/* * QEMU i8255x (PRO100) emulation * * Copyright (C) 2006-2011 Stefan Weil * * Portions of the code are copies from grub / etherboot eepro100.c * and linux e100.c. * * SPDX-License-Identifier: GPL-2.0-or-later * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Tested features (i82559): * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok * Linux networking (i386) ok * * Untested: * Windows networking * * References: * * Intel 8255x 10/100 Mbps Ethernet Controller Family * Open Source Software Developer Manual * * TODO: * * PHY emulation should be separated from nic emulation. * Most nic emulations could share the same phy code. * * i82550 is untested. It is programmed like the i82559. * * i82562 is untested. It is programmed like the i82559. * * Power management (i82558 and later) is not implemented. * * Wake-on-LAN is not implemented. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "hw/pci/pci_device.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "net/net.h" #include "net/eth.h" #include "hw/nvram/eeprom93xx.h" #include "sysemu/sysemu.h" #include "sysemu/dma.h" #include "sysemu/reset.h" #include "qemu/bitops.h" #include "qemu/module.h" #include "qapi/error.h" /* QEMU sends frames smaller than 60 bytes to ethernet nics. * Such frames are rejected by real nics and their emulations. * To avoid this behaviour, other nic emulations pad received * frames. The following definition enables this padding for * eepro100, too. We keep the define around in case it might * become useful the future if the core networking is ever * changed to pad short packets itself. */ #define CONFIG_PAD_RECEIVED_FRAMES /* Debug EEPRO100 card. */ #if 0 # define DEBUG_EEPRO100 #endif #ifdef DEBUG_EEPRO100 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__) #else #define logout(fmt, ...) ((void)0) #endif /* Set flags to 0 to disable debug output. */ #define INT 1 /* interrupt related actions */ #define MDI 1 /* mdi related actions */ #define OTHER 1 #define RXTX 1 #define EEPROM 1 /* eeprom related actions */ #define TRACE(flag, command) ((flag) ? (command) : (void)0) #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n") #define MAX_ETH_FRAME_SIZE 1514 /* This driver supports several different devices which are declared here. */ #define i82550 0x82550 #define i82551 0x82551 #define i82557A 0x82557a #define i82557B 0x82557b #define i82557C 0x82557c #define i82558A 0x82558a #define i82558B 0x82558b #define i82559A 0x82559a #define i82559B 0x82559b #define i82559C 0x82559c #define i82559ER 0x82559e #define i82562 0x82562 #define i82801 0x82801 /* Use 64 word EEPROM. TODO: could be a runtime option. */ #define EEPROM_SIZE 64 #define PCI_MEM_SIZE (4 * KiB) #define PCI_IO_SIZE 64 #define PCI_FLASH_SIZE (128 * KiB) #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m) /* The SCB accepts the following controls for the Tx and Rx units: */ #define CU_NOP 0x0000 /* No operation. */ #define CU_START 0x0010 /* CU start. */ #define CU_RESUME 0x0020 /* CU resume. */ #define CU_STATSADDR 0x0040 /* Load dump counters address. */ #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */ #define CU_CMD_BASE 0x0060 /* Load CU base address. */ #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */ #define CU_SRESUME 0x00a0 /* CU static resume. */ #define RU_NOP 0x0000 #define RX_START 0x0001 #define RX_RESUME 0x0002 #define RU_ABORT 0x0004 #define RX_ADDR_LOAD 0x0006 #define RX_RESUMENR 0x0007 #define INT_MASK 0x0100 #define DRVR_INT 0x0200 /* Driver generated interrupt. */ typedef struct { const char *name; const char *desc; uint16_t device_id; uint8_t revision; uint16_t subsystem_vendor_id; uint16_t subsystem_id; uint32_t device; uint8_t stats_size; bool has_extended_tcb_support; bool power_management; } E100PCIDeviceInfo; /* Offsets to the various registers. All accesses need not be longword aligned. */ typedef enum { SCBStatus = 0, /* Status Word. */ SCBAck = 1, SCBCmd = 2, /* Rx/Command Unit command and status. */ SCBIntmask = 3, SCBPointer = 4, /* General purpose pointer. */ SCBPort = 8, /* Misc. commands and operands. */ SCBflash = 12, /* Flash memory control. */ SCBeeprom = 14, /* EEPROM control. */ SCBCtrlMDI = 16, /* MDI interface control. */ SCBEarlyRx = 20, /* Early receive byte count. */ SCBFlow = 24, /* Flow Control. */ SCBpmdr = 27, /* Power Management Driver. */ SCBgctrl = 28, /* General Control. */ SCBgstat = 29, /* General Status. */ } E100RegisterOffset; /* A speedo3 transmit buffer descriptor with two buffers... */ typedef struct { uint16_t status; uint16_t command; uint32_t link; /* void * */ uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */ uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */ uint8_t tx_threshold; /* transmit threshold */ uint8_t tbd_count; /* TBD number */ #if 0 /* This constitutes two "TBD" entries: hdr and data */ uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */ int32_t tx_buf_size0; /* Length of Tx hdr. */ uint32_t tx_buf_addr1; /* void *, data to be transmitted. */ int32_t tx_buf_size1; /* Length of Tx data. */ #endif } eepro100_tx_t; /* Receive frame descriptor. */ typedef struct { int16_t status; uint16_t command; uint32_t link; /* struct RxFD * */ uint32_t rx_buf_addr; /* void * */ uint16_t count; uint16_t size; /* Ethernet frame data follows. */ } eepro100_rx_t; typedef enum { COMMAND_EL = BIT(15), COMMAND_S = BIT(14), COMMAND_I = BIT(13), COMMAND_NC = BIT(4), COMMAND_SF = BIT(3), COMMAND_CMD = BITS(2, 0), } scb_command_bit; typedef enum { STATUS_C = BIT(15), STATUS_OK = BIT(13), } scb_status_bit; typedef struct { uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions, tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, tx_multiple_collisions, tx_total_collisions; uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors, rx_resource_errors, rx_overrun_errors, rx_cdt_errors, rx_short_frame_errors; uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; uint16_t xmt_tco_frames, rcv_tco_frames; /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */ uint32_t reserved[4]; } eepro100_stats_t; typedef enum { cu_idle = 0, cu_suspended = 1, cu_active = 2, cu_lpq_active = 2, cu_hqp_active = 3 } cu_state_t; typedef enum { ru_idle = 0, ru_suspended = 1, ru_no_resources = 2, ru_ready = 4 } ru_state_t; typedef struct { PCIDevice dev; /* Hash register (multicast mask array, multiple individual addresses). */ uint8_t mult[8]; MemoryRegion mmio_bar; MemoryRegion io_bar; MemoryRegion flash_bar; NICState *nic; NICConf conf; uint8_t scb_stat; /* SCB stat/ack byte */ uint8_t int_stat; /* PCI interrupt status */ /* region must not be saved by nic_save. */ uint16_t mdimem[32]; eeprom_t *eeprom; uint32_t device; /* device variant */ /* (cu_base + cu_offset) address the next command block in the command block list. */ uint32_t cu_base; /* CU base address */ uint32_t cu_offset; /* CU address offset */ /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */ uint32_t ru_base; /* RU base address */ uint32_t ru_offset; /* RU address offset */ uint32_t statsaddr; /* pointer to eepro100_stats_t */ /* Temporary status information (no need to save these values), * used while processing CU commands. */ eepro100_tx_t tx; /* transmit buffer descriptor */ uint32_t cb_address; /* = cu_base + cu_offset */ /* Statistical counters. Also used for wake-up packet (i82559). */ eepro100_stats_t statistics; /* Data in mem is always in the byte order of the controller (le). * It must be dword aligned to allow direct access to 32 bit values. */ uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8))); /* Configuration bytes. */ uint8_t configuration[22]; /* vmstate for each particular nic */ VMStateDescription *vmstate; /* Quasi static device properties (no need to save them). */ uint16_t stats_size; bool has_extended_tcb_support; } EEPRO100State; /* Word indices in EEPROM. */ typedef enum { EEPROM_CNFG_MDIX = 0x03, EEPROM_ID = 0x05, EEPROM_PHY_ID = 0x06, EEPROM_VENDOR_ID = 0x0c, EEPROM_CONFIG_ASF = 0x0d, EEPROM_DEVICE_ID = 0x23, EEPROM_SMBUS_ADDR = 0x90, } EEPROMOffset; /* Bit values for EEPROM ID word. */ typedef enum { EEPROM_ID_MDM = BIT(0), /* Modem */ EEPROM_ID_STB = BIT(1), /* Standby Enable */ EEPROM_ID_WMR = BIT(2), /* ??? */ EEPROM_ID_WOL = BIT(5), /* Wake on LAN */ EEPROM_ID_DPD = BIT(6), /* Deep Power Down */ EEPROM_ID_ALT = BIT(7), /* */ /* BITS(10, 8) device revision */ EEPROM_ID_BD = BIT(11), /* boot disable */ EEPROM_ID_ID = BIT(13), /* id bit */ /* BITS(15, 14) signature */ EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */ } eeprom_id_bit; /* Default values for MDI (PHY) registers */ static const uint16_t eepro100_mdi_default[] = { /* MDI Registers 0 - 6, 7 */ 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000, /* MDI Registers 8 - 15 */ 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* MDI Registers 16 - 31 */ 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, }; /* Readonly mask for MDI (PHY) registers */ static const uint16_t eepro100_mdi_mask[] = { 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, }; static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s); /* Read a 16 bit control/status (CSR) register. */ static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr) { assert(!((uintptr_t)&s->mem[addr] & 1)); return lduw_le_p(&s->mem[addr]); } /* Read a 32 bit control/status (CSR) register. */ static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr) { assert(!((uintptr_t)&s->mem[addr] & 3)); return ldl_le_p(&s->mem[addr]); } /* Write a 16 bit control/status (CSR) register. */ static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr, uint16_t val) { assert(!((uintptr_t)&s->mem[addr] & 1)); stw_le_p(&s->mem[addr], val); } /* Read a 32 bit control/status (CSR) register. */ static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr, uint32_t val) { assert(!((uintptr_t)&s->mem[addr] & 3)); stl_le_p(&s->mem[addr], val); } #if defined(DEBUG_EEPRO100) static const char *nic_dump(const uint8_t * buf, unsigned size) { static char dump[3 * 16 + 1]; char *p = &dump[0]; if (size > 16) { size = 16; } while (size-- > 0) { p += sprintf(p, " %02x", *buf++); } return dump; } #endif /* DEBUG_EEPRO100 */ enum scb_stat_ack { stat_ack_not_ours = 0x00, stat_ack_sw_gen = 0x04, stat_ack_rnr = 0x10, stat_ack_cu_idle = 0x20, stat_ack_frame_rx = 0x40, stat_ack_cu_cmd_done = 0x80, stat_ack_not_present = 0xFF, stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), }; static void disable_interrupt(EEPRO100State * s) { if (s->int_stat) { TRACE(INT, logout("interrupt disabled\n")); pci_irq_deassert(&s->dev); s->int_stat = 0; } } static void enable_interrupt(EEPRO100State * s) { if (!s->int_stat) { TRACE(INT, logout("interrupt enabled\n")); pci_irq_assert(&s->dev); s->int_stat = 1; } } static void eepro100_acknowledge(EEPRO100State * s) { s->scb_stat &= ~s->mem[SCBAck]; s->mem[SCBAck] = s->scb_stat; if (s->scb_stat == 0) { disable_interrupt(s); } } static void eepro100_interrupt(EEPRO100State * s, uint8_t status) { uint8_t mask = ~s->mem[SCBIntmask]; s->mem[SCBAck] |= status; status = s->scb_stat = s->mem[SCBAck]; status &= (mask | 0x0f); #if 0 status &= (~s->mem[SCBIntmask] | 0x0xf); #endif if (status && (mask & 0x01)) { /* SCB mask and SCB Bit M do not disable interrupt. */ enable_interrupt(s); } else if (s->int_stat) { disable_interrupt(s); } } static void eepro100_cx_interrupt(EEPRO100State * s) { /* CU completed action command. */ /* Transmit not ok (82557 only, not in emulation). */ eepro100_interrupt(s, 0x80); } static void eepro100_cna_interrupt(EEPRO100State * s) { /* CU left the active state. */ eepro100_interrupt(s, 0x20); } static void eepro100_fr_interrupt(EEPRO100State * s) { /* RU received a complete frame. */ eepro100_interrupt(s, 0x40); } static void eepro100_rnr_interrupt(EEPRO100State * s) { /* RU is not ready. */ eepro100_interrupt(s, 0x10); } static void eepro100_mdi_interrupt(EEPRO100State * s) { /* MDI completed read or write cycle. */ eepro100_interrupt(s, 0x08); } static void eepro100_swi_interrupt(EEPRO100State * s) { /* Software has requested an interrupt. */ eepro100_interrupt(s, 0x04); } #if 0 static void eepro100_fcp_interrupt(EEPRO100State * s) { /* Flow control pause interrupt (82558 and later). */ eepro100_interrupt(s, 0x01); } #endif static void e100_pci_reset(EEPRO100State *s, Error **errp) { E100PCIDeviceInfo *info = eepro100_get_class(s); uint32_t device = s->device; uint8_t *pci_conf = s->dev.config; TRACE(OTHER, logout("%p\n", s)); /* PCI Status */ pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | PCI_STATUS_FAST_BACK); /* PCI Latency Timer */ pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */ /* Capability Pointer is set by PCI framework. */ /* Interrupt Line */ /* Interrupt Pin */ pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */ /* Minimum Grant */ pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08); /* Maximum Latency */ pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18); s->stats_size = info->stats_size; s->has_extended_tcb_support = info->has_extended_tcb_support; switch (device) { case i82550: case i82551: case i82557A: case i82557B: case i82557C: case i82558A: case i82558B: case i82559A: case i82559B: case i82559ER: case i82562: case i82801: case i82559C: break; default: logout("Device %X is undefined!