)) { trace_npcm_gmac_tx_desc_owner(DEVICE(gmac)->canonical_path, desc_addr); gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_TU; gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_TX_SUSPENDED_STATE); gmac_update_irq(gmac); return; } gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_TX_RUNNING_READ_STATE); /* Give the descriptor back regardless of what happens. */ tx_desc.tdes0 &= ~TX_DESC_TDES0_OWN; if (tx_desc.tdes1 & TX_DESC_TDES1_FIRST_SEG_MASK) { csum = gmac_tx_get_csum(tx_desc.tdes1); } /* step 4 */ tx_buf_addr = tx_desc.tdes2; gmac->regs[R_NPCM_DMA_CUR_TX_BUF_ADDR] = tx_buf_addr; tx_buf_len = TX_DESC_TDES1_BFFR1_SZ_MASK(tx_desc.tdes1); buf = &tx_send_buffer[prev_buf_size]; if ((prev_buf_size + tx_buf_len) > sizeof(buf)) { tx_buffer_size = prev_buf_size + tx_buf_len; tx_send_buffer = g_realloc(tx_send_buffer, tx_buffer_size); buf = &tx_send_buffer[prev_buf_size]; } /* step 5 */ if (dma_memory_read(&address_space_memory, tx_buf_addr, buf, tx_buf_len, MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read packet @ 0x%x\n", __func__, tx_buf_addr); return; } length += tx_buf_len; prev_buf_size += tx_buf_len; /* If not chained we'll have a second buffer. */ if (!(tx_desc.tdes1 & TX_DESC_TDES1_SEC_ADDR_CHND_MASK)) { tx_buf_addr = tx_desc.tdes3; gmac->regs[R_NPCM_DMA_CUR_TX_BUF_ADDR] = tx_buf_addr; tx_buf_len = TX_DESC_TDES1_BFFR2_SZ_MASK(tx_desc.tdes1); buf = &tx_send_buffer[prev_buf_size]; if ((prev_buf_size + tx_buf_len) > sizeof(buf)) { tx_buffer_size = prev_buf_size + tx_buf_len; tx_send_buffer = g_realloc(tx_send_buffer, tx_buffer_size); buf = &tx_send_buffer[prev_buf_size]; } if (dma_memory_read(&address_space_memory, tx_buf_addr, buf, tx_buf_len, MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read packet @ 0x%x\n", __func__, tx_buf_addr); return; } length += tx_buf_len; prev_buf_size += tx_buf_len; } if (tx_desc.tdes1 & TX_DESC_TDES1_LAST_SEG_MASK) { net_checksum_calculate(tx_send_buffer, length, csum); qemu_send_packet(qemu_get_queue(gmac->nic), tx_send_buffer, length); trace_npcm_gmac_packet_sent(DEVICE(gmac)->canonical_path, length); buf = tx_send_buffer; length = 0; } /* step 6 */ gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_TX_RUNNING_CLOSING_STATE); gmac_write_tx_desc(desc_addr, &tx_desc); if (tx_desc.tdes1 & TX_DESC_TDES1_TX_END_RING_MASK) { desc_addr = gmac->regs[R_NPCM_DMA_TX_BASE_ADDR]; } else if (tx_desc.tdes1 & TX_DESC_TDES1_SEC_ADDR_CHND_MASK) { desc_addr = tx_desc.tdes3; } else { desc_addr += sizeof(tx_desc); } gmac->regs[R_NPCM_DMA_HOST_TX_DESC] = desc_addr; /* step 7 */ if (tx_desc.tdes1 & TX_DESC_TDES1_INTERR_COMP_MASK) { gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_TI; gmac_update_irq(gmac); } } } static void gmac_cleanup(NetClientState *nc) { /* Nothing to do yet. */ } static void gmac_set_link(NetClientState *nc) { NPCMGMACState *gmac = qemu_get_nic_opaque(nc); trace_npcm_gmac_set_link(!nc->link_down); gmac_phy_set_link(gmac, !nc->link_down); } static void npcm_gmac_mdio_access(NPCMGMACState *gmac, uint16_t v) { bool busy = v & NPCM_GMAC_MII_ADDR_BUSY; uint8_t is_write; uint8_t pa, gr; uint16_t data; if (busy) { is_write = v & NPCM_GMAC_MII_ADDR_WRITE; pa = NPCM_GMAC_MII_ADDR_PA(v); gr = NPCM_GMAC_MII_ADDR_GR(v); /* Both pa and gr are 5 bits, so they are less than 32. */ g_assert(pa < NPCM_GMAC_MAX_PHYS); g_assert(gr < NPCM_GMAC_MAX_PHY_REGS); if (v & NPCM_GMAC_MII_ADDR_WRITE) { data = gmac->regs[R_NPCM_GMAC_MII_DATA]; /* Clear reset bit for BMCR register */ switch (gr) { case MII_BMCR: data &= ~MII_BMCR_RESET; /* Autonegotiation is a W1C bit*/ if (data & MII_BMCR_ANRESTART) { /* Tells autonegotiation to not restart again */ data &= ~MII_BMCR_ANRESTART; } if ((data & MII_BMCR_AUTOEN) && !