/* * QEMU NS SONIC DP8393x netcard * * Copyright (c) 2008-2009 Herve Poussineau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/net/dp8393x.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "net/net.h" #include "qapi/error.h" #include "qemu/module.h" #include "qemu/timer.h" #include <zlib.h> #include "qom/object.h" #include "trace.h" static const char *reg_names[] = { "CR", "DCR", "RCR", "TCR", "IMR", "ISR", "UTDA", "CTDA", "TPS", "TFC", "TSA0", "TSA1", "TFS", "URDA", "CRDA", "CRBA0", "CRBA1", "RBWC0", "RBWC1", "EOBC", "URRA", "RSA", "REA", "RRP", "RWP", "TRBA0", "TRBA1", "0x1b", "0x1c", "0x1d", "0x1e", "LLFA", "TTDA", "CEP", "CAP2", "CAP1", "CAP0", "CE", "CDP", "CDC", "SR", "WT0", "WT1", "RSC", "CRCT", "FAET", "MPT", "MDT", "0x30", "0x31", "0x32", "0x33", "0x34", "0x35", "0x36", "0x37", "0x38", "0x39", "0x3a", "0x3b", "0x3c", "0x3d", "0x3e", "DCR2" }; #define SONIC_CR 0x00 #define SONIC_DCR 0x01 #define SONIC_RCR 0x02 #define SONIC_TCR 0x03 #define SONIC_IMR 0x04 #define SONIC_ISR 0x05 #define SONIC_UTDA 0x06 #define SONIC_CTDA 0x07 #define SONIC_TPS 0x08 #define SONIC_TFC 0x09 #define SONIC_TSA0 0x0a #define SONIC_TSA1 0x0b #define SONIC_TFS 0x0c #define SONIC_URDA 0x0d #define SONIC_CRDA 0x0e #define SONIC_CRBA0 0x0f #define SONIC_CRBA1 0x10 #define SONIC_RBWC0 0x11 #define SONIC_RBWC1 0x12 #define SONIC_EOBC 0x13 #define SONIC_URRA 0x14 #define SONIC_RSA 0x15 #define SONIC_REA 0x16 #define SONIC_RRP 0x17 #define SONIC_RWP 0x18 #define SONIC_TRBA0 0x19 #define SONIC_TRBA1 0x1a #define SONIC_LLFA 0x1f #define SONIC_TTDA 0x20 #define SONIC_CEP 0x21 #define SONIC_CAP2 0x22 #define SONIC_CAP1 0x23 #define SONIC_CAP0 0x24 #define SONIC_CE 0x25 #define SONIC_CDP 0x26 #define SONIC_CDC 0x27 #define SONIC_SR 0x28 #define SONIC_WT0 0x29 #define SONIC_WT1 0x2a #define SONIC_RSC 0x2b #define SONIC_CRCT 0x2c #define SONIC_FAET 0x2d #define SONIC_MPT 0x2e #define SONIC_MDT 0x2f #define SONIC_DCR2 0x3f #define SONIC_CR_HTX 0x0001 #define SONIC_CR_TXP 0x0002 #define SONIC_CR_RXDIS 0x0004 #define SONIC_CR_RXEN 0x0008 #define SONIC_CR_STP 0x0010 #define SONIC_CR_ST 0x0020 #define SONIC_CR_RST 0x0080 #define SONIC_CR_RRRA 0x0100 #define SONIC_CR_LCAM 0x0200 #define SONIC_CR_MASK 0x03bf #define SONIC_DCR_DW 0x0020 #define SONIC_DCR_LBR 0x2000 #define SONIC_DCR_EXBUS 0x8000 #define SONIC_RCR_PRX 0x0001 #define SONIC_RCR_LBK 0x0002 #define SONIC_RCR_FAER 0x0004 #define SONIC_RCR_CRCR 0x0008 #define SONIC_RCR_CRS 0x0020 #define SONIC_RCR_LPKT 0x0040 #define SONIC_RCR_BC 0x0080 #define SONIC_RCR_MC 0x0100 #define SONIC_RCR_LB0 0x0200 #define SONIC_RCR_LB1 0x0400 #define SONIC_RCR_AMC 0x0800 #define SONIC_RCR_PRO 0x1000 #define SONIC_RCR_BRD 0x2000 #define SONIC_RCR_RNT 0x4000 #define SONIC_TCR_PTX 0x0001 #define SONIC_TCR_BCM 0x0002 #define SONIC_TCR_FU 0x0004 #define SONIC_TCR_EXC 0x0040 #define SONIC_TCR_CRSL 0x0080 #define SONIC_TCR_NCRS 