/*
* QEMU e1000 emulation
*
* Software developer's manual:
* http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
*
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
* Copyright (c) 2008 Qumranet
* Based on work done by:
* Copyright (c) 2007 Dan Aloni
* Copyright (c) 2004 Antony T Curtis
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "qemu/osdep.h"
#include "hw/net/mii.h"
#include "hw/pci/pci_device.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "net/eth.h"
#include "net/net.h"
#include "net/checksum.h"
#include "sysemu/sysemu.h"
#include "sysemu/dma.h"
#include "qemu/iov.h"
#include "qemu/module.h"
#include "qemu/range.h"
#include "e1000x_common.h"
#include "trace.h"
#include "qom/object.h"
/* #define E1000_DEBUG */
#ifdef E1000_DEBUG
enum {
DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
};
#define DBGBIT(x) (1<= 10.6
* Others never tested
*/
struct E1000State_st {
/*< private >*/
PCIDevice parent_obj;
/*< public >*/
NICState *nic;
NICConf conf;
MemoryRegion mmio;
MemoryRegion io;
uint32_t mac_reg[0x8000];
uint16_t phy_reg[0x20];
uint16_t eeprom_data[64];
uint32_t rxbuf_size;
uint32_t rxbuf_min_shift;
struct e1000_tx {
unsigned char header[256];
unsigned char vlan_header[4];
/* Fields vlan and data must not be reordered or separated. */
unsigned char vlan[4];
unsigned char data[0x10000];
uint16_t size;
unsigned char vlan_needed;
unsigned char sum_needed;
bool cptse;
e1000x_txd_props props;
e1000x_txd_props tso_props;
uint16_t tso_frames;
bool busy;
} tx;
struct {
uint32_t val_in; /* shifted in from guest driver */
uint16_t bitnum_in;
uint16_t bitnum_out;
uint16_t reading;
uint32_t old_eecd;
} eecd_state;
QEMUTimer *autoneg_timer;
QEMUTimer *mit_timer; /* Mitigation timer. */
bool mit_timer_on; /* Mitigation timer is running. */
bool mit_irq_level; /* Tracks interrupt pin level. */
uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */
QEMUTimer *flush_queue_timer;
/* Compatibility flags for migration to/from qemu 1.3.0 and older */
#define E1000_FLAG_AUTONEG_BIT 0
#define E1000_FLAG_MIT_BIT 1
#define E1000_FLAG_MAC_BIT 2
#define E1000_FLAG_TSO_BIT 3
#define E1000_FLAG_VET_BIT 4
#define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
#define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
#define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
#define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT)
#define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT)
uint32_t compat_flags;
bool received_tx_tso;
bool use_tso_for_migration;
e1000x_txd_props mig_props;
};
typedef struct E1000State_st E1000State;
#define chkflag(x) (s->compat_flags & E1000_FLAG_##x)
struct E1000BaseClass {
PCIDeviceClass parent_class;
uint16_t phy_id2;
};
typedef struct E1000BaseClass E1000BaseClass;
#define TYPE_E1000_BASE "e1000-base"
DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass,
E1000, TYPE_E1000_BASE)
static void
e1000_link_up(E1000State *s)
{
e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
/* E1000_STATUS_LU is tested by e1000_can_receive() */
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
static void
e1000_autoneg_done(E1000State *s)
{
e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
/* E1000_STATUS_LU is tested by e1000_can_receive() */
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
static bool
have_autoneg(E1000State *s)
{
return chkflag(AUTONEG) && (s->phy_reg[MII_BMCR] & MII_BMCR_AUTOEN);
}
static void
set_phy_ctrl(E1000State *s, int index, uint16_t val)
{
/* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
s->phy_reg[MII_BMCR] = val & ~(0x3f |
MII_BMCR_RESET |
MII_BMCR_ANRESTART);
/*
* QEMU 1.3 does not support link auto-negotiation emulation, so if we
* migrate during auto negotiation, after migration the link will be
* down.
*/
if (have_autoneg(s) && (val & MII_BMCR_ANRESTART)) {
e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
}
}
static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
[MII_BMCR] = set_phy_ctrl,
};
enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
static const char phy_regcap[0x20] = {
[MII_BMSR] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
[MII_PHYID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
[MII_BMCR] = PHY_RW, [MII_CTRL1000] = PHY_RW,
[MII_ANLPAR] = PHY_R, [MII_STAT1000] = PHY_R,
[MII_ANAR] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
[MII_PHYID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R,
[MII_ANER] = PHY_R,
};
/* MII_PHYID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */
static const uint16_t phy_reg_init[] = {
[MII_BMCR] = MII_BMCR_SPEED1000 |
MII_BMCR_FD |
MII_BMCR_AUTOEN,
[MII_BMSR] = MII_BMSR_EXTCAP |
MII_BMSR_LINK_ST | /* link initially up */
MII_BMSR_AUTONEG |
/* MII_BMSR_AN_COMP: initially NOT completed */
MII_BMSR_MFPS |
MII_BMSR_EXTSTAT |
MII_BMSR_10T_HD |
MII_BMSR_10T_FD |
MII_BMSR_100TX_HD |
MII_BMSR_100TX_FD,
[MII_PHYID1] = 0x141,
/* [MII_PHYID2] configured per DevId, from e1000_reset() */
[MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 |
MII_ANAR_10FD | MII_ANAR_TX |
MII_ANAR_TXFD | MII_ANAR_PAUSE |
MII_ANAR_PAUSE_ASYM,
[MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD |
MII_ANLPAR_TX | MII_ANLPAR_TXFD,
[MII_CTRL1000] = MII_CTRL1000_FULL | MII_CTRL1000_PORT |
MII_CTRL1000_MASTER,
[MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL |
MII_STAT1000_ROK | MII_STAT1000_LOK,
[M88E1000_PHY_SPEC_CTRL] = 0x360,
[M88E1000_PHY_SPEC_STATUS] = 0xac00,
[M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
};
static const uint32_t mac_reg_init[] = {
[PBA] = 0x00100030,
[LEDCTL] = 0x602,
[CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
[STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
E1000_STATUS_LU,
[MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
E1000_MANC_RMCP_EN,
};
/* Helper function, *curr == 0 means the value is not set */
static inline void
mit_update_delay(uint32_t *curr, uint32_t value)
{
if (value && (*curr == 0 || value < *curr)) {
*curr = value;
}
}
static void
set_interrupt_cause(E1000State *s, int index, uint32_t val)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t pending_ints;
uint32_t mit_delay;
s->mac_reg[ICR] = val;
/*
* Make sure ICR and ICS registers have the same value.