\n", device); } /* Standard TxCB. */ s->configuration[6] |= BIT(4); /* Standard statistical counters. */ s->configuration[6] |= BIT(5); if (s->stats_size == 80) { /* TODO: check TCO Statistical Counters bit. Documentation not clear. */ if (s->configuration[6] & BIT(2)) { /* TCO statistical counters. */ assert(s->configuration[6] & BIT(5)); } else { if (s->configuration[6] & BIT(5)) { /* No extended statistical counters, i82557 compatible. */ s->stats_size = 64; } else { /* i82558 compatible. */ s->stats_size = 76; } } } else { if (s->configuration[6] & BIT(5)) { /* No extended statistical counters. */ s->stats_size = 64; } } assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics)); if (info->power_management) { /* Power Management Capabilities */ int cfg_offset = 0xdc; int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM, cfg_offset, PCI_PM_SIZEOF, errp); if (r < 0) { return; } pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21); #if 0 /* TODO: replace dummy code for power management emulation. */ /* TODO: Power Management Control / Status. */ pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000); /* TODO: Ethernet Power Consumption Registers (i82559 and later). */ pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000); #endif } #if EEPROM_SIZE > 0 if (device == i82557C || device == i82558B || device == i82559C) { /* TODO: get vendor id from EEPROM for i82557C or later. TODO: get device id from EEPROM for i82557C or later. TODO: status bit 4 can be disabled by EEPROM for i82558, i82559. TODO: header type is determined by EEPROM for i82559. TODO: get subsystem id from EEPROM for i82557C or later. TODO: get subsystem vendor id from EEPROM for i82557C or later. TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later. TODO: capability pointer depends on EEPROM for i82558. */ logout("Get device id and revision from EEPROM!!!\n"); } #endif /* EEPROM_SIZE > 0 */ } static void nic_selective_reset(EEPRO100State * s) { size_t i; uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom); #if 0 eeprom93xx_reset(s->eeprom); #endif memcpy(eeprom_contents, s->conf.macaddr.a, 6); eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID; if (s->device == i82557B || s->device == i82557C) eeprom_contents[5] = 0x0100; eeprom_contents[EEPROM_PHY_ID] = 1; uint16_t sum = 0; for (i = 0; i < EEPROM_SIZE - 1; i++) { sum += eeprom_contents[i]; } eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum; TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1])); memset(s->mem, 0, sizeof(s->mem)); e100_write_reg4(s, SCBCtrlMDI, BIT(21)); assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); } static void nic_reset(void *opaque) { EEPRO100State *s = opaque; TRACE(OTHER, logout("%p\n", s)); /* TODO: Clearing of hash register for selective reset, too? */ memset(&s->mult[0], 0, sizeof(s->mult)); nic_selective_reset(s); } #if defined(DEBUG_EEPRO100) static const char * const e100_reg[PCI_IO_SIZE / 4] = { "Command/Status", "General Pointer", "Port", "EEPROM/Flash Control", "MDI Control", "Receive DMA Byte Count", "Flow Control", "General Status/Control" }; static char *regname(uint32_t addr) { static char buf[32]; if (addr < PCI_IO_SIZE) { const char *r = e100_reg[addr / 4]; if (r != 0) { snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4); } else { snprintf(buf, sizeof(buf), "0x%02x", addr); } } else { snprintf(buf, sizeof(buf), "??? 0x%08x", addr); } return buf; } #endif /* DEBUG_EEPRO100 */ /***************************************************************************** * * Command emulation. * ****************************************************************************/ #if 0 static uint16_t eepro100_read_command(EEPRO100State * s) { uint16_t val = 0xffff; TRACE(OTHER, logout("val=0x%04x\n", val)); return val; } #endif /* Commands that can be put in a command list entry. */ enum commands { CmdNOp = 0, CmdIASetup = 1, CmdConfigure = 2, CmdMulticastList = 3, CmdTx = 4, CmdTDR = 5, /* load microcode */ CmdDump = 6, CmdDiagnose = 7, /* And some extra flags: */ CmdSuspend = 0x4000, /* Suspend after completion. */ CmdIntr = 0x2000, /* Interrupt after completion. */ CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */ }; static cu_state_t get_cu_state(EEPRO100State * s) { return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6); } static void set_cu_state(EEPRO100State * s, cu_state_t state) { s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6); } static ru_state_t get_ru_state(EEPRO100State * s) { return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2); } static void set_ru_state(EEPRO100State * s, ru_state_t state) { s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2); } static void dump_statistics(EEPRO100State * s) { const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; /* Dump statistical data. Most data is never changed by the emulation * and always 0, so we first just copy the whole block and then those * values which really matter. * Number of data should check configuration!!! */ pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size); stl_le_pci_dma(&s->dev, s->statsaddr + 0, s->statistics.tx_good_frames, attrs); stl_le_pci_dma(&s->dev, s->statsaddr + 36, s->statistics.rx_good_frames, attrs); stl_le_pci_dma(&s->dev, s->statsaddr + 48, s->statistics.rx_resource_errors, attrs); stl_le_pci_dma(&s->dev, s->statsaddr + 60, s->statistics.rx_short_frame_errors, attrs); #if 0 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames, attrs); stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames, attrs); missing("CU dump statistical counters"); #endif } static void read_cb(EEPRO100State *s) { pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx)); s->tx.status = le16_to_cpu(s->tx.status); s->tx.command = le16_to_cpu(s->tx.command); s->tx.link = le32_to_cpu(s->tx.link); s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr); s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes); } static void tx_command(EEPRO100State *s) { const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; uint32_t tbd_array = s->tx.tbd_array_addr; uint16_t tcb_bytes = s->tx.tcb_bytes & 0x3fff; /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */ uint8_t buf[2600]; uint16_t size = 0; uint32_t tbd_address = s->cb_address + 0x10; TRACE(RXTX, logout ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", tbd_array, tcb_bytes, s->tx.tbd_count)); if (tcb_bytes > 2600) { logout("TCB byte count too large, using 2600\n"); tcb_bytes = 2600; } if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { logout ("illegal values of TBD array address and TCB byte count!