/* * i.MX Fast Ethernet Controller emulation. * * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net> * * Based on Coldfire Fast Ethernet Controller emulation. * * Copyright (c) 2007 CodeSourcery. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "hw/net/imx_fec.h" #include "sysemu/dma.h" #include "qemu/log.h" #include "qemu/module.h" #include "net/checksum.h" #include "net/eth.h" /* For crc32 */ #include <zlib.h> #ifndef DEBUG_IMX_FEC #define DEBUG_IMX_FEC 0 #endif #define FEC_PRINTF(fmt, args...) \ do { \ if (DEBUG_IMX_FEC) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \ __func__, ##args); \ } \ } while (0) #ifndef DEBUG_IMX_PHY #define DEBUG_IMX_PHY 0 #endif #define PHY_PRINTF(fmt, args...) \ do { \ if (DEBUG_IMX_PHY) { \ fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \ __func__, ##args); \ } \ } while (0) #define IMX_MAX_DESC 1024 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index) { static char tmp[20]; sprintf(tmp, "index %d", index); return tmp; } static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index) { switch (index) { case ENET_FRBR: return "FRBR"; case ENET_FRSR: return "FRSR"; case ENET_MIIGSK_CFGR: return "MIIGSK_CFGR"; case ENET_MIIGSK_ENR: return "MIIGSK_ENR"; default: return imx_default_reg_name(s, index); } } static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index) { switch (index) { case ENET_RSFL: return "RSFL"; case ENET_RSEM: return "RSEM"; case ENET_RAEM: return "RAEM"; case ENET_RAFL: return "RAFL"; case ENET_TSEM: return "TSEM"; case ENET_TAEM: return "TAEM"; case ENET_TAFL: return "TAFL"; case ENET_TIPG: return "TIPG"; case ENET_FTRL: return "FTRL"; case ENET_TACC: return "TACC"; case ENET_RACC: return "RACC"; case ENET_ATCR: return "ATCR"; case ENET_ATVR: return "ATVR"; case ENET_ATOFF: return "ATOFF"; case ENET_ATPER: return "ATPER"; case ENET_ATCOR: return "ATCOR"; case ENET_ATINC: return "ATINC"; case ENET_ATSTMP: return "ATSTMP"; case ENET_TGSR: return "TGSR"; case ENET_TCSR0: return "TCSR0"; case ENET_TCCR0: return "TCCR0"; case ENET_TCSR1: return "TCSR1"; case ENET_TCCR1: return "TCCR1"; case ENET_TCSR2: return "TCSR2"; case ENET_TCCR2: return "TCCR2"; case ENET_TCSR3: return "TCSR3"; case ENET_TCCR3: return "TCCR3"; default: return imx_default_reg_name(s, index); } } static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index) { switch (index) { case ENET_EIR: return "EIR"; case ENET_EIMR: return "EIMR"; case ENET_RDAR: return "RDAR"; case ENET_TDAR: return "TDAR"; case ENET_ECR: return "ECR"; case ENET_MMFR: return "MMFR"; case ENET_MSCR: return "MSCR"; case ENET_MIBC: return "MIBC"; case ENET_RCR: return "RCR"; case ENET_TCR: return "TCR"; case ENET_PALR: return "PALR"; case ENET_PAUR: return "PAUR"; case ENET_OPD: return "OPD"; case ENET_IAUR: return "IAUR"; case ENET_IALR: return "IALR"; case ENET_GAUR: return "GAUR"; case ENET_GALR: return "GALR"; case ENET_TFWR: return "TFWR"; case ENET_RDSR: return "RDSR"; case ENET_TDSR: return "TDSR"; case ENET_MRBR: return "MRBR"; default: if (s->is_fec) { return imx_fec_reg_name(s, index); } else { return imx_enet_reg_name(s, index); } } } /* * Versions of this device with more than one TX descriptor save the * 2nd and 3rd descriptors in a subsection, to maintain migration * compatibility with previous versions of the device that only * supported a single descriptor. */ static bool imx_eth_is_multi_tx_ring(void *opaque) { IMXFECState *s = IMX_FEC(opaque); return s->tx_ring_num > 1; } static const VMStateDescription vmstate_imx_eth_txdescs = { .name = "imx.fec/txdescs", .version_id = 1, .minimum_version_id = 1, .needed = imx_eth_is_multi_tx_ring, .fields = (VMStateField[]) { VMSTATE_UINT32(tx_descriptor[1], IMXFECState), VMSTATE_UINT32(tx_descriptor[2], IMXFECState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_imx_eth = { .name = TYPE_IMX_FEC, .