* The spec says that the ICS register is write-only. However in practice,
* on real hardware ICS is readable, and for reads it has the same value as
* ICR (except that ICS does not have the clear on read behaviour of ICR).
*
* The VxWorks PRO/1000 driver uses this behaviour.
*/
s->mac_reg[ICS] = val;
pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
if (!s->mit_irq_level && pending_ints) {
/*
* Here we detect a potential raising edge. We postpone raising the
* interrupt line if we are inside the mitigation delay window
* (s->mit_timer_on == 1).
* We provide a partial implementation of interrupt mitigation,
* emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for
* RADV and TADV, 256ns units for ITR). RDTR is only used to enable
* RADV; relative timers based on TIDV and RDTR are not implemented.
*/
if (s->mit_timer_on) {
return;
}
if (chkflag(MIT)) {
/* Compute the next mitigation delay according to pending
* interrupts and the current values of RADV (provided
* RDTR!=0), TADV and ITR.
* Then rearm the timer.
*/
mit_delay = 0;
if (s->mit_ide &&
(pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
}
if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
}
mit_update_delay(&mit_delay, s->mac_reg[ITR]);
/*
* According to e1000 SPEC, the Ethernet controller guarantees
* a maximum observable interrupt rate of 7813 interrupts/sec.
* Thus if mit_delay < 500 then the delay should be set to the
* minimum delay possible which is 500.
*/
mit_delay = (mit_delay < 500) ? 500 : mit_delay;
s->mit_timer_on = 1;
timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
mit_delay * 256);
s->mit_ide = 0;
}
}
s->mit_irq_level = (pending_ints != 0);
pci_set_irq(d, s->mit_irq_level);
}
static void
e1000_mit_timer(void *opaque)
{
E1000State *s = opaque;
s->mit_timer_on = 0;
/* Call set_interrupt_cause to update the irq level (if necessary). */
set_interrupt_cause(s, 0, s->mac_reg[ICR]);
}
static void
set_ics(E1000State *s, int index, uint32_t val)
{
DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
s->mac_reg[IMS]);
set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
}
static void
e1000_autoneg_timer(void *opaque)
{
E1000State *s = opaque;
if (!qemu_get_queue(s->nic)->link_down) {
e1000_autoneg_done(s);
set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
}
}
static bool e1000_vet_init_need(void *opaque)
{
E1000State *s = opaque;
return chkflag(VET);
}
static void e1000_reset_hold(Object *obj)
{
E1000State *d = E1000(obj);
E1000BaseClass *edc = E1000_GET_CLASS(d);
uint8_t *macaddr = d->conf.macaddr.a;
timer_del(d->autoneg_timer);
timer_del(d->mit_timer);
timer_del(d->flush_queue_timer);
d->mit_timer_on = 0;
d->mit_irq_level = 0;
d->mit_ide = 0;
memset(d->phy_reg, 0, sizeof d->phy_reg);
memcpy(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
d->phy_reg[MII_PHYID2] = edc->phy_id2;
memset(d->mac_reg, 0, sizeof d->mac_reg);
memcpy(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
d->rxbuf_min_shift = 1;
memset(&d->tx, 0, sizeof d->tx);
if (qemu_get_queue(d->nic)->link_down) {
e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
}
e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
if (e1000_vet_init_need(d)) {
d->mac_reg[VET] = ETH_P_VLAN;
}
}
static void
set_ctrl(E1000State *s, int index, uint32_t val)
{
/* RST is self clearing */
s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
}
static void
e1000_flush_queue_timer(void *opaque)
{
E1000State *s = opaque;
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
static void
set_rx_control(E1000State *s, int index, uint32_t val)
{
s->mac_reg[RCTL] = val;
s->rxbuf_size = e1000x_rxbufsize(val);
s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
s->mac_reg[RCTL]);
timer_mod(s->flush_queue_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000);
}
static void
set_mdic(E1000State *s, int index, uint32_t val)
{
uint32_t data = val & E1000_MDIC_DATA_MASK;
uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
else if (val & E1000_MDIC_OP_READ) {
DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
if (!(phy_regcap[addr] & PHY_R)) {
DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
val |= E1000_MDIC_ERROR;
} else
val = (val ^ data) | s->phy_reg[addr];
} else if (val & E1000_MDIC_OP_WRITE) {
DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
if (!(phy_regcap[addr] & PHY_W)) {
DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
val |= E1000_MDIC_ERROR;
} else {
if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
phyreg_writeops[addr](s, index, data);
} else {
s->phy_reg[addr] = data;
}
}
}
s->mac_reg[MDIC] = val | E1000_MDIC_READY;
if (val & E1000_MDIC_INT_EN) {
set_ics(s, 0, E1000_ICR_MDAC);
}
}
static uint32_t
get_eecd(E1000State *s, int index)
{
uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
s->eecd_state.bitnum_out, s->eecd_state.reading);
if (!s->eecd_state.reading ||
((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
ret |= E1000_EECD_DO;
return ret;
}
static void
set_eecd(E1000State *s, int index, uint32_t val)
{
uint32_t oldval = s->eecd_state.old_eecd;
s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */
return;
}
if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */
s->eecd_state.val_in = 0;
s->eecd_state.bitnum_in = 0;
s->eecd_state.bitnum_out = 0;
s->eecd_state.reading = 0;
}
if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */
return;
}
if (!(E1000_EECD_SK & val)) { /* falling edge */
s->eecd_state.bitnum_out++;
return;
}
s->eecd_state.val_in <<= 1;
if (val & E1000_EECD_DI)
s->eecd_state.val_in |= 1;
if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
EEPROM_READ_OPCODE_MICROWIRE);
}
DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
s->eecd_state.reading);
}
static uint32_t
flash_eerd_read(E1000State *s, int x)
{
unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
return (s->mac_reg[EERD]);
if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
return (E1000_EEPROM_RW_REG_DONE | r);
return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
E1000_EEPROM_RW_REG_DONE | r);
}
static void
putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