\n"); } assert(tcb_bytes <= sizeof(buf)); while (size < tcb_bytes) { TRACE(RXTX, logout ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", tbd_address, tcb_bytes)); pci_dma_read(&s->dev, tbd_address, &buf[size], tcb_bytes); size += tcb_bytes; } if (tbd_array == 0xffffffff) { /* Simplified mode. Was already handled by code above. */ } else { /* Flexible mode. */ uint8_t tbd_count = 0; uint32_t tx_buffer_address; uint16_t tx_buffer_size; uint16_t tx_buffer_el; if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) { /* Extended Flexible TCB. */ for (; tbd_count < 2; tbd_count++) { ldl_le_pci_dma(&s->dev, tbd_address, &tx_buffer_address, attrs); lduw_le_pci_dma(&s->dev, tbd_address + 4, &tx_buffer_size, attrs); lduw_le_pci_dma(&s->dev, tbd_address + 6, &tx_buffer_el, attrs); tbd_address += 8; TRACE(RXTX, logout ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size)); tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; if (tx_buffer_el & 1) { break; } } } tbd_address = tbd_array; for (; tbd_count < s->tx.tbd_count; tbd_count++) { ldl_le_pci_dma(&s->dev, tbd_address, &tx_buffer_address, attrs); lduw_le_pci_dma(&s->dev, tbd_address + 4, &tx_buffer_size, attrs); lduw_le_pci_dma(&s->dev, tbd_address + 6, &tx_buffer_el, attrs); tbd_address += 8; TRACE(RXTX, logout ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size)); tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; if (tx_buffer_el & 1) { break; } } } TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size))); qemu_send_packet(qemu_get_queue(s->nic), buf, size); s->statistics.tx_good_frames++; /* Transmit with bad status would raise an CX/TNO interrupt. * (82557 only). Emulation never has bad status. */ #if 0 eepro100_cx_interrupt(s); #endif } static void set_multicast_list(EEPRO100State *s) { uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0); uint16_t i; memset(&s->mult[0], 0, sizeof(s->mult)); TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count)); for (i = 0; i < multicast_count; i += 6) { uint8_t multicast_addr[6]; pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6); TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6))); unsigned mcast_idx = (net_crc32(multicast_addr, ETH_ALEN) & BITS(7, 2)) >> 2; assert(mcast_idx < 64); s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7)); } } static void action_command(EEPRO100State *s) { const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; /* The loop below won't stop if it gets special handcrafted data. Therefore we limit the number of iterations. */ unsigned max_loop_count = 16; for (;;) { bool bit_el; bool bit_s; bool bit_i; bool bit_nc; uint16_t ok_status = STATUS_OK; s->cb_address = s->cu_base + s->cu_offset; read_cb(s); bit_el = ((s->tx.command & COMMAND_EL) != 0); bit_s = ((s->tx.command & COMMAND_S) != 0); bit_i = ((s->tx.command & COMMAND_I) != 0); bit_nc = ((s->tx.command & COMMAND_NC) != 0); #if 0 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0); #endif if (max_loop_count-- == 0) { /* Prevent an endless loop. */ logout("loop in %s:%u\n", __FILE__, __LINE__); break; } s->cu_offset = s->tx.link; TRACE(OTHER, logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", s->tx.status, s->tx.command, s->tx.link)); switch (s->tx.command & COMMAND_CMD) { case CmdNOp: /* Do nothing. */ break; case CmdIASetup: pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6); TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6))); break; case CmdConfigure: pci_dma_read(&s->dev, s->cb_address + 8, &s->configuration[0], sizeof(s->configuration)); TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[0], 16))); TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[16], ARRAY_SIZE(s->configuration) - 16))); if (s->configuration[20] & BIT(6)) { TRACE(OTHER, logout("Multiple IA bit\n")); } break; case CmdMulticastList: set_multicast_list(s); break; case CmdTx: if (bit_nc) { missing("CmdTx: NC = 0"); ok_status = 0; break; } tx_command(s); break; case CmdTDR: TRACE(OTHER, logout("load microcode\n")); /* Starting with offset 8, the command contains * 64 dwords microcode which we just ignore here. */ break; case CmdDiagnose: TRACE(OTHER, logout("diagnose\n")); /* Make sure error flag is not set. */ s->tx.status = 0; break; default: missing("undefined command"); ok_status = 0; break; } /* Write new status. */ stw_le_pci_dma(&s->dev, s->cb_address, s->tx.status | ok_status | STATUS_C, attrs); if (bit_i) { /* CU completed action. */ eepro100_cx_interrupt(s); } if (bit_el) { /* CU becomes idle. Terminate command loop. */ set_cu_state(s, cu_idle); eepro100_cna_interrupt(s); break; } else if (bit_s) { /* CU becomes suspended. Terminate command loop. */ set_cu_state(s, cu_suspended); eepro100_cna_interrupt(s); break; } else { /* More entries in list. */ TRACE(OTHER, logout("CU list with at least one more entry\n")); } } TRACE(OTHER, logout("CU list empty\n")); /* List is empty. Now CU is idle or suspended. */ } static void eepro100_cu_command(EEPRO100State * s, uint8_t val) { const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; cu_state_t cu_state; switch (val) { case CU_NOP: /* No operation. */ break; case CU_START: cu_state = get_cu_state(s); if (cu_state != cu_idle && cu_state != cu_suspended) { /* Intel documentation says that CU must be idle or suspended * for the CU start command. */ logout("unexpected CU state is %u\n", cu_state); } set_cu_state(s, cu_active); s->cu_offset = e100_read_reg4(s, SCBPointer); action_command(s); break; case CU_RESUME: if (get_cu_state(s) != cu_suspended) { logout("bad CU resume from CU state %u\n", get_cu_state(s)); /* Workaround for bad Linux eepro100 driver which resumes * from idle state. */ #if 0 missing("cu resume"); #endif set_cu_state(s, cu_suspended); } if (get_cu_state(s) == cu_suspended) { TRACE(OTHER, logout("CU resuming\n")); set_cu_state(s, cu_active); action_command(s); } break; case CU_STATSADDR: /* Load dump counters address. */ s->statsaddr = e100_read_reg4(s, SCBPointer); TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val)); if (s->statsaddr & 3) { /* Memory must be Dword aligned. */ logout("unaligned dump counters address\n"); /* Handling of misaligned addresses is undefined. * Here we align the address by ignoring the lower bits. */ /* TODO: Test unaligned dump counter address on real hardware. */ s->statsaddr &= ~3; } break; case CU_SHOWSTATS: /* Dump statistical counters. */ TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); dump_statistics(s); stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005, attrs); break; case CU_CMD_BASE: /* Load CU base. */ TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val)); s->cu_base = e100_read_reg4(s, SCBPointer); break; case CU_DUMPSTATS: /* Dump and reset statistical counters. */ TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); dump_statistics(s); stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007, attrs); memset(&s->statistics, 0, sizeof(s->statistics)); break; case CU_SRESUME: /* CU static resume. */ missing("CU static resume"); break; default: missing("Undefined CU command"); } } static void eepro100_ru_command(EEPRO100State * s, uint8_t val) { switch (val) { case RU_NOP: /* No operation. */ break; case RX_START: /* RU start. */ if (get_ru_state(s) != ru_idle) { logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle); #if 0 assert(!"wrong RU state"); #endif } set_ru_state(s, ru_ready); s->ru_offset = e100_read_reg4(s, SCBPointer); qemu_flush_queued_packets(qemu_get_queue(s->nic)); TRACE(OTHER, logout("val=0x%02x (rx start)\n", val)); break; case RX_RESUME: /* Restart RU. */ if (get_ru_state(s) != ru_suspended) { logout("RU state is %u, should be %u\n", get_ru_state(s), ru_suspended); #if 0 assert(!"wrong RU state"); #endif } set_ru_state(s, ru_ready); break; case RU_ABORT: /* RU abort. */ if (get_ru_state(s) == ru_ready) { eepro100_rnr_interrupt(s); } set_ru_state(s, ru_idle); break; case RX_ADDR_LOAD: /* Load RU base. */ TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val)); s->ru_base = e100_read_reg4(s, SCBPointer); break; default: logout("val=0x%02x (undefined RU command)\n", val); missing("Undefined SU command"); } } static void eepro100_write_command(EEPRO100State * s, uint8_t val) { eepro100_ru_command(s, val & 0x0f); eepro100_cu_command(s, val & 0xf0); if ((val) == 0) { TRACE(OTHER, logout("val=0x%02x\n", val)); } /* Clear command byte after command was accepted. */ s->mem[SCBCmd] = 0; } /***************************************************************************** * * EEPROM emulation. * ****************************************************************************/ #define EEPROM_CS 0x02 #define EEPROM_SK 0x01 #define EEPROM_DI 0x04 #define EEPROM_DO 0x08 static uint16_t eepro100_read_eeprom(EEPRO100State * s) { uint16_t val = e100_read_reg2(s, SCBeeprom); if (eeprom93xx_read(s->eeprom)) { val |= EEPROM_DO; } else { val &= ~EEPROM_DO; } TRACE(EEPROM, logout("val=0x%04x\n", val)); return val; } static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val) { TRACE(EEPROM, logout("val=0x%02x\n", val)); /* mask unwritable bits */ #if 0 val = SET_MASKED(val, 0x31, eeprom->value); #endif int eecs = ((val & EEPROM_CS) != 0); int eesk = ((val & EEPROM_SK) != 0); int eedi = ((val & EEPROM_DI) != 0); eeprom93xx_write(eeprom, eecs, eesk, eedi); } /***************************************************************************** * * MDI emulation. * ****************************************************************************/ #if defined(DEBUG_EEPRO100) static const char * const mdi_op_name[] = { "opcode 0", "write", "read", "opcode 3" }; static const char * const mdi_reg_name[] = { "Control", "Status", "PHY Identification (Word 1)", "PHY Identification (Word 2)", "Auto-Negotiation Advertisement", "Auto-Negotiation Link Partner Ability", "Auto-Negotiation Expansion" }; static const char *reg2name(uint8_t reg) { static char buffer[10]; const char *p = buffer; if (reg < ARRAY_SIZE(mdi_reg_name)) { p = mdi_reg_name[reg]; } else { snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg); } return p; } #endif /* DEBUG_EEPRO100 */ static uint32_t eepro100_read_mdi(EEPRO100State * s) { uint32_t val = e100_read_reg4(s, SCBCtrlMDI); #ifdef DEBUG_EEPRO100 uint8_t raiseint = (val & BIT(29)) >> 29; uint8_t opcode = (val & BITS(27, 26)) >> 26; uint8_t phy = (val & BITS(25, 21)) >> 21; uint8_t reg = (val & BITS(20, 16)) >> 16; uint16_t data = (val & BITS(15, 0)); #endif /* Emulation takes no time to finish MDI transaction. */ val |= BIT(28); TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); return val; } static void eepro100_write_mdi(EEPRO100State *s) { uint32_t val = e100_read_reg4(s, SCBCtrlMDI); uint8_t raiseint = (val & BIT(29)) >> 29; uint8_t opcode = (val & BITS(27, 26)) >> 26; uint8_t phy = (val & BITS(25, 21)) >> 21; uint8_t reg = (val & BITS(20, 16)) >> 16; uint16_t data = (val & BITS(15, 0)); TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); if (phy != 1) { /* Unsupported PHY address. */ #if 0 logout("phy must be 1 but is %u\n", phy); #endif data = 0; } else if (opcode != 1 && opcode != 2) { /* Unsupported opcode. */ logout("opcode must be 1 or 2 but is %u\n", opcode); data = 0; } else if (reg > 6) { /* Unsupported register. */ logout("register must be 0...6 but is %u\n", reg); data = 0; } else { TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); if (opcode == 1) { /* MDI write */ switch (reg) { case 0: /* Control Register */ if (data & 0x8000) { /* Reset status and control registers to default. */ s->mdimem[0] = eepro100_mdi_default[0]; s->mdimem[1] = eepro100_mdi_default[1]; data = s->mdimem[reg]; } else { /* Restart Auto Configuration = Normal Operation */ data &= ~0x0200; } break; case 1: /* Status Register */ missing("not writable"); break; case 2: /* PHY Identification Register (Word 1) */ case 3: /* PHY Identification Register (Word 2) */ missing("not implemented"); break; case 4: /* Auto-Negotiation Advertisement Register */ case 5: /* Auto-Negotiation Link Partner Ability Register */ break; case 6: /* Auto-Negotiation Expansion Register */ default: missing("not implemented"); } s->mdimem[reg] &= eepro100_mdi_mask[reg]; s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg]; } else if (opcode == 2) { /* MDI read */ switch (reg) { case 0: /* Control Register */ if (data & 0x8000) { /* Reset status and control registers to default. */ s->mdimem[0] = eepro100_mdi_default[0]; s->mdimem[1] = eepro100_mdi_default[1]; } break; case 1: /* Status Register */ s->mdimem[reg] |= 0x0020; break; case 2: /* PHY Identification Register (Word 1) */ case 3: /* PHY Identification Register (Word 2) */ case 4: /* Auto-Negotiation Advertisement Register */ break; case 5: /* Auto-Negotiation Link Partner Ability Register */ s->mdimem[reg] = 0x41fe; break; case 6: /* Auto-Negotiation Expansion Register */ s->mdimem[reg] = 0x0001; break; } data = s->mdimem[reg]; } /* Emulation takes no time to finish MDI transaction. * Set MDI bit in SCB status register. */ s->mem[SCBAck] |= 0x08; val |= BIT(28); if (raiseint) { eepro100_mdi_interrupt(s); } } val = (val & 0xffff0000) + data; e100_write_reg4(s, SCBCtrlMDI, val); } /***************************************************************************** * * Port emulation. * ****************************************************************************/ #define PORT_SOFTWARE_RESET 0 #define PORT_SELFTEST 1 #define PORT_SELECTIVE_RESET 2 #define PORT_DUMP 3 #define PORT_SELECTION_MASK 3 typedef struct { uint32_t st_sign; /* Self Test Signature */ uint32_t st_result; /* Self Test Results */ } eepro100_selftest_t; static uint32_t eepro100_read_port(EEPRO100State * s) { return 0; } static void eepro100_write_port(EEPRO100State *s) { uint32_t val = e100_read_reg4(s, SCBPort); uint32_t address = (val & ~PORT_SELECTION_MASK); uint8_t selection = (val & PORT_SELECTION_MASK); switch (selection) { case PORT_SOFTWARE_RESET: nic_reset(s); break; case PORT_SELFTEST: TRACE(OTHER, logout("selftest address=0x%08x\n", address)); eepro100_selftest_t data; pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data)); data.st_sign = 0xffffffff; data.st_result = 0; pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data)); break; case PORT_SELECTIVE_RESET: TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address)); nic_selective_reset(s); break; default: logout("val=0x%08x\n", val); missing("unknown port selection"); } } /***************************************************************************** * * General hardware emulation. * ****************************************************************************/ static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr) { uint8_t val = 0; if (addr <= sizeof(s->mem) - sizeof(val)) { val = s->mem[addr]; } switch (addr) { case SCBStatus: case SCBAck: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBCmd: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); #if 0 val = eepro100_read_command(s); #endif break; case SCBIntmask: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBPort + 3: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBeeprom: val = eepro100_read_eeprom(s); break; case SCBCtrlMDI: case SCBCtrlMDI + 1: case SCBCtrlMDI + 2: case SCBCtrlMDI + 3: val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBpmdr: /* Power Management Driver Register */ val = 0; TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBgctrl: /* General Control Register */ TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBgstat: /* General Status Register */ /* 100 Mbps full duplex, valid link */ val = 0x07; TRACE(OTHER, logout("addr=General Status val=%02x\n", val)); break; default: logout("addr=%s val=0x%02x\n", regname(addr), val); missing("unknown byte read"); } return val; } static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) { uint16_t val = 0; if (addr <= sizeof(s->mem) - sizeof(val)) { val = e100_read_reg2(s, addr); } switch (addr) { case SCBStatus: case SCBCmd: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; case SCBeeprom: val = eepro100_read_eeprom(s); TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; case SCBCtrlMDI: case SCBCtrlMDI + 2: val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; default: logout("addr=%s val=0x%04x\n", regname(addr), val); missing("unknown word read"); } return val; } static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr) { uint32_t val = 0; if (addr <= sizeof(s->mem) - sizeof(val)) { val = e100_read_reg4(s, addr); } switch (addr) { case SCBStatus: TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); break; case SCBPointer: TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); break; case SCBPort: val = eepro100_read_port(s); TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); break; case SCBflash: val = eepro100_read_eeprom(s); TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); break; case SCBCtrlMDI: val = eepro100_read_mdi(s); break; default: logout("addr=%s val=0x%08x\n", regname(addr), val); missing("unknown longword read"); } return val; } static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val) { /* SCBStatus is readonly. */ if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { s->mem[addr] = val; } switch (addr) { case SCBStatus: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBAck: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); eepro100_acknowledge(s); break; case SCBCmd: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); eepro100_write_command(s, val); break; case SCBIntmask: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); if (val & BIT(1)) { eepro100_swi_interrupt(s); } eepro100_interrupt(s, 0); break; case SCBPointer: case SCBPointer + 1: case SCBPointer + 2: case SCBPointer + 3: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBPort: case SCBPort + 1: case SCBPort + 2: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBPort + 3: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); eepro100_write_port(s); break; case SCBFlow: /* does not exist on 82557 */ case SCBFlow + 1: case SCBFlow + 2: case SCBpmdr: /* does not exist on 82557 */ TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBeeprom: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); eepro100_write_eeprom(s->eeprom, val); break; case SCBCtrlMDI: case SCBCtrlMDI + 1: case SCBCtrlMDI + 2: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); break; case SCBCtrlMDI + 3: TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); eepro100_write_mdi(s); break; default: logout("addr=%s val=0x%02x\n", regname(addr), val); missing("unknown byte write"); } } static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val) { /* SCBStatus is readonly. */ if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { e100_write_reg2(s, addr, val); } switch (addr) { case SCBStatus: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); s->mem[SCBAck] = (val >> 8); eepro100_acknowledge(s); break; case SCBCmd: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); eepro100_write_command(s, val); eepro100_write1(s, SCBIntmask, val >> 8); break; case SCBPointer: case SCBPointer + 2: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; case SCBPort: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; case SCBPort + 2: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); eepro100_write_port(s); break; case SCBeeprom: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); eepro100_write_eeprom(s->eeprom, val); break; case SCBCtrlMDI: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; case SCBCtrlMDI + 2: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); eepro100_write_mdi(s); break; default: logout("addr=%s val=0x%04x\n", regname(addr), val); missing("unknown word write"); } } static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) { if (addr <= sizeof(s->mem) - sizeof(val)) { e100_write_reg4(s, addr, val); } switch (addr) { case SCBPointer: TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); break; case SCBPort: TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); eepro100_write_port(s); break; case SCBflash: TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); val = val >> 16; eepro100_write_eeprom(s->eeprom, val); break; case SCBCtrlMDI: TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); eepro100_write_mdi(s); break; default: logout("addr=%s val=0x%08x\n", regname(addr), val); missing("unknown longword write"); } } static uint64_t eepro100_read(void *opaque, hwaddr addr, unsigned size) { EEPRO100State *s = opaque; switch (size) { case 1: return eepro100_read1(s, addr); case 2: return eepro100_read2(s, addr); case 4: return eepro100_read4(s, addr); default: abort(); } } static void eepro100_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { EEPRO100State *s = opaque; switch (size) { case 1: eepro100_write1(s, addr, data); break; case 2: eepro100_write2(s, addr, data); break; case 4: eepro100_write4(s, addr, data); break; default: abort(); } } static const MemoryRegionOps eepro100_ops = { .read = eepro100_read, .write = eepro100_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size) { /* TODO: * - Magic packets should set bit 30 in power management driver register. * - Interesting packets should set bit 29 in power management driver register. */ const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; EEPRO100State *s = qemu_get_nic_opaque(nc); uint16_t rfd_status = 0xa000; #if defined(CONFIG_PAD_RECEIVED_FRAMES) uint8_t min_buf[60]; #endif static const uint8_t