(gmac->phy_regs[pa][MII_BMSR] & MII_BMSR_AN_COMP)) { /* sets autonegotiation as complete */ gmac->phy_regs[pa][MII_BMSR] |= MII_BMSR_AN_COMP; /* Resolve AN automatically->need to set this */ gmac->phy_regs[0][MII_ANLPAR] = 0x0000; } } gmac->phy_regs[pa][gr] = data; } else { data = gmac->phy_regs[pa][gr]; gmac->regs[R_NPCM_GMAC_MII_DATA] = data; } trace_npcm_gmac_mdio_access(DEVICE(gmac)->canonical_path, is_write, pa, gr, data); } gmac->regs[R_NPCM_GMAC_MII_ADDR] = v & ~NPCM_GMAC_MII_ADDR_BUSY; } static uint64_t npcm_gmac_read(void *opaque, hwaddr offset, unsigned size) { NPCMGMACState *gmac = opaque; uint32_t v = 0; switch (offset) { /* Write only registers */ case A_NPCM_DMA_XMT_POLL_DEMAND: case A_NPCM_DMA_RCV_POLL_DEMAND: qemu_log_mask(LOG_GUEST_ERROR, "%s: Read of write-only reg: offset: 0x%04" HWADDR_PRIx "\n", DEVICE(gmac)->canonical_path, offset); break; default: v = gmac->regs[offset / sizeof(uint32_t)]; } trace_npcm_gmac_reg_read(DEVICE(gmac)->canonical_path, offset, v); return v; } static void npcm_gmac_write(void *opaque, hwaddr offset, uint64_t v, unsigned size) { NPCMGMACState *gmac = opaque; trace_npcm_gmac_reg_write(DEVICE(gmac)->canonical_path, offset, v); switch (offset) { /* Read only registers */ case A_NPCM_GMAC_VERSION: case A_NPCM_GMAC_INT_STATUS: case A_NPCM_GMAC_RGMII_STATUS: case A_NPCM_GMAC_PTP_STSR: case A_NPCM_GMAC_PTP_STNSR: case A_NPCM_DMA_MISSED_FRAME_CTR: case A_NPCM_DMA_HOST_TX_DESC: case A_NPCM_DMA_HOST_RX_DESC: case A_NPCM_DMA_CUR_TX_BUF_ADDR: case A_NPCM_DMA_CUR_RX_BUF_ADDR: case A_NPCM_DMA_HW_FEATURE: qemu_log_mask(LOG_GUEST_ERROR, "%s: Write of read-only reg: offset: 0x%04" HWADDR_PRIx ", value: 0x%04" PRIx64 "\n", DEVICE(gmac)->canonical_path, offset, v); break; case A_NPCM_GMAC_MAC_CONFIG: gmac->regs[offset / sizeof(uint32_t)] = v; break; case A_NPCM_GMAC_MII_ADDR: npcm_gmac_mdio_access(gmac, v); break; case A_NPCM_GMAC_MAC0_ADDR_HI: gmac->regs[offset / sizeof(uint32_t)] = v; gmac->conf.macaddr.a[0] = v >> 8; gmac->conf.macaddr.a[1] = v >> 0; break; case A_NPCM_GMAC_MAC0_ADDR_LO: gmac->regs[offset / sizeof(uint32_t)] = v; gmac->conf.macaddr.a[2] = v >> 24; gmac->conf.macaddr.a[3] = v >> 16; gmac->conf.macaddr.a[4] = v >> 8; gmac->conf.macaddr.a[5] = v >> 0; break; case A_NPCM_GMAC_MAC1_ADDR_HI: case A_NPCM_GMAC_MAC1_ADDR_LO: case A_NPCM_GMAC_MAC2_ADDR_HI: case A_NPCM_GMAC_MAC2_ADDR_LO: case A_NPCM_GMAC_MAC3_ADDR_HI: case A_NPCM_GMAC_MAC3_ADDR_LO: gmac->regs[offset / sizeof(uint32_t)] = v; qemu_log_mask(LOG_UNIMP, "%s: Only MAC Address 0 is supported. This request " "is ignored.\n", DEVICE(gmac)->canonical_path); break; case A_NPCM_DMA_BUS_MODE: gmac->regs[offset / sizeof(uint32_t)] = v; if (v & NPCM_DMA_BUS_MODE_SWR) { npcm_gmac_soft_reset(gmac); } break; case A_NPCM_DMA_RCV_POLL_DEMAND: /* We dont actually care about the value */ gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE); break; case A_NPCM_DMA_XMT_POLL_DEMAND: /* We dont actually care about the value */ gmac_try_send_next_packet(gmac); break; case A_NPCM_DMA_CONTROL: gmac->regs[offset / sizeof(uint32_t)] = v; if (v & NPCM_DMA_CONTROL_START_STOP_TX) { gmac_try_send_next_packet(gmac); } else { gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_TX_STOPPED_STATE); } if (v & NPCM_DMA_CONTROL_START_STOP_RX) { gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE); qemu_flush_queued_packets(qemu_get_queue(gmac->nic)); } else { gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_STOPPED_STATE); } break; case A_NPCM_DMA_STATUS: /* Check that RO bits are not written to */ if (NPCM_DMA_STATUS_RO_MASK(v)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Write of read-only bits of reg: offset: 0x%04" HWADDR_PRIx ", value: 0x%04" PRIx64 "\n", DEVICE(gmac)->canonical_path, offset, v); } /* for W1C bits, implement W1C */ gmac->regs[offset / sizeof(uint32_t)] &= ~NPCM_DMA_STATUS_W1C_MASK(v); if (v & NPCM_DMA_STATUS_RU) { /* Clearing RU bit indicates descriptor is owned by DMA again. */ gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT, NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE); qemu_flush_queued_packets(qemu_get_queue(gmac->nic)); } break; default: gmac->regs[offset / sizeof(uint32_t)] = v; break; } gmac_update_irq(gmac); } static void npcm_gmac_reset(DeviceState *dev) { NPCMGMACState *gmac = NPCM_GMAC(dev); npcm_gmac_soft_reset(gmac); memcpy(gmac->phy_regs[0], phy_reg_init, sizeof(phy_reg_init)); trace_npcm_gmac_reset(DEVICE(gmac)->canonical_path, gmac->phy_regs[0][MII_BMSR]); } static NetClientInfo net_npcm_gmac_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = gmac_can_receive, .receive = gmac_receive, .cleanup = gmac_cleanup, .link_status_changed = gmac_set_link, }; static const struct MemoryRegionOps npcm_gmac_ops = { .read = npcm_gmac_read, .write = npcm_gmac_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; static void npcm_gmac_realize(DeviceState *dev, Error **errp) { NPCMGMACState *gmac = NPCM_GMAC(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); memory_region_init_io(&gmac->iomem, OBJECT(gmac), &npcm_gmac_ops, gmac, TYPE_NPCM_GMAC, 8 * KiB); sysbus_init_mmio(sbd, &gmac->iomem); sysbus_init_irq(sbd, &gmac->irq); qemu_macaddr_default_if_unset(&gmac->conf.macaddr); gmac->nic = qemu_new_nic(&net_npcm_gmac_info, &gmac->conf, TYPE_NPCM_GMAC, dev->id, &dev->mem_reentrancy_guard, gmac); qemu_format_nic_info_str(qemu_get_queue(gmac->nic), gmac->conf.macaddr.a); gmac->regs[R_NPCM_GMAC_MAC0_ADDR_HI] = (gmac->conf.macaddr.a[0] << 8) + \ gmac->conf.macaddr.a[1]; gmac->regs[R_NPCM_GMAC_MAC0_ADDR_LO] = (gmac->conf.macaddr.a[2] << 24) + \ (gmac->conf.macaddr.a[3] << 16) + \ (gmac->conf.macaddr.a[4] << 8) + \ gmac->conf.macaddr.a[5]; } static void npcm_gmac_unrealize(DeviceState *dev) { NPCMGMACState *gmac = NPCM_GMAC(dev); qemu_del_nic(gmac->nic); } static const VMStateDescription vmstate_npcm_gmac = { .name = TYPE_NPCM_GMAC, .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, NPCMGMACState, NPCM_GMAC_NR_REGS), VMSTATE_END_OF_LIST(), }, }; static const Property npcm_gmac_properties[] = { DEFINE_NIC_PROPERTIES(NPCMGMACState, conf), DEFINE_PROP_END_OF_LIST(), }; static void npcm_gmac_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); dc->desc = "NPCM GMAC Controller"; dc->realize = npcm_gmac_realize; dc->unrealize = npcm_gmac_unrealize; device_class_set_legacy_reset(dc, npcm_gmac_reset); dc->vmsd = &vmstate_npcm_gmac; device_class_set_props(dc, npcm_gmac_properties); } static const TypeInfo npcm_gmac_types[] = { { .name = TYPE_NPCM_GMAC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(NPCMGMACState), .class_init = npcm_gmac_class_init, }, }; DEFINE_TYPES(npcm_gmac_types)