{
uint32_t sum;
if (cse && cse < n)
n = cse + 1;
if (sloc < n-1) {
sum = net_checksum_add(n-css, data+css);
stw_be_p(data + sloc, net_checksum_finish_nozero(sum));
}
}
static inline void
inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
{
if (is_broadcast_ether_addr(arr)) {
e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
} else if (is_multicast_ether_addr(arr)) {
e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
}
}
static void
e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
{
static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
PTC1023, PTC1522 };
NetClientState *nc = qemu_get_queue(s->nic);
if (s->phy_reg[MII_BMCR] & MII_BMCR_LOOPBACK) {
qemu_receive_packet(nc, buf, size);
} else {
qemu_send_packet(nc, buf, size);
}
inc_tx_bcast_or_mcast_count(s, buf);
e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
}
static void
xmit_seg(E1000State *s)
{
uint16_t len;
unsigned int frames = s->tx.tso_frames, css, sofar;
struct e1000_tx *tp = &s->tx;
struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props;
if (tp->cptse) {
css = props->ipcss;
DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
frames, tp->size, css);
if (props->ip) { /* IPv4 */
stw_be_p(tp->data+css+2, tp->size - css);
stw_be_p(tp->data+css+4,
lduw_be_p(tp->data + css + 4) + frames);
} else { /* IPv6 */
stw_be_p(tp->data+css+4, tp->size - css);
}
css = props->tucss;
len = tp->size - css;
DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len);
if (props->tcp) {
sofar = frames * props->mss;
stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
if (props->paylen - sofar > props->mss) {
tp->data[css + 13] &= ~9; /* PSH, FIN */
} else if (frames) {
e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
}
} else { /* UDP */
stw_be_p(tp->data+css+4, len);
}
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
unsigned int phsum;
// add pseudo-header length before checksum calculation
void *sp = tp->data + props->tucso;
phsum = lduw_be_p(sp) + len;
phsum = (phsum >> 16) + (phsum & 0xffff);
stw_be_p(sp, phsum);
}
tp->tso_frames++;
}
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse);
}
if (tp->sum_needed & E1000_TXD_POPTS_IXSM) {
putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse);
}
if (tp->vlan_needed) {
memmove(tp->vlan, tp->data, 4);
memmove(tp->data, tp->data + 4, 8);
memcpy(tp->data + 8, tp->vlan_header, 4);
e1000_send_packet(s, tp->vlan, tp->size + 4);
} else {
e1000_send_packet(s, tp->data, tp->size);
}
e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
s->mac_reg[GPTC] = s->mac_reg[TPT];
s->mac_reg[GOTCL] = s->mac_reg[TOTL];
s->mac_reg[GOTCH] = s->mac_reg[TOTH];
}
static void
process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t txd_lower = le32_to_cpu(dp->lower.data);
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
unsigned int split_size = txd_lower & 0xffff, bytes, sz;
unsigned int msh = 0xfffff;
uint64_t addr;
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
struct e1000_tx *tp = &s->tx;
s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) {
e1000x_read_tx_ctx_descr(xp, &tp->tso_props);
s->use_tso_for_migration = 1;
tp->tso_frames = 0;
} else {
e1000x_read_tx_ctx_descr(xp, &tp->props);
s->use_tso_for_migration = 0;
}
return;
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
// data descriptor
if (tp->size == 0) {
tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
}
tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
} else {
// legacy descriptor
tp->cptse = 0;
}
if (e1000x_vlan_enabled(s->mac_reg) &&
e1000x_is_vlan_txd(txd_lower) &&
(tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
tp->vlan_needed = 1;
stw_be_p(tp->vlan_header,
le16_to_cpu(s->mac_reg[VET]));
stw_be_p(tp->vlan_header + 2,
le16_to_cpu(dp->upper.fields.special));
}
addr = le64_to_cpu(dp->buffer_addr);
if (tp->cptse) {
msh = tp->tso_props.hdr_len + tp->tso_props.mss;
do {
bytes = split_size;
if (tp->size >= msh) {
goto eop;
}
if (tp->size + bytes > msh)
bytes = msh - tp->size;
bytes = MIN(sizeof(tp->data) - tp->size, bytes);
pci_dma_read(d, addr, tp->data + tp->size, bytes);
sz = tp->size + bytes;
if (sz >= tp->tso_props.hdr_len
&& tp->size < tp->tso_props.hdr_len) {
memmove(tp->header, tp->data, tp->tso_props.hdr_len);
}
tp->size = sz;
addr += bytes;
if (sz == msh) {
xmit_seg(s);
memmove(tp->data, tp->header, tp->tso_props.hdr_len);
tp->size = tp->tso_props.hdr_len;
}
split_size -= bytes;
} while (bytes && split_size);
} else {
split_size = MIN(sizeof(tp->data) - tp->size, split_size);
pci_dma_read(d, addr, tp->data + tp->size, split_size);
tp->size += split_size;
}
eop:
if (!(txd_lower & E1000_TXD_CMD_EOP))
return;
if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) {
xmit_seg(s);
}
tp->tso_frames = 0;
tp->sum_needed = 0;
tp->vlan_needed = 0;
tp->size = 0;
tp->cptse = 0;
}
static uint32_t
txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
return 0;
txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
dp->upper.data = cpu_to_le32(txd_upper);
pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
&dp->upper, sizeof(dp->upper));
return E1000_ICR_TXDW;
}
static uint64_t tx_desc_base(E1000State *s)
{
uint64_t bah = s->mac_reg[TDBAH];
uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
return (bah << 32) + bal;
}
static void
start_xmit(E1000State *s)
{
PCIDevice *d = PCI_DEVICE(s);
dma_addr_t base;
struct e1000_tx_desc desc;
uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
DBGOUT(TX, "tx disabled\n");
return;
}
if (s->tx.busy) {
return;
}
s->tx.busy = true;
while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
base = tx_desc_base(s) +
sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
pci_dma_read(d, base, &desc, sizeof(desc));
DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
(void *)(intptr_t)desc.buffer_addr, desc.lower.data,
desc.upper.data);
process_tx_desc(s, &desc);
cause |= txdesc_writeback(s, base, &desc);
if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
s->mac_reg[TDH] = 0;
/*
* the following could happen only if guest sw assigns
* bogus values to TDT/TDLEN.