broadcast_macaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; #if defined(CONFIG_PAD_RECEIVED_FRAMES) /* Pad to minimum Ethernet frame length */ if (size < sizeof(min_buf)) { memcpy(min_buf, buf, size); memset(&min_buf[size], 0, sizeof(min_buf) - size); buf = min_buf; size = sizeof(min_buf); } #endif if (s->configuration[8] & 0x80) { /* CSMA is disabled. */ logout("%p received while CSMA is disabled\n", s); return -1; #if !defined(CONFIG_PAD_RECEIVED_FRAMES) } else if (size < 64 && (s->configuration[7] & BIT(0))) { /* Short frame and configuration byte 7/0 (discard short receive) set: * Short frame is discarded */ logout("%p received short frame (%zu byte)\n", s, size); s->statistics.rx_short_frame_errors++; return -1; #endif } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) { /* Long frame and configuration byte 18/3 (long receive ok) not set: * Long frames are discarded. */ logout("%p received long frame (%zu byte), ignored\n", s, size); return -1; } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */ /* Frame matches individual address. */ /* TODO: check configuration byte 15/4 (ignore U/L). */ TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size)); } else if (memcmp(buf, broadcast_macaddr, 6) == 0) { /* Broadcast frame. */ TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size)); rfd_status |= 0x0002; } else if (buf[0] & 0x01) { /* Multicast frame. */ TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size))); if (s->configuration[21] & BIT(3)) { /* Multicast all bit is set, receive all multicast frames. */ } else { unsigned mcast_idx = (net_crc32(buf, ETH_ALEN) & BITS(7, 2)) >> 2; assert(mcast_idx < 64); if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { /* Multicast frame is allowed in hash table. */ } else if (s->configuration[15] & BIT(0)) { /* Promiscuous: receive all. */ rfd_status |= 0x0004; } else { TRACE(RXTX, logout("%p multicast ignored\n", s)); return -1; } } /* TODO: Next not for promiscuous mode? */ rfd_status |= 0x0002; } else if (s->configuration[15] & BIT(0)) { /* Promiscuous: receive all. */ TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size)); rfd_status |= 0x0004; } else if (s->configuration[20] & BIT(6)) { /* Multiple IA bit set. */ unsigned mcast_idx = net_crc32(buf, ETH_ALEN) >> 26; assert(mcast_idx < 64); if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s)); } else { TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s)); return -1; } } else { TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size, nic_dump(buf, size))); return size; } if (get_ru_state(s) != ru_ready) { /* No resources available. */ logout("no resources, state=%u\n", get_ru_state(s)); /* TODO: RNR interrupt only at first failed frame? */ eepro100_rnr_interrupt(s); s->statistics.rx_resource_errors++; #if 0 assert(!"no resources"); #endif return -1; } /* !!! */ eepro100_rx_t rx; pci_dma_read(&s->dev, s->ru_base + s->ru_offset, &rx, sizeof(eepro100_rx_t)); uint16_t rfd_command = le16_to_cpu(rx.command); uint16_t rfd_size = le16_to_cpu(rx.size); if (size > rfd_size) { logout("Receive buffer (%" PRId16 " bytes) too small for data " "(%zu bytes); data truncated\n", rfd_size, size); size = rfd_size; } #if !defined(CONFIG_PAD_RECEIVED_FRAMES) if (size < 64) { rfd_status |= 0x0080; } #endif TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", rfd_command, rx.link, rx.rx_buf_addr, rfd_size)); stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status), rfd_status, attrs); stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size, attrs); /* Early receive interrupt not supported. */ #if 0 eepro100_er_interrupt(s); #endif /* Receive CRC Transfer not supported. */ if (s->configuration[18] & BIT(2)) { missing("Receive CRC Transfer"); return -1; } /* TODO: check stripping enable bit. */ #if 0 assert(!(s->configuration[17] & BIT(0))); #endif pci_dma_write(&s->dev, s->ru_base + s->ru_offset + sizeof(eepro100_rx_t), buf, size); s->statistics.rx_good_frames++; eepro100_fr_interrupt(s); s->ru_offset = le32_to_cpu(rx.link); if (rfd_command & COMMAND_EL) { /* EL bit is set, so this was the last frame. */ logout("receive: Running out of frames\n"); set_ru_state(s, ru_no_resources); eepro100_rnr_interrupt(s); } if (rfd_command & COMMAND_S) { /* S bit is set. */ set_ru_state(s, ru_suspended); } return size; } static const VMStateDescription vmstate_eepro100 = { .version_id = 3, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_PCI_DEVICE(dev, EEPRO100State), VMSTATE_UNUSED(32), VMSTATE_BUFFER(mult, EEPRO100State), VMSTATE_BUFFER(mem, EEPRO100State), /* Save all members of struct between scb_stat and mem. */ VMSTATE_UINT8(scb_stat, EEPRO100State), VMSTATE_UINT8(int_stat, EEPRO100State), VMSTATE_UNUSED(3*4), VMSTATE_MACADDR(conf.macaddr, EEPRO100State), VMSTATE_UNUSED(19*4), VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32), /* The eeprom should be saved and restored by its own routines. */ VMSTATE_UINT32(device, EEPRO100State), /* TODO check device. */ VMSTATE_UINT32(cu_base, EEPRO100State), VMSTATE_UINT32(cu_offset, EEPRO100State), VMSTATE_UINT32(ru_base, EEPRO100State), VMSTATE_UINT32(ru_offset, EEPRO100State), VMSTATE_UINT32(statsaddr, EEPRO100State), /* Save eepro100_stats_t statistics. */ VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State), VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State), VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State), VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State), VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State), VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State), VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State), VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State), VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State), VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State), VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State), VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State), VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State), VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State), VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State), VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State), VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State), VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State), VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State), VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State), VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State), /* Configuration bytes. */ VMSTATE_BUFFER(configuration, EEPRO100State), VMSTATE_END_OF_LIST() } }; static void pci_nic_uninit(PCIDevice *pci_dev) { EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); vmstate_unregister(VMSTATE_IF(&pci_dev->qdev), s->vmstate, s); g_free(s->vmstate); eeprom93xx_free(&pci_dev->qdev, s->eeprom); qemu_del_nic(s->nic); } static NetClientInfo