0x0100 #define SONIC_TCR_EXD 0x0400 #define SONIC_TCR_CRCI 0x2000 #define SONIC_TCR_PINT 0x8000 #define SONIC_ISR_RBAE 0x0010 #define SONIC_ISR_RBE 0x0020 #define SONIC_ISR_RDE 0x0040 #define SONIC_ISR_TC 0x0080 #define SONIC_ISR_TXDN 0x0200 #define SONIC_ISR_PKTRX 0x0400 #define SONIC_ISR_PINT 0x0800 #define SONIC_ISR_LCD 0x1000 #define SONIC_DESC_EOL 0x0001 #define SONIC_DESC_ADDR 0xFFFE /* * Accessor functions for values which are formed by * concatenating two 16 bit device registers. By putting these * in their own functions with a uint32_t return type we avoid the * pitfall of implicit sign extension where ((x << 16) | y) is a * signed 32 bit integer that might get sign-extended to a 64 bit integer. */ static uint32_t dp8393x_cdp(dp8393xState *s) { return (s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP]; } static uint32_t dp8393x_crba(dp8393xState *s) { return (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0]; } static uint32_t dp8393x_crda(dp8393xState *s) { return (s->regs[SONIC_URDA] << 16) | (s->regs[SONIC_CRDA] & SONIC_DESC_ADDR); } static uint32_t dp8393x_rbwc(dp8393xState *s) { return (s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0]; } static uint32_t dp8393x_rrp(dp8393xState *s) { return (s->regs[SONIC_URRA] << 16) | s->regs[SONIC_RRP]; } static uint32_t dp8393x_tsa(dp8393xState *s) { return (s->regs[SONIC_TSA1] << 16) | s->regs[SONIC_TSA0]; } static uint32_t dp8393x_ttda(dp8393xState *s) { return (s->regs[SONIC_UTDA] << 16) | (s->regs[SONIC_TTDA] & SONIC_DESC_ADDR); } static uint32_t dp8393x_wt(dp8393xState *s) { return s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0]; } static uint16_t dp8393x_get(dp8393xState *s, hwaddr addr, int offset) { const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; uint16_t val; if (s->regs[SONIC_DCR] & SONIC_DCR_DW) { addr += offset << 2; if (s->big_endian) { val = address_space_ldl_be(&s->as, addr, attrs, NULL); } else { val = address_space_ldl_le(&s->as, addr, attrs, NULL); } } else { addr += offset << 1; if (s->big_endian) { val = address_space_lduw_be(&s->as, addr, attrs, NULL); } else { val = address_space_lduw_le(&s->as, addr, attrs, NULL); } } return val; } static void dp8393x_put(dp8393xState *s, hwaddr addr, int offset, uint16_t val) { const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; if (s->regs[SONIC_DCR] & SONIC_DCR_DW) { addr += offset << 2; if (s->big_endian) { address_space_stl_be(&s->as, addr, val, attrs, NULL); } else { address_space_stl_le(&s->as, addr, val, attrs, NULL); } } else { addr += offset << 1; if (s->big_endian) { address_space_stw_be(&s->as, addr, val, attrs, NULL); } else { address_space_stw_le(&s->as, addr, val, attrs, NULL); } } } static void dp8393x_update_irq(dp8393xState *s) { int level = (s->regs[SONIC_IMR] & s->regs[SONIC_ISR]) ? 