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX), VMSTATE_UINT32(rx_descriptor, IMXFECState), VMSTATE_UINT32(tx_descriptor[0], IMXFECState), VMSTATE_UINT32(phy_status, IMXFECState), VMSTATE_UINT32(phy_control, IMXFECState), VMSTATE_UINT32(phy_advertise, IMXFECState), VMSTATE_UINT32(phy_int, IMXFECState), VMSTATE_UINT32(phy_int_mask, IMXFECState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_imx_eth_txdescs, NULL }, }; #define PHY_INT_ENERGYON (1 << 7) #define PHY_INT_AUTONEG_COMPLETE (1 << 6) #define PHY_INT_FAULT (1 << 5) #define PHY_INT_DOWN (1 << 4) #define PHY_INT_AUTONEG_LP (1 << 3) #define PHY_INT_PARFAULT (1 << 2) #define PHY_INT_AUTONEG_PAGE (1 << 1) static void imx_eth_update(IMXFECState *s); /* * The MII phy could raise a GPIO to the processor which in turn * could be handled as an interrpt by the OS. * For now we don't handle any GPIO/interrupt line, so the OS will * have to poll for the PHY status. */ static void phy_update_irq(IMXFECState *s) { imx_eth_update(s); } static void phy_update_link(IMXFECState *s) { /* Autonegotiation status mirrors link status. */ if (qemu_get_queue(s->nic)->link_down) { PHY_PRINTF("link is down\n"); s->phy_status &= ~0x0024; s->phy_int |= PHY_INT_DOWN; } else { PHY_PRINTF("link is up\n"); s->phy_status |= 0x0024; s->phy_int |= PHY_INT_ENERGYON; s->phy_int |= PHY_INT_AUTONEG_COMPLETE; } phy_update_irq(s); } static void imx_eth_set_link(NetClientState *nc) { phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc))); } static void phy_reset(IMXFECState *s) { s->phy_status = 0x7809; s->phy_control = 0x3000; s->phy_advertise = 0x01e1; s->phy_int_mask = 0; s->phy_int = 0; phy_update_link(s); } static uint32_t do_phy_read(IMXFECState *s, int reg) { uint32_t val; if (reg > 31) { /* we only advertise one phy */ return 0; } switch (reg) { case 0: /* Basic Control */ val = s->phy_control; break; case 1: /* Basic Status */ val = s->phy_status; break; case 2: /* ID1 */ val = 0x0007; break; case 3: /* ID2 */ val = 0xc0d1; break; case 4: /* Auto-neg advertisement */ val = s->phy_advertise; break; case 5: /* Auto-neg Link Partner Ability */ val = 0x0f71; break; case 6: /* Auto-neg Expansion */ val = 1; break; case 29: /* Interrupt source. */ val = s->phy_int; s->phy_int = 0; phy_update_irq(s); break; case 30: /* Interrupt mask */ val = s->phy_int_mask; break; case 17: case 18: case 27: case 31: qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n", TYPE_IMX_FEC, __func__, reg); val = 0; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", TYPE_IMX_FEC, __func__, reg); val = 0; break; } PHY_PRINTF("read 0x%04x @ %d\n", val, reg); return val; } static void do_phy_write(IMXFECState *s, int reg, uint32_t val) { PHY_PRINTF("write 0x%04x @ %d\n", val, reg); if (reg > 31) { /* we only advertise one phy */ return; } switch (reg) { case 0: /* Basic Control */ if (val & 0x8000) { phy_reset(s); } else { s->phy_control = val & 0x7980; /* Complete autonegotiation immediately. */ if (val & 0x1000) { s->phy_status |= 0x0020; } } break; case 4: /* Auto-neg advertisement */ s->phy_advertise = (val & 0x2d7f) | 0x80; break; case 30: /* Interrupt mask */ s->phy_int_mask = val & 0xff; phy_update_irq(s); break; case 17: case 18: case 27: case 31: qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n", TYPE_IMX_FEC, __func__, reg); break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", TYPE_IMX_FEC, __func__, reg); break; } } static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr) { dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd)); } static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr) { dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd)); } static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr) { dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd)); } static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr) { dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd)); } static void imx_eth_update(IMXFECState *s) { /* * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER * interrupts swapped. This worked with older versions of Linux (4.14 * and older) since Linux associated both interrupt lines with Ethernet * MAC interrupts. Specifically, * - Linux 4.15 and later have separate interrupt handlers for the MAC and * timer interrupts. Those versions of Linux fail with versions of QEMU * with swapped interrupt assignments. * - In linux 4.14, both interrupt lines were registered with the Ethernet * MAC interrupt handler. As a result, all versions of qemu happen to * work, though that is accidental. * - In Linux 4.9 and older, the timer interrupt was registered directly * with the Ethernet MAC interrupt handler. The MAC interrupt was * redirected to a GPIO interrupt to work around erratum ERR006687. * This was implemented using the SOC's IOMUX block. In qemu, this GPIO * interrupt never fired since IOMUX is currently not supported in qemu. * Linux instead received MAC interrupts on the timer interrupt. * As a result, qemu versions with the swapped interrupt assignment work, * albeit accidentally, but qemu versions with the correct interrupt * assignment fail. * * To ensure that all versions of Linux work, generate ENET_INT_MAC * interrrupts on both interrupt lines. This should be changed if and when * qemu supports IOMUX. */ if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & (ENET_INT_MAC | ENET_INT_TS_TIMER)) { qemu_set_irq(s->irq[1], 1); } else { qemu_set_irq(s->irq[1], 0); } if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) { qemu_set_irq(s->irq[0], 1); } else { qemu_set_irq(s->irq[0], 0); } } static void imx_fec_do_tx(IMXFECState *s) { int frame_size = 0, descnt = 0; uint8_t *ptr = s->frame; uint32_t addr = s->tx_descriptor[0]; while (descnt++ < IMX_MAX_DESC) { IMXFECBufDesc bd; int len; imx_fec_read_bd(&bd, addr); FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n", addr, bd.flags, bd.length, bd.data); if ((bd.flags & ENET_BD_R) == 0) { /* Run out of descriptors to transmit. */ FEC_PRINTF("tx_bd ran out of descriptors to transmit\n"); break; } len = bd.length; if (frame_size + len > ENET_MAX_FRAME_SIZE) { len = ENET_MAX_FRAME_SIZE - frame_size; s->regs[ENET_EIR] |= ENET_INT_BABT; } dma_memory_read(&address_space_memory, bd.data, ptr, len); ptr += len; frame_size += len; if (bd.flags & ENET_BD_L) { /* Last buffer in frame. */ qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); ptr = s->frame; frame_size = 0; s->regs[ENET_EIR] |= ENET_INT_TXF; } s->regs[ENET_EIR] |= ENET_INT_TXB; bd.flags &= ~ENET_BD_R; /* Write back the modified descriptor. */ imx_fec_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & ENET_BD_W) != 0) { addr = s->regs[ENET_TDSR]; } else { addr += sizeof(bd); } } s->tx_descriptor[0] = addr; imx_eth_update(s); } static void imx_enet_do_tx(IMXFECState *s, uint32_t index) { int frame_size = 