net_eepro100_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .receive = nic_receive, }; static void e100_nic_realize(PCIDevice *pci_dev, Error **errp) { EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); E100PCIDeviceInfo *info = eepro100_get_class(s); Error *local_err = NULL; TRACE(OTHER, logout("\n")); s->device = info->device; e100_pci_reset(s, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM, * i82559 and later support 64 or 256 word EEPROM. */ s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE); /* Handler for memory-mapped I/O */ memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s, "eepro100-mmio", PCI_MEM_SIZE); pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar); memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s, "eepro100-io", PCI_IO_SIZE); pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar); /* FIXME: flash aliases to mmio?! */ memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s, "eepro100-flash", PCI_FLASH_SIZE); pci_register_bar(&s->dev, 2, 0, &s->flash_bar); qemu_macaddr_default_if_unset(&s->conf.macaddr); logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)); nic_reset(s); s->nic = qemu_new_nic(&net_eepro100_info, &s->conf, object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, &pci_dev->qdev.mem_reentrancy_guard, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str)); qemu_register_reset(nic_reset, s); s->vmstate = g_memdup(&vmstate_eepro100, sizeof(vmstate_eepro100)); s->vmstate->name = qemu_get_queue(s->nic)->model; vmstate_register_any(VMSTATE_IF(&pci_dev->qdev), s->vmstate, s); } static void eepro100_instance_init(Object *obj) { EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, PCI_DEVICE(obj)); device_add_bootindex_property(obj, &s->conf.bootindex, "bootindex", "/ethernet-phy@0", DEVICE(s)); } static E100PCIDeviceInfo e100_devices[] = { { .name = "i82550", .desc = "Intel i82550 Ethernet", .device = i82550, /* TODO: check device id. */ .device_id = PCI_DEVICE_ID_INTEL_82551IT, /* Revision ID: 0x0c, 0x0d, 0x0e. */ .revision = 0x0e, /* TODO: check size of statistical counters. */ .stats_size = 80, /* TODO: check extended tcb support. */ .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82551", .desc = "Intel i82551 Ethernet", .device = i82551, .device_id = PCI_DEVICE_ID_INTEL_82551IT, /* Revision ID: 0x0f, 0x10. */ .revision = 0x0f, /* TODO: check size of statistical counters. */ .stats_size = 80, .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82557a", .desc = "Intel i82557A Ethernet", .device = i82557A, .device_id = PCI_DEVICE_ID_INTEL_82557, .revision = 0x01, .power_management = false, },{ .name = "i82557b", .desc = "Intel i82557B Ethernet", .device = i82557B, .device_id = PCI_DEVICE_ID_INTEL_82557, .revision = 0x02, .power_management = false, },{ .name = "i82557c", .desc = "Intel i82557C Ethernet", .device = i82557C, .device_id = PCI_DEVICE_ID_INTEL_82557, .revision = 0x03, .power_management = false, },{ .name = "i82558a", .desc = "Intel i82558A Ethernet", .device = i82558A, .device_id = PCI_DEVICE_ID_INTEL_82557, .revision = 0x04, .stats_size = 76, .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82558b", .desc = "Intel i82558B Ethernet", .device = i82558B, .device_id = PCI_DEVICE_ID_INTEL_82557, .revision = 0x05, .stats_size = 76, .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82559a", .desc = "Intel i82559A Ethernet", .device = i82559A, .device_id = PCI_DEVICE_ID_INTEL_82557, .revision = 0x06, .stats_size = 80, .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82559b", .desc = "Intel i82559B Ethernet", .device = i82559B, .device_id = PCI_DEVICE_ID_INTEL_82557, .revision = 0x07, .stats_size = 80, .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82559c", .desc = "Intel i82559C Ethernet", .device = i82559C, .device_id = PCI_DEVICE_ID_INTEL_82557, #if 0 .revision = 0x08, #endif /* TODO: Windows wants revision id 0x0c. */ .revision = 0x0c, #if EEPROM_SIZE > 0 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL, .subsystem_id = 0x0040, #endif .stats_size = 80, .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82559er", .desc = "Intel i82559ER Ethernet", .device = i82559ER, .device_id = PCI_DEVICE_ID_INTEL_82551IT, .revision = 0x09, .stats_size = 80, .has_extended_tcb_support = true, .power_management = true, },{ .name = "i82562", .desc = "Intel i82562 Ethernet", .device = i82562, /* TODO: check device id. */ .device_id = PCI_DEVICE_ID_INTEL_82551IT, /* TODO: wrong revision id. */ .revision = 0x0e, .stats_size = 80, .has_extended_tcb_support = true, .power_management = true, },{ /* Toshiba Tecra 8200. */ .name = "i82801", .desc = "Intel i82801 Ethernet", .device = i82801, .device_id = 0x2449, .revision = 0x03, .stats_size = 80, .has_extended_tcb_support = true, .power_management = true, } }; static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename) { E100PCIDeviceInfo *info = NULL; int i; /* This is admittedly awkward but also temporary. QOM allows for * parameterized typing and for subclassing both of which would suitable * handle what's going on here. But class_data is already being used as * a stop-gap hack to allow incremental qdev conversion so we cannot use it * right now. Once we merge the final QOM series, we can come back here and * do this in a much more elegant fashion. */ for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { if (strcmp(e100_devices[i].name, typename) == 0) { info = &e100_devices[i]; break; } } assert(info != NULL); return info; } static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s) { return eepro100_get_class_by_name(object_get_typename(OBJECT(s))); } static const Property e100_properties[] = { DEFINE_NIC_PROPERTIES(EEPRO100State, conf), DEFINE_PROP_END_OF_LIST(), }; static void eepro100_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); E100PCIDeviceInfo *info; info = eepro100_get_class_by_name(object_class_get_name(klass)); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); device_class_set_props(dc, e100_properties); dc->desc = info->desc; k->vendor_id = PCI_VENDOR_ID_INTEL; k->class_id = PCI_CLASS_NETWORK_ETHERNET; k->romfile = "pxe-eepro100.rom"; k->realize = e100_nic_realize; k->exit = pci_nic_uninit; k->device_id = info->device_id; k->revision = info->revision; k->subsystem_vendor_id = info->subsystem_vendor_id; k->subsystem_id = info->subsystem_id; } static void eepro100_register_types(void) { size_t i; for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { TypeInfo type_info = {}; E100PCIDeviceInfo *info = &e100_devices[i]; type_info.name = info->name; type_info.parent = TYPE_PCI_DEVICE; type_info.class_init = eepro100_class_init; type_info.instance_size = sizeof(EEPRO100State); type_info.instance_init = eepro100_instance_init; type_info.interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }; type_register_static(&type_info); } } type_init(eepro100_register_types)