1 : 0; if (level != s->irq_level) { s->irq_level = level; if (level) { trace_dp8393x_raise_irq(s->regs[SONIC_ISR]); } else { trace_dp8393x_lower_irq(); } } qemu_set_irq(s->irq, level); } static void dp8393x_do_load_cam(dp8393xState *s) { int width, size; uint16_t index; width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1; size = sizeof(uint16_t) * 4 * width; while (s->regs[SONIC_CDC] & 0x1f) { /* Fill current entry */ index = dp8393x_get(s, dp8393x_cdp(s), 0) & 0xf; s->cam[index][0] = dp8393x_get(s, dp8393x_cdp(s), 1); s->cam[index][1] = dp8393x_get(s, dp8393x_cdp(s), 2); s->cam[index][2] = dp8393x_get(s, dp8393x_cdp(s), 3); trace_dp8393x_load_cam(index, s->cam[index][0] >> 8, s->cam[index][0] & 0xff, s->cam[index][1] >> 8, s->cam[index][1] & 0xff, s->cam[index][2] >> 8, s->cam[index][2] & 0xff); /* Move to next entry */ s->regs[SONIC_CDC]--; s->regs[SONIC_CDP] += size; } /* Read CAM enable */ s->regs[SONIC_CE] = dp8393x_get(s, dp8393x_cdp(s), 0); trace_dp8393x_load_cam_done(s->regs[SONIC_CE]); /* Done */ s->regs[SONIC_CR] &= ~SONIC_CR_LCAM; s->regs[SONIC_ISR] |= SONIC_ISR_LCD; dp8393x_update_irq(s); } static void dp8393x_do_read_rra(dp8393xState *s) { int width, size; /* Read memory */ width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1; size = sizeof(uint16_t) * 4 * width; /* Update SONIC registers */ s->regs[SONIC_CRBA0] = dp8393x_get(s, dp8393x_rrp(s), 0); s->regs[SONIC_CRBA1] = dp8393x_get(s, dp8393x_rrp(s), 1); s->regs[SONIC_RBWC0] = dp8393x_get(s, dp8393x_rrp(s), 2); s->regs[SONIC_RBWC1] = dp8393x_get(s, dp8393x_rrp(s), 3); trace_dp8393x_read_rra_regs(s->regs[SONIC_CRBA0], s->regs[SONIC_CRBA1], s->regs[SONIC_RBWC0], s->regs[SONIC_RBWC1]); /* Go to next entry */ s->regs[SONIC_RRP] += size; /* Handle wrap */ if (s->regs[SONIC_RRP] == s->regs[SONIC_REA]) { s->regs[SONIC_RRP] = s->regs[SONIC_RSA]; } /* Warn the host if CRBA now has the last available resource */ if (s->regs[SONIC_RRP] == s->regs[SONIC_RWP]) { s->regs[SONIC_ISR] |= SONIC_ISR_RBE; dp8393x_update_irq(s); } /* Allow packet reception */ s->last_rba_is_full = false; } static void dp8393x_do_software_reset(dp8393xState *s) { timer_del(s->watchdog); s->regs[SONIC_CR] &= ~(SONIC_CR_LCAM | SONIC_CR_RRRA | SONIC_CR_TXP | SONIC_CR_HTX); s->regs[SONIC_CR] |= SONIC_CR_RST | SONIC_CR_RXDIS; } static void dp8393x_set_next_tick(dp8393xState *s) { uint32_t ticks; int64_t delay; if (s->regs[SONIC_CR] & SONIC_CR_STP) { timer_del(s->watchdog); return; } ticks = dp8393x_wt(s); s->wt_last_update = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); delay = NANOSECONDS_PER_SECOND * ticks / 5000000; timer_mod(s->watchdog, s->wt_last_update + delay); } static void dp8393x_update_wt_regs(dp8393xState *s) { int64_t elapsed; uint32_t val; if (s->regs[SONIC_CR] & SONIC_CR_STP) { timer_del(s->watchdog); return; } elapsed = s->wt_last_update - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); val = dp8393x_wt(s); val -= elapsed / 