* there's nothing too intelligent we could do about this.
*/
if (s->mac_reg[TDH] == tdh_start ||
tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
break;
}
}
s->tx.busy = false;
set_ics(s, 0, cause);
}
static int
receive_filter(E1000State *s, const uint8_t *buf, int size)
{
uint32_t rctl = s->mac_reg[RCTL];
int isbcast = is_broadcast_ether_addr(buf);
int ismcast = is_multicast_ether_addr(buf);
if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(buf)->h_tci);
uint32_t vfta =
ldl_le_p((uint32_t *)(s->mac_reg + VFTA) +
((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
return 0;
}
}
if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */
return 1;
}
if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */
e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
return 1;
}
if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */
e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
return 1;
}
return e1000x_rx_group_filter(s->mac_reg, buf);
}
static void
e1000_set_link_status(NetClientState *nc)
{
E1000State *s = qemu_get_nic_opaque(nc);
uint32_t old_status = s->mac_reg[STATUS];
if (nc->link_down) {
e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
} else {
if (have_autoneg(s) &&
!(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) {
e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
} else {
e1000_link_up(s);
}
}
if (s->mac_reg[STATUS] != old_status)
set_ics(s, 0, E1000_ICR_LSC);
}
static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
{
int bufs;
/* Fast-path short packets */
if (total_size <= s->rxbuf_size) {
return s->mac_reg[RDH] != s->mac_reg[RDT];
}
if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
} else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
s->mac_reg[RDT] - s->mac_reg[RDH];
} else {
return false;
}
return total_size <= bufs * s->rxbuf_size;
}
static bool
e1000_can_receive(NetClientState *nc)
{
E1000State *s = qemu_get_nic_opaque(nc);
return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer);
}
static uint64_t rx_desc_base(E1000State *s)
{
uint64_t bah = s->mac_reg[RDBAH];
uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
return (bah << 32) + bal;
}
static void
e1000_receiver_overrun(E1000State *s, size_t size)
{
trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]);
e1000x_inc_reg_if_not_full(s->mac_reg, RNBC);
e1000x_inc_reg_if_not_full(s->mac_reg, MPC);
set_ics(s, 0, E1000_ICS_RXO);
}
static ssize_t
e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
{
E1000State *s = qemu_get_nic_opaque(nc);
PCIDevice *d = PCI_DEVICE(s);
struct e1000_rx_desc desc;
dma_addr_t base;
unsigned int n, rdt;
uint32_t rdh_start;
uint16_t vlan_special = 0;
uint8_t vlan_status = 0;
uint8_t min_buf[ETH_ZLEN];
struct iovec min_iov;
uint8_t *filter_buf = iov->iov_base;
size_t size = iov_size(iov, iovcnt);
size_t iov_ofs = 0;
size_t desc_offset;
size_t desc_size;
size_t total_size;
if (!e1000x_hw_rx_enabled(s->mac_reg)) {
return -1;
}
if (timer_pending(s->flush_queue_timer)) {
return 0;
}
/* Pad to minimum Ethernet frame length */
if (size < sizeof(min_buf)) {
iov_to_buf(iov, iovcnt, 0, min_buf, size);
memset(&min_buf[size], 0, sizeof(min_buf) - size);
min_iov.iov_base = filter_buf = min_buf;
min_iov.iov_len = size = sizeof(min_buf);
iovcnt = 1;
iov = &min_iov;
} else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
/* This is very unlikely, but may happen. */
iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
filter_buf = min_buf;
}
/* Discard oversized packets if !LPE and !SBP. */
if (e1000x_is_oversized(s->mac_reg, size)) {
return size;
}
if (!receive_filter(s, filter_buf, size)) {
return size;
}
if (e1000x_vlan_enabled(s->mac_reg) &&
e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
iov_ofs = 4;
if (filter_buf == iov->iov_base) {
memmove(filter_buf + 4, filter_buf, 12);
} else {
iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
while (iov->iov_len <= iov_ofs) {
iov_ofs -= iov->iov_len;
iov++;
}
}
vlan_status = E1000_RXD_STAT_VP;
size -= 4;
}
rdh_start = s->mac_reg[RDH];
desc_offset = 0;
total_size = size + e1000x_fcs_len(s->mac_reg);
if (!e1000_has_rxbufs(s, total_size)) {
e1000_receiver_overrun(s, total_size);
return -1;
}
do {
desc_size = total_size - desc_offset;
if (desc_size > s->rxbuf_size) {
desc_size = s->rxbuf_size;
}
base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
pci_dma_read(d, base, &desc, sizeof(desc));
desc.special = vlan_special;
desc.status &= ~E1000_RXD_STAT_DD;
if (desc.buffer_addr) {
if (desc_offset < size) {
size_t iov_copy;
hwaddr ba = le64_to_cpu(desc.buffer_addr);
size_t copy_size = size - desc_offset;
if (copy_size > s->rxbuf_size) {
copy_size = s->rxbuf_size;
}
do {
iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
copy_size -= iov_copy;
ba += iov_copy;
iov_ofs += iov_copy;
if (iov_ofs == iov->iov_len) {
iov++;
iov_ofs = 0;
}
} while (copy_size);
}
desc_offset += desc_size;
desc.length = cpu_to_le16(desc_size);
if (desc_offset >= total_size) {
desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
} else {
/* Guest zeroing out status is not a hardware requirement.
