/* * QEMU m68k Macintosh VIA device support * * Copyright (c) 2011-2018 Laurent Vivier * Copyright (c) 2018 Mark Cave-Ayland * * Some parts from hw/misc/macio/cuda.c * * Copyright (c) 2004-2007 Fabrice Bellard * Copyright (c) 2007 Jocelyn Mayer * * some parts from linux-2.6.29, arch/m68k/include/asm/mac_via.h * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "exec/address-spaces.h" #include "migration/vmstate.h" #include "hw/sysbus.h" #include "hw/irq.h" #include "qemu/timer.h" #include "hw/misc/mac_via.h" #include "hw/misc/mos6522.h" #include "hw/input/adb.h" #include "sysemu/runstate.h" #include "qapi/error.h" #include "qemu/cutils.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "sysemu/block-backend.h" #include "sysemu/rtc.h" #include "trace.h" #include "qemu/log.h" /* * VIAs: There are two in every machine */ /* * Not all of these are true post MacII I think. * CSA: probably the ones CHRP marks as 'unused' change purposes * when the IWM becomes the SWIM. * http://www.rs6000.ibm.com/resource/technology/chrpio/via5.mak.html * ftp://ftp.austin.ibm.com/pub/technology/spec/chrp/inwork/CHRP_IORef_1.0.pdf * * also, http://developer.apple.com/technotes/hw/hw_09.html claims the * following changes for IIfx: * VIA1A_vSccWrReq not available and that VIA1A_vSync has moved to an IOP. * Also, "All of the functionality of VIA2 has been moved to other chips". */ #define VIA1A_vSccWrReq 0x80 /* * SCC write. (input) * [CHRP] SCC WREQ: Reflects the state of the * Wait/Request pins from the SCC. * [Macintosh Family Hardware] * as CHRP on SE/30,II,IIx,IIcx,IIci. * on IIfx, "0 means an active request" */ #define VIA1A_vRev8 0x40 /* * Revision 8 board ??? * [CHRP] En WaitReqB: Lets the WaitReq_L * signal from port B of the SCC appear on * the PA7 input pin. Output. * [Macintosh Family] On the SE/30, this * is the bit to flip screen buffers. * 0=alternate, 1=main. * on II,IIx,IIcx,IIci,IIfx this is a bit * for Rev ID. 0=II,IIx, 1=IIcx,IIci,IIfx */ #define VIA1A_vHeadSel 0x20 /* * Head select for IWM. * [CHRP] unused. * [Macintosh Family] "Floppy disk * state-control line SEL" on all but IIfx */ #define VIA1A_vOverlay 0x10 /* * [Macintosh Family] On SE/30,II,IIx,IIcx * this bit enables the "Overlay" address * map in the address decoders as it is on * reset for mapping the ROM over the reset * vector. 1=use overlay map. * On the IIci,IIfx it is another bit of the * CPU ID: 0=normal IIci, 1=IIci with parity * feature or IIfx. * [CHRP] En WaitReqA: Lets the WaitReq_L * signal from port A of the SCC appear * on the PA7 input pin (CHRP). Output. * [MkLinux] "Drive Select" * (with 0x20 being 'disk head select') */ #define VIA1A_vSync 0x08 /* * [CHRP] Sync Modem: modem clock select: * 1: select the external serial clock to * drive the SCC's /RTxCA pin. * 0: Select the 3.6864MHz clock to drive * the SCC cell. * [Macintosh Family] Correct on all but IIfx */ /* * Macintosh Family Hardware sez: bits 0-2 of VIA1A are volume control * on Macs which had the PWM sound hardware. Reserved on newer models. * On IIci,IIfx, bits 1-2 are the rest of the CPU ID: * bit 2: 1=IIci, 0=IIfx * bit 1: 1 on both IIci and IIfx. * MkLinux sez bit 0 is 'burnin flag' in this case. * CHRP sez: VIA1A bits 0-2 and 5 are 'unused': if programmed as * inputs, these bits will read 0. */ #define VIA1A_vVolume 0x07 /* Audio volume mask for PWM */ #define VIA1A_CPUID0 0x02 /* CPU id bit 0 on RBV, others */ #define VIA1A_CPUID1 0x04 /* CPU id bit 0 