5000000; s->regs[SONIC_WT1] = (val >> 16) & 0xffff; s->regs[SONIC_WT0] = (val >> 0) & 0xffff; dp8393x_set_next_tick(s); } static void dp8393x_do_start_timer(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_STP; dp8393x_set_next_tick(s); } static void dp8393x_do_stop_timer(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_ST; dp8393x_update_wt_regs(s); } static bool dp8393x_can_receive(NetClientState *nc); static void dp8393x_do_receiver_enable(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_RXDIS; if (dp8393x_can_receive(s->nic->ncs)) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } } static void dp8393x_do_receiver_disable(dp8393xState *s) { s->regs[SONIC_CR] &= ~SONIC_CR_RXEN; } static void dp8393x_do_transmit_packets(dp8393xState *s) { NetClientState *nc = qemu_get_queue(s->nic); int tx_len, len; uint16_t i; while (1) { /* Read memory */ s->regs[SONIC_TTDA] = s->regs[SONIC_CTDA]; trace_dp8393x_transmit_packet(dp8393x_ttda(s)); tx_len = 0; /* Update registers */ s->regs[SONIC_TCR] = dp8393x_get(s, dp8393x_ttda(s), 1) & 0xf000; s->regs[SONIC_TPS] = dp8393x_get(s, dp8393x_ttda(s), 2); s->regs[SONIC_TFC] = dp8393x_get(s, dp8393x_ttda(s), 3); s->regs[SONIC_TSA0] = dp8393x_get(s, dp8393x_ttda(s), 4); s->regs[SONIC_TSA1] = dp8393x_get(s, dp8393x_ttda(s), 5); s->regs[SONIC_TFS] = dp8393x_get(s, dp8393x_ttda(s), 6); /* Handle programmable interrupt */ if (s->regs[SONIC_TCR] & SONIC_TCR_PINT) { s->regs[SONIC_ISR] |= SONIC_ISR_PINT; } else { s->regs[SONIC_ISR] &= ~SONIC_ISR_PINT; } for (i = 0; i < s->regs[SONIC_TFC]; ) { /* Append fragment */ len = s->regs[SONIC_TFS]; if (tx_len + len > sizeof(s->tx_buffer)) { len = sizeof(s->tx_buffer) - tx_len; } address_space_read(&s->as, dp8393x_tsa(s), MEMTXATTRS_UNSPECIFIED, &s->tx_buffer[tx_len], len); tx_len += len; i++; if (i != s->regs[SONIC_TFC]) { /* Read next fragment details */ s->regs[SONIC_TSA0] = dp8393x_get(s, dp8393x_ttda(s), 4 + 3 * i); s->regs[SONIC_TSA1] = dp8393x_get(s, dp8393x_ttda(s), 5 + 3 * i); s->regs[SONIC_TFS] = dp8393x_get(s, dp8393x_ttda(s), 6 + 3 * i); } } /* Handle Ethernet checksum */ if (!(s->regs[SONIC_TCR] & SONIC_TCR_CRCI)) { /* * Don't append FCS there, to look like slirp packets * which don't have one */ } else { /* Remove existing FCS */ tx_len -= 4; if (tx_len < 0) { trace_dp8393x_transmit_txlen_error(tx_len); break; } } if (s->regs[SONIC_RCR] & (SONIC_RCR_LB1 | SONIC_RCR_LB0)) { /* Loopback */ s->regs[SONIC_TCR] |= SONIC_TCR_CRSL; if (nc->info->can_receive(nc)) { s->loopback_packet = 1; qemu_receive_packet(nc, s->tx_buffer, tx_len); } } else { /* Transmit packet */ qemu_send_packet(nc, s->tx_buffer, tx_len); } s->regs[SONIC_TCR] |= SONIC_TCR_PTX; /* Write status */ dp8393x_put(s, dp8393x_ttda(s), 0, s->regs[SONIC_TCR] & 0x0fff); if (!