Clear EOP in case guest didn't do it. */
desc.status &= ~E1000_RXD_STAT_EOP;
}
} else { // as per intel docs; skip descriptors with null buf addr
DBGOUT(RX, "Null RX descriptor!!\n");
}
pci_dma_write(d, base, &desc, sizeof(desc));
desc.status |= (vlan_status | E1000_RXD_STAT_DD);
pci_dma_write(d, base + offsetof(struct e1000_rx_desc, status),
&desc.status, sizeof(desc.status));
if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
s->mac_reg[RDH] = 0;
/* see comment in start_xmit; same here */
if (s->mac_reg[RDH] == rdh_start ||
rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
e1000_receiver_overrun(s, total_size);
return -1;
}
} while (desc_offset < total_size);
e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
n = E1000_ICS_RXT0;
if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
rdt += s->mac_reg[RDLEN] / sizeof(desc);
if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
s->rxbuf_min_shift)
n |= E1000_ICS_RXDMT0;
set_ics(s, 0, n);
return size;
}
static ssize_t
e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
const struct iovec iov = {
.iov_base = (uint8_t *)buf,
.iov_len = size
};
return e1000_receive_iov(nc, &iov, 1);
}
static uint32_t
mac_readreg(E1000State *s, int index)
{
return s->mac_reg[index];
}
static uint32_t
mac_icr_read(E1000State *s, int index)
{
uint32_t ret = s->mac_reg[ICR];
DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
set_interrupt_cause(s, 0, 0);
return ret;
}
static uint32_t
mac_read_clr4(E1000State *s, int index)
{
uint32_t ret = s->mac_reg[index];
s->mac_reg[index] = 0;
return ret;
}
static uint32_t
mac_read_clr8(E1000State *s, int index)
{
uint32_t ret = s->mac_reg[index];
s->mac_reg[index] = 0;
s->mac_reg[index-1] = 0;
return ret;
}
static void
mac_writereg(E1000State *s, int index, uint32_t val)
{
uint32_t macaddr[2];
s->mac_reg[index] = val;
if (index == RA + 1) {
macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
}
}
static void
set_rdt(E1000State *s, int index, uint32_t val)
{
s->mac_reg[index] = val & 0xffff;
if (e1000_has_rxbufs(s, 1)) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
}
#define LOW_BITS_SET_FUNC(num) \
static void \
set_##num##bit(E1000State *s, int index, uint32_t val) \
{ \
s->mac_reg[index] = val & (BIT(num) - 1); \
}
LOW_BITS_SET_FUNC(4)
LOW_BITS_SET_FUNC(11)
LOW_BITS_SET_FUNC(13)
LOW_BITS_SET_FUNC(16)
static void
set_dlen(E1000State *s, int index, uint32_t val)
{
s->mac_reg[index] = val & 0xfff80;
}
static void
set_tctl(E1000State *s, int index, uint32_t val)
{
s->mac_reg[index] = val;
s->mac_reg[TDT] &= 0xffff;
start_xmit(s);
}
static void
set_icr(E1000State *s, int index, uint32_t val)
{
DBGOUT(INTERRUPT, "set_icr %x\n", val);
set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
}
static void
set_imc(E1000State *s, int index, uint32_t val)
{
s->mac_reg[IMS] &= ~val;
set_ics(s, 0, 0);
}
static void
set_ims(E1000State *s, int index, uint32_t val)
{
s->mac_reg[IMS] |= val;
set_ics(s, 0, 0);
}
#define getreg(x) [x] = mac_readreg
typedef uint32_t (*readops)(E1000State *, int);
static const readops macreg_readops[] = {
getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV),
getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV),
getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL),
getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC),
getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC),
getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC),
getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC),
getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL),
getreg(GOTCL), getreg(RDFH), getreg(RDFT), getreg(RDFHS),
getreg(RDFTS), getreg(RDFPC), getreg(TDFH), getreg(TDFT),
getreg(TDFHS), getreg(TDFTS), getreg(TDFPC), getreg(AIT),
[TOTH] = mac_read_clr8, [TORH] = mac_read_clr8,
[GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8,
[PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4,
[PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4,
[PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4,
[PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4,
[PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4,
[PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4,
[GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4,
[TPT] = mac_read_clr4, [TPR] = mac_read_clr4,
[RUC] = mac_read_clr4, [ROC] = mac_read_clr4,
[BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4,
[TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4,
[MPTC] = mac_read_clr4,
[ICR] = mac_icr_read, [EECD] = get_eecd,
[EERD] = flash_eerd_read,
[CRCERRS ... MPC] = &mac_readreg,
[IP6AT ... IP6AT + 3] = &mac_readreg, [IP4AT ... IP4AT + 6] = &mac_readreg,
[FFLT ... FFLT + 6] = &mac_readreg,
[RA ... RA + 31] = &mac_readreg,
[WUPM ... WUPM + 31] = &mac_readreg,
[MTA ... MTA + E1000_MC_TBL_SIZE - 1] = &mac_readreg,
[VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_readreg,
[FFMT ... FFMT + 254] = &mac_readreg,
[FFVT ... FFVT + 254] = &mac_readreg,
[PBM ... PBM + 16383] = &mac_readreg,
};
enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
#define putreg(x) [x] = mac_writereg
typedef void (*writeops)(E1000State *, int, uint32_t);
static const writeops macreg_writeops[] = {
putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC),
putreg(IPAV), putreg(WUC),
putreg(WUS),
[TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
[TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
[TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
[IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
[EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
[RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit,
[ITR] = set_16bit, [TDFH] = set_11bit, [TDFT] = set_11bit,
[TDFHS] = set_13bit, [TDFTS] = set_13bit, [TDFPC] = set_13bit,
[RDFH] = set_13bit, [RDFT] = set_13bit, [RDFHS] = set_13bit,
[RDFTS] = set_13bit, [RDFPC] = set_13bit, [AIT] = set_16bit,
[IP6AT ... IP6AT + 3] = &mac_writereg, [IP4AT ... IP4AT + 6] = &mac_writereg,
[FFLT ... FFLT + 6] = &set_11bit,
[RA ... RA + 31] = &mac_writereg,
[WUPM ... WUPM + 31] = &mac_writereg,
[MTA ... MTA + E1000_MC_TBL_SIZE - 1] = &mac_writereg,
[VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_writereg,
[FFMT ... FFMT + 254] = &set_4bit, [FFVT ... FFVT + 254] = &mac_writereg,
[PBM ... PBM + 16383] = &mac_writereg,
};
enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
#define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
/* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p]
* f - flag bits (up to 6 possible flags)
* n - flag needed
* p - partially implenented */
static const uint8_t mac_reg_access[0x8000] = {
[RDTR] = markflag(MIT), [TADV] = markflag(MIT),
[RADV] = markflag(MIT), [ITR] = markflag(MIT),
[IPAV] = markflag(MAC), [WUC] = markflag(MAC),
[IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC),
[FFVT] = markflag(MAC), [WUPM] = markflag(MAC),
[ECOL] = markflag(MAC), [MCC] = markflag(MAC),
[DC] = markflag(MAC), [TNCRS] = markflag(MAC),
[RLEC] = markflag(MAC), [XONRXC] = markflag(MAC),
[XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC),
[TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC),
[WUS] = markflag(MAC), [AIT] = markflag(MAC),
[FFLT] = markflag(MAC), [FFMT] = markflag(MAC),
[SCC] = markflag(MAC), [FCRUC] = markflag(MAC),
[LATECOL] = markflag(MAC), [COLC] = markflag(MAC),
[SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC),
[XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC),
[RJC] = markflag(MAC), [RNBC] = markflag(MAC),
[MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC),
[RUC] = markflag(MAC), [ROC] = markflag(MAC),
[GORCL] = markflag(MAC), [GORCH] = markflag(MAC),
[GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC),
[BPRC] = markflag(MAC), [MPRC] = markflag(MAC),
[TSCTC] = markflag(MAC), [PRC64] = markflag(MAC),
[PRC127] = markflag(MAC), [PRC255] = markflag(MAC),
[PRC511] = markflag(MAC), [PRC1023] = markflag(MAC),
[PRC1522] = markflag(MAC), [PTC64] = markflag(MAC),
[PTC127] = markflag(MAC), [PTC255] = markflag(MAC),
[PTC511] = markflag(MAC), [PTC1023] = markflag(MAC),
[PTC1522] = markflag(MAC), [MPTC] = markflag(MAC),
[BPTC] = markflag(MAC),
[TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
[PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL,
};
static void
e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
E1000State *s = opaque;
unsigned int index = (addr & 0x1ffff) >> 2;
if (index < NWRITEOPS && macreg_writeops[index]) {
if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
|| (s->compat_flags & (mac_reg_access[index] >> 2))) {
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
"It is not fully implemented.\n", index<<2);
}
macreg_writeops[index](s, index, val);
} else { /* "flag needed" bit is set, but the flag is not active */
DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
index<<2);
}
} else if (index < NREADOPS && macreg_readops[index]) {
DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
index<<2, val);
} else {
DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
index<<2, val);
}
}
static uint64_t
e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
E1000State *s = opaque;
unsigned int index = (addr & 0x1ffff) >> 2;
if (index < NREADOPS && macreg_readops[index]) {
if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
|| (s->compat_flags & (mac_reg_access[index] >> 2))) {
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
"It is not fully implemented.\n", index<<2);
}
return macreg_readops[index](s, index);
} else { /* "flag needed" bit is set, but the flag is not active */
DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
index<<2);
}
} else {
DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
}
return 0;
}
static const MemoryRegionOps e1000_mmio_ops = {
.read = e1000_mmio_read,
.write = e1000_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t e1000_io_read(void *opaque, hwaddr addr,
unsigned size)
{
E1000State *s = opaque;
(void)s;
return 0;
}
static void e1000_io_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
E1000State *s = opaque;
(void)s;
}
static const MemoryRegionOps e1000_io_ops = {
.read = e1000_io_read,
.write = e1000_io_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static bool is_version_1(void *opaque, int version_id)
{
return version_id == 1;
}
static int e1000_pre_save(void *opaque)
{
E1000State *s = opaque;
NetClientState *nc = qemu_get_queue(s->nic);
/*
* If link is down and auto-negotiation is supported and ongoing,
* complete auto-negotiation immediately. This allows us to look
* at MII_BMSR_AN_COMP to infer link status on load.
*/
if (nc->link_down && have_autoneg(s)) {
s->phy_reg[MII_BMSR] |= MII_BMSR_AN_COMP;
}
/* Decide which set of props to migrate in the main structure */
if (chkflag(TSO) || !s->use_tso_for_migration) {
/* Either we're migrating with the extra subsection, in which
* case the mig_props is always 'props' OR
* we've not got the subsection, but 'props' was the last
* updated.
*/
s->mig_props = s->tx.props;
} else {
/* We're not using the subsection, and 'tso_props' was
* the last updated.