0, descnt = 0; uint8_t *ptr = s->frame; uint32_t addr, int_txb, int_txf, tdsr; size_t ring; switch (index) { case ENET_TDAR: ring = 0; int_txb = ENET_INT_TXB; int_txf = ENET_INT_TXF; tdsr = ENET_TDSR; break; case ENET_TDAR1: ring = 1; int_txb = ENET_INT_TXB1; int_txf = ENET_INT_TXF1; tdsr = ENET_TDSR1; break; case ENET_TDAR2: ring = 2; int_txb = ENET_INT_TXB2; int_txf = ENET_INT_TXF2; tdsr = ENET_TDSR2; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: bogus value for index %x\n", __func__, index); abort(); break; } addr = s->tx_descriptor[ring]; while (descnt++ < IMX_MAX_DESC) { IMXENETBufDesc bd; int len; imx_enet_read_bd(&bd, addr); FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x " "status %04x\n", addr, bd.flags, bd.length, bd.data, bd.option, bd.status); if ((bd.flags & ENET_BD_R) == 0) { /* Run out of descriptors to transmit. */ break; } len = bd.length; if (frame_size + len > ENET_MAX_FRAME_SIZE) { len = ENET_MAX_FRAME_SIZE - frame_size; s->regs[ENET_EIR] |= ENET_INT_BABT; } dma_memory_read(&address_space_memory, bd.data, ptr, len); ptr += len; frame_size += len; if (bd.flags & ENET_BD_L) { if (bd.option & ENET_BD_PINS) { struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame); if (IP_HEADER_VERSION(ip_hd) == 4) { net_checksum_calculate(s->frame, frame_size); } } if (bd.option & ENET_BD_IINS) { struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame); /* We compute checksum only for IPv4 frames */ if (IP_HEADER_VERSION(ip_hd) == 4) { uint16_t csum; ip_hd->ip_sum = 0; csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd)); ip_hd->ip_sum = cpu_to_be16(csum); } } /* Last buffer in frame. */ qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); ptr = s->frame; frame_size = 0; if (bd.option & ENET_BD_TX_INT) { s->regs[ENET_EIR] |= int_txf; } } if (bd.option & ENET_BD_TX_INT) { s->regs[ENET_EIR] |= int_txb; } bd.flags &= ~ENET_BD_R; /* Write back the modified descriptor. */ imx_enet_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & ENET_BD_W) != 0) { addr = s->regs[tdsr]; } else { addr += sizeof(bd); } } s->tx_descriptor[ring] = addr; imx_eth_update(s); } static void imx_eth_do_tx(IMXFECState *s, uint32_t index) { if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { imx_enet_do_tx(s, index); } else { imx_fec_do_tx(s); } } static void imx_eth_enable_rx(IMXFECState *s, bool flush) { IMXFECBufDesc bd; imx_fec_read_bd(&bd, s->rx_descriptor); s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0; if (!s->regs[ENET_RDAR]) { FEC_PRINTF("RX buffer full\n"); } else if (flush) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } } static void imx_eth_reset(DeviceState *d) { IMXFECState *s = IMX_FEC(d); /* Reset the Device */ memset(s->regs, 0, sizeof(s->regs)); s->regs[ENET_ECR] = 0xf0000000; s->regs[ENET_MIBC] = 0xc0000000; s->regs[ENET_RCR] = 0x05ee0001; s->regs[ENET_OPD] = 0x00010000; s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16) | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3]; s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808; if (s->is_fec) { s->regs[ENET_FRBR] = 0x00000600; s->regs[ENET_FRSR] = 0x00000500; s->regs[ENET_MIIGSK_ENR] = 0x00000006; } else { s->regs[ENET_RAEM] = 0x00000004; s->regs[ENET_RAFL] = 0x00000004; s->regs[ENET_TAEM] = 0x00000004; s->regs[ENET_TAFL] = 0x00000008; s->regs[ENET_TIPG] = 0x0000000c; s->regs[ENET_FTRL] = 0x000007ff; s->regs[ENET_ATPER] = 0x3b9aca00; } s->rx_descriptor = 0; memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor)); /* We also reset the PHY */ phy_reset(s); } static uint32_t