(s->regs[SONIC_CR] & SONIC_CR_HTX)) { /* Read footer of packet */ s->regs[SONIC_CTDA] = dp8393x_get(s, dp8393x_ttda(s), 4 + 3 * s->regs[SONIC_TFC]); if (s->regs[SONIC_CTDA] & SONIC_DESC_EOL) { /* EOL detected */ break; } } } /* Done */ s->regs[SONIC_CR] &= ~SONIC_CR_TXP; s->regs[SONIC_ISR] |= SONIC_ISR_TXDN; dp8393x_update_irq(s); } static void dp8393x_do_halt_transmission(dp8393xState *s) { /* Nothing to do */ } static void dp8393x_do_command(dp8393xState *s, uint16_t command) { if ((s->regs[SONIC_CR] & SONIC_CR_RST) && !(command & SONIC_CR_RST)) { s->regs[SONIC_CR] &= ~SONIC_CR_RST; return; } s->regs[SONIC_CR] |= (command & SONIC_CR_MASK); if (command & SONIC_CR_HTX) { dp8393x_do_halt_transmission(s); } if (command & SONIC_CR_TXP) { dp8393x_do_transmit_packets(s); } if (command & SONIC_CR_RXDIS) { dp8393x_do_receiver_disable(s); } if (command & SONIC_CR_RXEN) { dp8393x_do_receiver_enable(s); } if (command & SONIC_CR_STP) { dp8393x_do_stop_timer(s); } if (command & SONIC_CR_ST) { dp8393x_do_start_timer(s); } if (command & SONIC_CR_RST) { dp8393x_do_software_reset(s); } if (command & SONIC_CR_RRRA) { dp8393x_do_read_rra(s); s->regs[SONIC_CR] &= ~SONIC_CR_RRRA; } if (command & SONIC_CR_LCAM) { dp8393x_do_load_cam(s); } } static uint64_t dp8393x_read(void *opaque, hwaddr addr, unsigned int size) { dp8393xState *s = opaque; int reg = addr >> s->it_shift; uint16_t val = 0; switch (reg) { /* Update data before reading it */ case SONIC_WT0: case SONIC_WT1: dp8393x_update_wt_regs(s); val = s->regs[reg]; break; /* Accept read to some registers only when in reset mode */ case SONIC_CAP2: case SONIC_CAP1: case SONIC_CAP0: if (s->regs[SONIC_CR] & SONIC_CR_RST) { val = s->cam[s->regs[SONIC_CEP] & 0xf][SONIC_CAP0 - reg]; } break; /* All other registers have no special contraints */ default: val = s->regs[reg]; } trace_dp8393x_read(reg, reg_names[reg], val, size); return val; } static void dp8393x_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { dp8393xState *s = opaque; int reg = addr >> s->it_shift; trace_dp8393x_write(reg, reg_names[reg], val, size); switch (reg) { /* Command register */ case SONIC_CR: dp8393x_do_command(s, val); break; /* Prevent write to read-only registers */ case SONIC_CAP2: case SONIC_CAP1: case SONIC_CAP0: case SONIC_SR: case SONIC_MDT: trace_dp8393x_write_invalid(reg); break; /* Accept write to some registers only when in reset mode */ case SONIC_DCR: if (s->regs[SONIC_CR] & SONIC_CR_RST) { s->regs[reg] = val & 0xbfff; } else { trace_dp8393x_write_invalid_dcr("DCR"); } break; case SONIC_DCR2: if (s->regs[SONIC_CR] & SONIC_CR_RST) { s->regs[reg] = val & 0xf017; } else { trace_dp8393x_write_invalid_dcr("DCR2"); } break; /* 12 lower bytes are Read Only */ case SONIC_TCR: s->regs[reg] = val & 0xf000; break; /* 9 lower bytes are Read Only */ case SONIC_RCR: s->regs[reg] = val & 0xffe0; break; /* Ignore most significant bit */ case SONIC_IMR: s->regs[reg] = val & 0x7fff; dp8393x_update_irq(s); break; /* Clear bits by writing 1 to them */ case SONIC_ISR: val &= s->regs[reg]; s->regs[reg] &= ~val; if (val & SONIC_ISR_RBE) { dp8393x_do_read_rra(s); } dp8393x_update_irq(s); break; /* The guest is required to store aligned pointers here */ case SONIC_RSA: case SONIC_REA: case SONIC_RRP: case SONIC_RWP: if (s->regs[SONIC_DCR] & SONIC_DCR_DW) { s->regs[reg] = val & 0xfffc; } else { s->regs[reg] = val & 0xfffe; } break; /* Invert written value for some registers */ case SONIC_CRCT: case SONIC_FAET: case SONIC_MPT: s->regs[reg] = val ^ 0xffff; break; /* All other registers have no special contrainst */ default: s->regs[reg] = val; } if (reg == SONIC_WT0 || reg == SONIC_WT1) { dp8393x_set_next_tick(s); } } /* * Since .impl.max_access_size is effectively controlled by the it_shift * property, leave it unspecified for now to allow the memory API to * correctly zero extend the 16-bit register values to the access size up to and * including it_shift. */ static const MemoryRegionOps dp8393x_ops = { .read = dp8393x_read, .write = dp8393x_write, .impl.min_access_size = 2, .endianness = DEVICE_NATIVE_ENDIAN, }; static void dp8393x_watchdog(void *opaque) { dp8393xState *s = opaque; if (s->regs[SONIC_CR] & SONIC_CR_STP) { return; } s->regs[SONIC_WT1] = 0xffff; s->regs[SONIC_WT0] = 0xffff; dp8393x_set_next_tick(s); /* Signal underflow */ s->regs[SONIC_ISR] |= SONIC_ISR_TC; dp8393x_update_irq(s); } static bool dp8393x_can_receive(NetClientState *nc) { dp8393xState *s = qemu_get_nic_opaque(nc); return !!(s->regs[SONIC_CR] & SONIC_CR_RXEN); } static int dp8393x_receive_filter(dp8393xState *s, const uint8_t * buf, int size) { static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; int i; /* Check promiscuous mode */ if ((s->regs[SONIC_RCR] & SONIC_RCR_PRO) && (buf[0] & 1) == 0) { return 0; } /* Check multicast packets */ if ((s->regs[SONIC_RCR] & SONIC_RCR_AMC) && (buf[0] & 1) == 1) { return SONIC_RCR_MC; } /* Check broadcast */ if ((s->regs[SONIC_RCR] & SONIC_RCR_BRD) && !memcmp(buf, bcast, sizeof(bcast))) { return SONIC_RCR_BC; } /* Check CAM */ for (i = 0; i < 16; i++) { if (s->regs[SONIC_CE] & (1 << i)) { /* Entry enabled */ if (!memcmp(buf, s->cam[i], sizeof(s->cam[i]))) { return 0; } } } return -1; } static ssize_t dp8393x_receive(NetClientState *nc, const uint8_t * buf, size_t pkt_size) { dp8393xState *s = qemu_get_nic_opaque(nc); int packet_type; uint32_t available, address; int rx_len, padded_len; uint32_t checksum; int size; s->regs[SONIC_RCR] &= ~(SONIC_RCR_PRX | SONIC_RCR_LBK | SONIC_RCR_FAER | SONIC_RCR_CRCR | SONIC_RCR_LPKT | SONIC_RCR_BC | SONIC_RCR_MC); if (s->last_rba_is_full) { return pkt_size; } rx_len = pkt_size + sizeof(checksum); if (s->regs[SONIC_DCR] & SONIC_DCR_DW) { padded_len = ((rx_len - 1) | 3) + 1; } else { padded_len = ((rx_len - 1) | 1) + 1; } if (padded_len > dp8393x_rbwc(s) * 