*/
s->mig_props = s->tx.tso_props;
}
return 0;
}
static int e1000_post_load(void *opaque, int version_id)
{
E1000State *s = opaque;
NetClientState *nc = qemu_get_queue(s->nic);
if (!chkflag(MIT)) {
s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
s->mac_reg[TADV] = 0;
s->mit_irq_level = false;
}
s->mit_ide = 0;
s->mit_timer_on = true;
timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1);
/* nc.link_down can't be migrated, so infer link_down according
* to link status bit in mac_reg[STATUS].
* Alternatively, restart link negotiation if it was in progress. */
nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
if (have_autoneg(s) && !(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) {
nc->link_down = false;
timer_mod(s->autoneg_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
}
s->tx.props = s->mig_props;
if (!s->received_tx_tso) {
/* We received only one set of offload data (tx.props)
* and haven't got tx.tso_props. The best we can do
* is dupe the data.
*/
s->tx.tso_props = s->mig_props;
}
return 0;
}
static int e1000_tx_tso_post_load(void *opaque, int version_id)
{
E1000State *s = opaque;
s->received_tx_tso = true;
return 0;
}
static bool e1000_mit_state_needed(void *opaque)
{
E1000State *s = opaque;
return chkflag(MIT);
}
static bool e1000_full_mac_needed(void *opaque)
{
E1000State *s = opaque;
return chkflag(MAC);
}
static bool e1000_tso_state_needed(void *opaque)
{
E1000State *s = opaque;
return chkflag(TSO);
}
static const VMStateDescription vmstate_e1000_mit_state = {
.name = "e1000/mit_state",
.version_id = 1,
.minimum_version_id = 1,
.needed = e1000_mit_state_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(mac_reg[RDTR], E1000State),
VMSTATE_UINT32(mac_reg[RADV], E1000State),
VMSTATE_UINT32(mac_reg[TADV], E1000State),
VMSTATE_UINT32(mac_reg[ITR], E1000State),
VMSTATE_BOOL(mit_irq_level, E1000State),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_e1000_full_mac_state = {
.name = "e1000/full_mac_state",
.version_id = 1,
.minimum_version_id = 1,
.needed = e1000_full_mac_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_e1000_tx_tso_state = {
.name = "e1000/tx_tso_state",
.version_id = 1,
.minimum_version_id = 1,
.needed = e1000_tso_state_needed,
.post_load = e1000_tx_tso_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(tx.tso_props.ipcss, E1000State),
VMSTATE_UINT8(tx.tso_props.ipcso, E1000State),
VMSTATE_UINT16(tx.tso_props.ipcse, E1000State),
VMSTATE_UINT8(tx.tso_props.tucss, E1000State),
VMSTATE_UINT8(tx.tso_props.tucso, E1000State),
VMSTATE_UINT16(tx.tso_props.tucse, E1000State),
VMSTATE_UINT32(tx.tso_props.paylen, E1000State),
VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State),
VMSTATE_UINT16(tx.tso_props.mss, E1000State),
VMSTATE_INT8(tx.tso_props.ip, E1000State),
VMSTATE_INT8(tx.tso_props.tcp, E1000State),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_e1000 = {
.name = "e1000",
.version_id = 2,
.minimum_version_id = 1,
.pre_save = e1000_pre_save,
.post_load = e1000_post_load,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, E1000State),
VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */
VMSTATE_UNUSED(4), /* Was mmio_base. */
VMSTATE_UINT32(rxbuf_size, E1000State),
VMSTATE_UINT32(rxbuf_min_shift, E1000State),
VMSTATE_UINT32(eecd_state.val_in, E1000State),
VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
VMSTATE_UINT16(eecd_state.reading, E1000State),
VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
VMSTATE_UINT8(mig_props.ipcss, E1000State),
VMSTATE_UINT8(mig_props.ipcso, E1000State),
VMSTATE_UINT16(mig_props.ipcse, E1000State),
VMSTATE_UINT8(mig_props.tucss, E1000State),
VMSTATE_UINT8(mig_props.tucso, E1000State),
VMSTATE_UINT16(mig_props.tucse, E1000State),
VMSTATE_UINT32(mig_props.paylen, E1000State),
VMSTATE_UINT8(mig_props.hdr_len, E1000State),
VMSTATE_UINT16(mig_props.mss, E1000State),
VMSTATE_UINT16(tx.size, E1000State),
VMSTATE_UINT16(tx.tso_frames, E1000State),
VMSTATE_UINT8(tx.sum_needed, E1000State),
VMSTATE_INT8(mig_props.ip, E1000State),
VMSTATE_INT8(mig_props.tcp, E1000State),
VMSTATE_BUFFER(tx.header, E1000State),
VMSTATE_BUFFER(tx.data, E1000State),
VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
VMSTATE_UINT32(mac_reg[CTRL], E1000State),
VMSTATE_UINT32(mac_reg[EECD], E1000State),
VMSTATE_UINT32(mac_reg[EERD], E1000State),
VMSTATE_UINT32(mac_reg[GPRC], E1000State),
VMSTATE_UINT32(mac_reg[GPTC], E1000State),
VMSTATE_UINT32(mac_reg[ICR], E1000State),
VMSTATE_UINT32(mac_reg[ICS], E1000State),
VMSTATE_UINT32(mac_reg[IMC], E1000State),
VMSTATE_UINT32(mac_reg[IMS], E1000State),
VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
VMSTATE_UINT32(mac_reg[MANC], E1000State),
VMSTATE_UINT32(mac_reg[MDIC], E1000State),
VMSTATE_UINT32(mac_reg[MPC], E1000State),
VMSTATE_UINT32(mac_reg[PBA], E1000State),
VMSTATE_UINT32(mac_reg[RCTL], E1000State),
VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
VMSTATE_UINT32(mac_reg[RDH], E1000State),
VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
VMSTATE_UINT32(mac_reg[RDT], E1000State),
VMSTATE_UINT32(mac_reg[STATUS], E1000State),
VMSTATE_UINT32(mac_reg[SWSM], E1000State),
VMSTATE_UINT32(mac_reg[TCTL], E1000State),
VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
VMSTATE_UINT32(mac_reg[TDH], E1000State),
VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
VMSTATE_UINT32(mac_reg[TDT], E1000State),
VMSTATE_UINT32(mac_reg[TORH], E1000State),
VMSTATE_UINT32(mac_reg[TORL], E1000State),
VMSTATE_UINT32(mac_reg[TOTH], E1000State),
VMSTATE_UINT32(mac_reg[TOTL], E1000State),
VMSTATE_UINT32(mac_reg[TPR], E1000State),
VMSTATE_UINT32(mac_reg[TPT], E1000State),
VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
VMSTATE_UINT32(mac_reg[WUFC], E1000State),
VMSTATE_UINT32(mac_reg[VET], E1000State),
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, E1000_MC_TBL_SIZE),
VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA,
E1000_VLAN_FILTER_TBL_SIZE),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_e1000_mit_state,
&vmstate_e1000_full_mac_state,
&vmstate_e1000_tx_tso_state,
NULL
}
};
/*
* EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102.