imx_default_read(IMXFECState *s, uint32_t index) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); return 0; } static uint32_t imx_fec_read(IMXFECState *s, uint32_t index) { switch (index) { case ENET_FRBR: case ENET_FRSR: case ENET_MIIGSK_CFGR: case ENET_MIIGSK_ENR: return s->regs[index]; default: return imx_default_read(s, index); } } static uint32_t imx_enet_read(IMXFECState *s, uint32_t index) { switch (index) { case ENET_RSFL: case ENET_RSEM: case ENET_RAEM: case ENET_RAFL: case ENET_TSEM: case ENET_TAEM: case ENET_TAFL: case ENET_TIPG: case ENET_FTRL: case ENET_TACC: case ENET_RACC: case ENET_ATCR: case ENET_ATVR: case ENET_ATOFF: case ENET_ATPER: case ENET_ATCOR: case ENET_ATINC: case ENET_ATSTMP: case ENET_TGSR: case ENET_TCSR0: case ENET_TCCR0: case ENET_TCSR1: case ENET_TCCR1: case ENET_TCSR2: case ENET_TCCR2: case ENET_TCSR3: case ENET_TCCR3: return s->regs[index]; default: return imx_default_read(s, index); } } static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size) { uint32_t value = 0; IMXFECState *s = IMX_FEC(opaque); uint32_t index = offset >> 2; switch (index) { case ENET_EIR: case ENET_EIMR: case ENET_RDAR: case ENET_TDAR: case ENET_ECR: case ENET_MMFR: case ENET_MSCR: case ENET_MIBC: case ENET_RCR: case ENET_TCR: case ENET_PALR: case ENET_PAUR: case ENET_OPD: case ENET_IAUR: case ENET_IALR: case ENET_GAUR: case ENET_GALR: case ENET_TFWR: case ENET_RDSR: case ENET_TDSR: case ENET_MRBR: value = s->regs[index]; break; default: if (s->is_fec) { value = imx_fec_read(s, index); } else { value = imx_enet_read(s, index); } break; } FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index), value); return value; } static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%" PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); return; } static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value) { switch (index) { case ENET_FRBR: /* FRBR is read only */ qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n", TYPE_IMX_FEC, __func__); break; case ENET_FRSR: s->regs[index] = (value & 0x000003fc) | 0x00000400; break; case ENET_MIIGSK_CFGR: s->regs[index] = value & 0x00000053; break; case ENET_MIIGSK_ENR: s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0; break; default: imx_default_write(s, index, value); break; } } static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value) { switch (index) { case ENET_RSFL: case ENET_RSEM: case ENET_RAEM: case ENET_RAFL: case ENET_TSEM: case ENET_TAEM: case ENET_TAFL: s->regs[index] = value & 0x000001ff; break; case ENET_TIPG: s->regs[index] = value & 0x0000001f; break; case ENET_FTRL: s->regs[index] = value & 0x00003fff; break; case ENET_TACC: s->regs[index] = value & 0x00000019; break; case ENET_RACC: s->regs[index] = value & 0x000000C7; break; case ENET_ATCR: s->regs[index] = value & 0x00002a9d; break; case ENET_ATVR: case ENET_ATOFF: case ENET_ATPER: s->regs[index] = value; break; case ENET_ATSTMP: /* ATSTMP is read only */ qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n", TYPE_IMX_FEC, __func__); break; case ENET_ATCOR: s->regs[index] = value & 0x7fffffff; break; case ENET_ATINC: s->regs[index] = value & 0x00007f7f; break; case ENET_TGSR: /* implement clear timer flag */ value = value & 0x0000000f; break; case ENET_TCSR0: case ENET_TCSR1: case ENET_TCSR2: case ENET_TCSR3: value = value & 0x000000fd; break; case ENET_TCCR0: case ENET_TCCR1: case ENET_TCCR2: case ENET_TCCR3: s->regs[index] = value; break; default: imx_default_write(s, index, value); break; } } static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { IMXFECState *s = IMX_FEC(opaque); const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s); uint32_t index = offset >> 2; FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index), (uint32_t)value); switch (index) { case ENET_EIR: s->regs[index] &= ~value; break; case ENET_EIMR: s->regs[index] = value; break; case ENET_RDAR: if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { if (!s->regs[index]) { imx_eth_enable_rx(s, true); } } else { s->regs[index] = 0; } break; case ENET_TDAR1: /* FALLTHROUGH */ case ENET_TDAR2: /* FALLTHROUGH */ if (unlikely(single_tx_ring)) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: trying to access TDAR2 or TDAR1\n", TYPE_IMX_FEC, __func__); return; } case ENET_TDAR: /* FALLTHROUGH */ if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { s->regs[index] = ENET_TDAR_TDAR; imx_eth_do_tx(s, index); } s->regs[index] = 0; break; case ENET_ECR: if (value & ENET_ECR_RESET) { return imx_eth_reset(DEVICE(s)); } s->regs[index] = value; if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) { s->regs[ENET_RDAR] = 0; s->rx_descriptor = s->regs[ENET_RDSR]; s->regs[ENET_TDAR] = 0; s->regs[ENET_TDAR1] = 0; s->regs[ENET_TDAR2] = 0; s->tx_descriptor[0] = s->regs[ENET_TDSR]; s->tx_descriptor[1] = s->regs[ENET_TDSR1]; s->tx_descriptor[2] = s->regs[ENET_TDSR2]; } break; case ENET_MMFR: s->regs[index] = value; if (extract32(value, 29, 1)) { /* This is a read operation */ s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16, do_phy_read(s, extract32(value, 18, 10))); } else { /* This a write operation */ do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16)); } /* raise the interrupt as the PHY operation is done */ s->regs[ENET_EIR] |= ENET_INT_MII; break; case ENET_MSCR: s->regs[index] = value & 0xfe; break; case ENET_MIBC: /* TODO: Implement MIB. */ s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0; break; case ENET_RCR: s->regs[index] = value & 0x07ff003f; /* TODO: Implement LOOP mode. */ break; case ENET_TCR: /* We transmit immediately, so raise GRA immediately. */ s->regs[index] = value; if (value & 1) { s->regs[ENET_EIR] |= ENET_INT_GRA; } break; case ENET_PALR: s->regs[index] = value; s->conf.macaddr.a[0] = value >> 24; s->conf.macaddr.a[1] = value >> 16; s->conf.macaddr.a[2] = value >> 8; s->conf.macaddr.a[3] = value; break; case ENET_PAUR: s->regs[index] = (value | 0x0000ffff) & 0xffff8808; s->conf.macaddr.a[4] = value >> 24; s->conf.macaddr.a[5] = value >> 16; break; case ENET_OPD: s->regs[index] = (value & 0x0000ffff) | 0x00010000; break; case ENET_IAUR: case ENET_IALR: case ENET_GAUR: case ENET_GALR: /* TODO: implement MAC hash filtering. */ break; case ENET_TFWR: if (s->is_fec) { s->regs[index] = value & 0x3; } else { s->regs[index] = value & 0x13f; } break; case ENET_RDSR: if (s->is_fec) { s->regs[index] = value & ~3; } else { s->regs[index] = value & ~7; } s->rx_descriptor = s->regs[index]; break; case ENET_TDSR: if (s->is_fec) { s->regs[index] = value & ~3; } else { s->regs[index] = value & ~7; } s->tx_descriptor[0] = s->regs[index]; break; case ENET_TDSR1: if (unlikely(single_tx_ring)) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: trying to access TDSR1\n", TYPE_IMX_FEC, __func__); return; } s->regs[index] = value & ~7; s->tx_descriptor[1] = s->regs[index]; break; case ENET_TDSR2: if (unlikely(single_tx_ring)) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: trying to access TDSR2\n", TYPE_IMX_FEC, __func__); return; } s->regs[index] = value & ~7; s->tx_descriptor[2] = s->regs[index]; break; case ENET_MRBR: s->regs[index] = value & 0x00003ff0; break; default: if (s->is_fec) { imx_fec_write(s, index, value); } else { imx_enet_write(s, index, value); } return; } imx_eth_update(s); } static int imx_eth_can_receive(NetClientState *nc) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); FEC_PRINTF("\n"); return !!s->regs[ENET_RDAR]; } static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf, size_t len) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); IMXFECBufDesc bd; uint32_t flags = 0; uint32_t addr; uint32_t crc; uint32_t buf_addr; uint8_t *crc_ptr; unsigned int buf_len; size_t size = len; FEC_PRINTF("len %d\n", (int)size); if (!s->regs[ENET_RDAR]) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", TYPE_IMX_FEC, __func__); return 0; } /* 4 bytes for the CRC. */ size += 4; crc = cpu_to_be32(crc32(~0, buf, size)); crc_ptr = (uint8_t *) &crc; /* Huge frames are truncated. */ if (size > ENET_MAX_FRAME_SIZE) { size = ENET_MAX_FRAME_SIZE; flags |= ENET_BD_TR | ENET_BD_LG; } /* Frames larger than the user limit just set error flags. */ if (size > (s->regs[ENET_RCR] >> 16)) { flags |= ENET_BD_LG; } addr = s->rx_descriptor; while (size > 0) { imx_fec_read_bd(&bd, addr); if ((bd.flags & ENET_BD_E) == 0) { /* No descriptors available. Bail out. */ /* * FIXME: This is wrong. We should probably either * save the remainder for when more RX buffers are * available, or flag an error. */ qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", TYPE_IMX_FEC, __func__); break; } buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR]; bd.length = buf_len; size -= buf_len; FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length); /* The last 4 bytes are the CRC. */ if (size < 4) { buf_len += size - 4; } buf_addr = bd.data; dma_memory_write(&address_space_memory, buf_addr, buf, buf_len); buf += buf_len; if (size < 4) { dma_memory_write(&address_space_memory, buf_addr + buf_len, crc_ptr, 4 - size); crc_ptr += 4 - size; } bd.flags &= ~ENET_BD_E; if (size == 0) { /* Last buffer in frame. */ bd.flags |= flags | ENET_BD_L; FEC_PRINTF("rx frame flags %04x\n", bd.flags); s->regs[ENET_EIR] |= ENET_INT_RXF; } else { s->regs[ENET_EIR] |= ENET_INT_RXB; } imx_fec_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & ENET_BD_W) != 0) { addr = s->regs[ENET_RDSR]; } else { addr += sizeof(bd); } } s->rx_descriptor = addr; imx_eth_enable_rx(s, false); imx_eth_update(s); return len; } static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf, size_t len) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); IMXENETBufDesc bd; uint32_t flags = 0; uint32_t addr; uint32_t crc; uint32_t buf_addr; uint8_t *crc_ptr; unsigned int buf_len; size_t size = len; bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16; FEC_PRINTF("len %d\n", (int)size); if (!s->regs[ENET_RDAR]) { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", TYPE_IMX_FEC, __func__); return 0; } /* 4 bytes for the CRC. */ size += 4; crc = cpu_to_be32(crc32(~0, buf, size)); crc_ptr = (uint8_t *) &crc; if (shift16) { size += 2; } /* Huge frames are truncated. */ if (size > s->regs[ENET_FTRL]) { size = s->regs[ENET_FTRL]; flags |= ENET_BD_TR | ENET_BD_LG; } /* Frames larger than the user limit just set error flags. */ if (size > (s->regs[ENET_RCR] >> 16)) { flags |= ENET_BD_LG; } addr = s->rx_descriptor; while (size > 0) { imx_enet_read_bd(&bd, addr); if ((bd.flags & ENET_BD_E) == 0) { /* No descriptors available. Bail out. */ /* * FIXME: This is wrong. We should probably either * save the remainder for when more RX buffers are * available, or flag an error. */ qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", TYPE_IMX_FEC, __func__); break; } buf_len = MIN(size, s->regs[ENET_MRBR]); bd.length = buf_len; size -= buf_len; FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length); /* The last 4 bytes are the CRC. */ if (size < 4) { buf_len += size - 4; } buf_addr = bd.data; if (shift16) { /* * If SHIFT16 bit of ENETx_RACC register is set we need to * align the payload to 4-byte boundary. */ const uint8_t zeros[2] = { 0 }; dma_memory_write(&address_space_memory, buf_addr, zeros, sizeof(zeros)); buf_addr += sizeof(zeros); buf_len -= sizeof(zeros); /* We only do this once per Ethernet frame */ shift16 = false; } dma_memory_write(&address_space_memory, buf_addr, buf, buf_len); buf += buf_len; if (size < 4) { dma_memory_write(&address_space_memory, buf_addr + buf_len, crc_ptr, 4 - size); crc_ptr += 4 - size; } bd.flags &= ~ENET_BD_E; if (size == 0) { /* Last buffer in frame. */ bd.flags |= flags | ENET_BD_L; FEC_PRINTF("rx frame flags %04x\n", bd.flags); if (bd.option & ENET_BD_RX_INT) { s->regs[ENET_EIR] |= ENET_INT_RXF; } } else { if (bd.option & ENET_BD_RX_INT) { s->regs[ENET_EIR] |= ENET_INT_RXB; } } imx_enet_write_bd(&bd, addr); /* Advance to the next descriptor. */ if ((bd.flags & ENET_BD_W) != 0) { addr = s->regs[ENET_RDSR]; } else { addr += sizeof(bd); } } s->rx_descriptor = addr; imx_eth_enable_rx(s, false); imx_eth_update(s); return len; } static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf, size_t len) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { return imx_enet_receive(nc, buf, len); } else { return imx_fec_receive(nc, buf, len); } } static const MemoryRegionOps imx_eth_ops = { .read = imx_eth_read, .write = imx_eth_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_NATIVE_ENDIAN, }; static void imx_eth_cleanup(NetClientState *nc) { IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); s->nic = NULL; } static NetClientInfo imx_eth_net_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = imx_eth_can_receive, .receive = imx_eth_receive, .cleanup = imx_eth_cleanup, .link_status_changed = imx_eth_set_link, }; static void imx_eth_realize(DeviceState *dev, Error **errp) { IMXFECState *s = IMX_FEC(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s, TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq[0]); sysbus_init_irq(sbd, &s->irq[1]); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf, object_get_typename(OBJECT(dev)), DEVICE(dev)->id, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static Property imx_eth_properties[] = { DEFINE_NIC_PROPERTIES(IMXFECState, conf), DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1), DEFINE_PROP_END_OF_LIST(), }; static void imx_eth_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_imx_eth; dc->reset = imx_eth_reset; dc->props = imx_eth_properties; dc->realize = imx_eth_realize; dc->desc = "i.MX FEC/ENET Ethernet Controller"; } static void imx_fec_init(Object *obj) { IMXFECState *s = IMX_FEC(obj); s->is_fec = true; } static void imx_enet_init(Object *obj) { IMXFECState *s = IMX_FEC(obj); s->is_fec = false; } static const TypeInfo imx_fec_info = { .name = TYPE_IMX_FEC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IMXFECState), .instance_init = imx_fec_init, .class_init = imx_eth_class_init, }; static const TypeInfo imx_enet_info = { .name = TYPE_IMX_ENET, .parent = TYPE_IMX_FEC, .instance_init = imx_enet_init, }; static void imx_eth_register_types(void) { type_register_static(&imx_fec_info); type_register_static(&imx_enet_info); } type_init(imx_eth_register_types)