2) { trace_dp8393x_receive_oversize(pkt_size); s->regs[SONIC_ISR] |= SONIC_ISR_RBAE; dp8393x_update_irq(s); s->regs[SONIC_RCR] |= SONIC_RCR_LPKT; goto done; } packet_type = dp8393x_receive_filter(s, buf, pkt_size); if (packet_type < 0) { trace_dp8393x_receive_not_netcard(); return -1; } /* Check for EOL */ if (s->regs[SONIC_LLFA] & SONIC_DESC_EOL) { /* Are we still in resource exhaustion? */ s->regs[SONIC_LLFA] = dp8393x_get(s, dp8393x_crda(s), 5); if (s->regs[SONIC_LLFA] & SONIC_DESC_EOL) { /* Still EOL ; stop reception */ return -1; } /* Link has been updated by host */ /* Clear in_use */ dp8393x_put(s, dp8393x_crda(s), 6, 0x0000); /* Move to next descriptor */ s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA]; s->regs[SONIC_ISR] |= SONIC_ISR_PKTRX; } /* Save current position */ s->regs[SONIC_TRBA1] = s->regs[SONIC_CRBA1]; s->regs[SONIC_TRBA0] = s->regs[SONIC_CRBA0]; /* Calculate the ethernet checksum */ checksum = cpu_to_le32(crc32(0, buf, pkt_size)); /* Put packet into RBA */ trace_dp8393x_receive_packet(dp8393x_crba(s)); address = dp8393x_crba(s); address_space_write(&s->as, address, MEMTXATTRS_UNSPECIFIED, buf, pkt_size); address += pkt_size; /* Put frame checksum into RBA */ address_space_write(&s->as, address, MEMTXATTRS_UNSPECIFIED, &checksum, sizeof(checksum)); address += sizeof(checksum); /* Pad short packets to keep pointers aligned */ if (rx_len < padded_len) { size = padded_len - rx_len; address_space_write(&s->as, address, MEMTXATTRS_UNSPECIFIED, "\xFF\xFF\xFF", size); address += size; } s->regs[SONIC_CRBA1] = address >> 16; s->regs[SONIC_CRBA0] = address & 0xffff; available = dp8393x_rbwc(s); available -= padded_len >> 1; s->regs[SONIC_RBWC1] = available >> 16; s->regs[SONIC_RBWC0] = available & 0xffff; /* Update status */ if (dp8393x_rbwc(s) < s->regs[SONIC_EOBC]) { s->regs[SONIC_RCR] |= SONIC_RCR_LPKT; } s->regs[SONIC_RCR] |= packet_type; s->regs[SONIC_RCR] |= SONIC_RCR_PRX; if (s->loopback_packet) { s->regs[SONIC_RCR] |= SONIC_RCR_LBK; s->loopback_packet = 0; } /* Write status to memory */ trace_dp8393x_receive_write_status(dp8393x_crda(s)); dp8393x_put(s, dp8393x_crda(s), 0, s->regs[SONIC_RCR]); /* status */ dp8393x_put(s, dp8393x_crda(s), 1, rx_len); /* byte count */ dp8393x_put(s, dp8393x_crda(s), 2, s->regs[SONIC_TRBA0]); /* pkt_ptr0 */ dp8393x_put(s, dp8393x_crda(s), 3, s->regs[SONIC_TRBA1]); /* pkt_ptr1 */ dp8393x_put(s, dp8393x_crda(s), 4, s->regs[SONIC_RSC]); /* seq_no */ /* Check link field */ s->regs[SONIC_LLFA] = dp8393x_get(s, dp8393x_crda(s), 5); if (s->regs[SONIC_LLFA] & SONIC_DESC_EOL) { /* EOL detected */ s->regs[SONIC_ISR] |= SONIC_ISR_RDE; } else { /* Clear in_use */ dp8393x_put(s, dp8393x_crda(s), 6, 0x0000); /* Move to next descriptor */ s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA]; s->regs[SONIC_ISR] |= SONIC_ISR_PKTRX; } dp8393x_update_irq(s); s->regs[SONIC_RSC] = (s->regs[SONIC_RSC] & 0xff00) | ((s->regs[SONIC_RSC] + 1) & 0x00ff); done: if (s->regs[SONIC_RCR] & SONIC_RCR_LPKT) { if (s->regs[SONIC_RRP] == s->regs[SONIC_RWP]) { /* Stop packet reception */ s->last_rba_is_full = true; } else { /* Read next resource */ dp8393x_do_read_rra(s); } } return pkt_size; } static void dp8393x_reset(DeviceState *dev) { dp8393xState *s = DP8393X(dev); timer_del(s->watchdog); memset(s->regs, 0, sizeof(s->regs)); s->regs[SONIC_SR] = 0x0004; /* only revision recognized by Linux/mips */ s->regs[SONIC_CR] = SONIC_CR_RST | SONIC_CR_STP | SONIC_CR_RXDIS; s->regs[SONIC_DCR] &= ~(SONIC_DCR_EXBUS | SONIC_DCR_LBR); s->regs[SONIC_RCR] &= ~(SONIC_RCR_LB0 | SONIC_RCR_LB1 | SONIC_RCR_BRD | SONIC_RCR_RNT); s->regs[SONIC_TCR] |= SONIC_TCR_NCRS | SONIC_TCR_PTX; s->regs[SONIC_TCR] &= ~SONIC_TCR_BCM; s->regs[SONIC_IMR] = 0; s->regs[SONIC_ISR] = 0; s->regs[SONIC_DCR2] = 0; s->regs[SONIC_EOBC] = 0x02F8; s->regs[SONIC_RSC] = 0; s->regs[SONIC_CE] = 0; s->regs[SONIC_RSC] = 0; /* Network cable is connected */ s->regs[SONIC_RCR] |= SONIC_RCR_CRS; dp8393x_update_irq(s); } static NetClientInfo net_dp83932_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = dp8393x_can_receive, .receive = dp8393x_receive, }; static void dp8393x_instance_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); dp8393xState *s = DP8393X(obj); sysbus_init_mmio(sbd, &s->mmio); sysbus_init_irq(sbd, &s->irq); } static void dp8393x_realize(DeviceState *dev, Error **errp) { dp8393xState *s = DP8393X(dev); address_space_init(&s->as, s->dma_mr, "dp8393x"); memory_region_init_io(&s->mmio, OBJECT(dev), &dp8393x_ops, s, "dp8393x-regs", SONIC_REG_COUNT << s->it_shift); s->nic = qemu_new_nic(&net_dp83932_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); s->watchdog = timer_new_ns(QEMU_CLOCK_VIRTUAL, dp8393x_watchdog, s); } static const VMStateDescription vmstate_dp8393x = { .name = "dp8393x", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField []) { VMSTATE_UINT16_2DARRAY(cam, dp8393xState, 16, 3), VMSTATE_UINT16_ARRAY(regs, dp8393xState, SONIC_REG_COUNT), VMSTATE_END_OF_LIST() } }; static Property dp8393x_properties[] = { DEFINE_NIC_PROPERTIES(dp8393xState, conf), DEFINE_PROP_LINK("dma_mr", dp8393xState, dma_mr, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_UINT8("it_shift", dp8393xState, it_shift, 0), DEFINE_PROP_BOOL("big_endian", dp8393xState, big_endian, false), DEFINE_PROP_END_OF_LIST(), }; static void dp8393x_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); dc->realize = dp8393x_realize; dc->reset = dp8393x_reset; dc->vmsd = &vmstate_dp8393x; device_class_set_props(dc, dp8393x_properties); } static const TypeInfo dp8393x_info = { .name = TYPE_DP8393X, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(dp8393xState), .instance_init = dp8393x_instance_init, .class_init = dp8393x_class_init, }; static void dp8393x_register_types(void) { type_register_static(&dp8393x_info); } type_init(dp8393x_register_types)