* Note: A valid DevId will be inserted during pci_e1000_realize().
*/
static const uint16_t e1000_eeprom_template[64] = {
0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040,
0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
};
/* PCI interface */
static void
e1000_mmio_setup(E1000State *d)
{
int i;
const uint32_t excluded_regs[] = {
E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
};
memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
"e1000-mmio", PNPMMIO_SIZE);
memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
excluded_regs[i+1] - excluded_regs[i] - 4);
memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
}
static void
pci_e1000_uninit(PCIDevice *dev)
{
E1000State *d = E1000(dev);
timer_free(d->autoneg_timer);
timer_free(d->mit_timer);
timer_free(d->flush_queue_timer);
qemu_del_nic(d->nic);
}
static NetClientInfo net_e1000_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = e1000_can_receive,
.receive = e1000_receive,
.receive_iov = e1000_receive_iov,
.link_status_changed = e1000_set_link_status,
};
static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
uint32_t val, int len)
{
E1000State *s = E1000(pci_dev);
pci_default_write_config(pci_dev, address, val, len);
if (range_covers_byte(address, len, PCI_COMMAND) &&
(pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
}
static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
{
DeviceState *dev = DEVICE(pci_dev);
E1000State *d = E1000(pci_dev);
uint8_t *pci_conf;
uint8_t *macaddr;
pci_dev->config_write = e1000_write_config;
pci_conf = pci_dev->config;
/* TODO: RST# value should be 0, PCI spec 6.2.4 */
pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
e1000_mmio_setup(d);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
qemu_macaddr_default_if_unset(&d->conf.macaddr);
macaddr = d->conf.macaddr.a;
e1000x_core_prepare_eeprom(d->eeprom_data,
e1000_eeprom_template,
sizeof(e1000_eeprom_template),
PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
macaddr);
d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
object_get_typename(OBJECT(d)), dev->id, d);
qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
e1000_flush_queue_timer, d);
}
static Property e1000_properties[] = {
DEFINE_NIC_PROPERTIES(E1000State, conf),
DEFINE_PROP_BIT("autonegotiation", E1000State,
compat_flags, E1000_FLAG_AUTONEG_BIT, true),
DEFINE_PROP_BIT("mitigation", E1000State,
compat_flags, E1000_FLAG_MIT_BIT, true),
DEFINE_PROP_BIT("extra_mac_registers", E1000State,
compat_flags, E1000_FLAG_MAC_BIT, true),
DEFINE_PROP_BIT("migrate_tso_props", E1000State,
compat_flags, E1000_FLAG_TSO_BIT, true),
DEFINE_PROP_BIT("init-vet", E1000State,
compat_flags, E1000_FLAG_VET_BIT, true),
DEFINE_PROP_END_OF_LIST(),
};
typedef struct E1000Info {
const char *name;
uint16_t device_id;
uint8_t revision;
uint16_t phy_id2;
} E1000Info;
static void e1000_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
E1000BaseClass *e = E1000_CLASS(klass);
const E1000Info *info = data;
k->realize = pci_e1000_realize;
k->exit = pci_e1000_uninit;
k->romfile = "efi-e1000.rom";
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = info->device_id;
k->revision = info->revision;
e->phy_id2 = info->phy_id2;
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
rc->phases.hold = e1000_reset_hold;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->desc = "Intel Gigabit Ethernet";
dc->vmsd = &vmstate_e1000;
device_class_set_props(dc, e1000_properties);
}
static void e1000_instance_init(Object *obj)
{
E1000State *n = E1000(obj);
device_add_bootindex_property(obj, &n->conf.bootindex,
"bootindex", "/ethernet-phy@0",
DEVICE(n));
}
static const TypeInfo e1000_base_info = {
.name = TYPE_E1000_BASE,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(E1000State),
.instance_init = e1000_instance_init,
.class_size = sizeof(E1000BaseClass),
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
static const E1000Info e1000_devices[] = {
{
.name = "e1000",
.device_id = E1000_DEV_ID_82540EM,
.revision = 0x03,
.phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
},
{
.name = "e1000-82544gc",
.device_id = E1000_DEV_ID_82544GC_COPPER,
.revision = 0x03,
.phy_id2 = E1000_PHY_ID2_82544x,
},
{
.name = "e1000-82545em",
.device_id = E1000_DEV_ID_82545EM_COPPER,
.revision = 0x03,
.phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
},
};
static void e1000_register_types(void)
{
int i;
type_register_static(&e1000_base_info);
for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
const E1000Info *info = &e1000_devices[i];
TypeInfo type_info = {};
type_info.name = info->name;
type_info.parent = TYPE_E1000_BASE;
type_info.class_data = (void *)info;
type_info.class_init = e1000_class_init;
type_register(&type_info);
}
}
type_init(e1000_register_types)