on RBV, others */ #define VIA1A_CPUID2 0x10 /* CPU id bit 0 on RBV, others */ #define VIA1A_CPUID3 0x40 /* CPU id bit 0 on RBV, others */ #define VIA1A_CPUID_MASK (VIA1A_CPUID0 | VIA1A_CPUID1 | \ VIA1A_CPUID2 | VIA1A_CPUID3) #define VIA1A_CPUID_Q800 (VIA1A_CPUID0 | VIA1A_CPUID2) /* * Info on VIA1B is from Macintosh Family Hardware & MkLinux. * CHRP offers no info. */ #define VIA1B_vSound 0x80 /* * Sound enable (for compatibility with * PWM hardware) 0=enabled. * Also, on IIci w/parity, shows parity error * 0=error, 1=OK. */ #define VIA1B_vMystery 0x40 /* * On IIci, parity enable. 0=enabled,1=disabled * On SE/30, vertical sync interrupt enable. * 0=enabled. This vSync interrupt shows up * as a slot $E interrupt. * On Quadra 800 this bit toggles A/UX mode which * configures the glue logic to deliver some IRQs * at different levels compared to a classic * Mac. */ #define VIA1B_vADBS2 0x20 /* ADB state input bit 1 (unused on IIfx) */ #define VIA1B_vADBS1 0x10 /* ADB state input bit 0 (unused on IIfx) */ #define VIA1B_vADBInt 0x08 /* ADB interrupt 0=interrupt (unused on IIfx)*/ #define VIA1B_vRTCEnb 0x04 /* Enable Real time clock. 0=enabled. */ #define VIA1B_vRTCClk 0x02 /* Real time clock serial-clock line. */ #define VIA1B_vRTCData 0x01 /* Real time clock serial-data line. */ /* * VIA2 A register is the interrupt lines raised off the nubus * slots. * The below info is from 'Macintosh Family Hardware.' * MkLinux calls the 'IIci internal video IRQ' below the 'RBV slot 0 irq.' * It also notes that the slot $9 IRQ is the 'Ethernet IRQ' and * defines the 'Video IRQ' as 0x40 for the 'EVR' VIA work-alike. * Perhaps OSS uses vRAM1 and vRAM2 for ADB. */ #define VIA2A_vRAM1 0x80 /* RAM size bit 1 (IIci: reserved) */ #define VIA2A_vRAM0 0x40 /* RAM size bit 0 (IIci: internal video IRQ) */ #define VIA2A_vIRQE 0x20 /* IRQ from slot $E */ #define VIA2A_vIRQD 0x10 /* IRQ from slot $D */ #define VIA2A_vIRQC 0x08 /* IRQ from slot $C */ #define VIA2A_vIRQB 0x04 /* IRQ from slot $B */ #define VIA2A_vIRQA 0x02 /* IRQ from slot $A */ #define VIA2A_vIRQ9 0x01 /* IRQ from slot $9 */ /* * RAM size bits decoded as follows: * bit1 bit0 size of ICs in bank A * 0 0 256 kbit * 0 1 1 Mbit * 1 0 4 Mbit * 1 1 16 Mbit */ /* * Register B has the fun stuff in it */ #define VIA2B_vVBL 0x80 /* * VBL output to VIA1 (60.15Hz) driven by * timer T1. * on IIci, parity test: 0=test mode. * [MkLinux] RBV_PARODD: 1=odd,0=even. */ #define VIA2B_vSndJck 0x40 /* * External sound jack status. * 0=plug is inserted. On SE/30, always 0 */ #define VIA2B_vTfr0 0x20 /* Transfer mode bit 0 ack from NuBus */ #define VIA2B_vTfr1 0x10 /* Transfer mode bit 1 ack from NuBus */ #define VIA2B_vMode32 0x08 /* * 24/32bit switch - doubles as cache flush * on II, AMU/PMMU control. * if AMU, 0=24bit to 32bit translation * if PMMU, 1=PMMU is accessing page table. * on SE/30 tied low. * on IIx,IIcx,IIfx, unused. * on IIci/RBV, cache control. 0=flush cache. */ #define VIA2B_vPower 0x04 /* * Power off, 0=shut off power. * on SE/30 this signal sent to PDS card. */ #define VIA2B_vBusLk 0x02 /* * Lock NuBus transactions, 0=locked. * on SE/30 sent to PDS card. */ #define VIA2B_vCDis 0x01 /* * Cache control. On IIci, 1=disable cache card * on others, 0=disable processor's instruction * and data caches. */ /* interrupt flags */ #define IRQ_SET 0x80 /* common */ #define VIA_IRQ_TIMER1 0x40 #define VIA_IRQ_TIMER2 0x20 /* * Apple sez: http://developer.apple.com/technotes/ov/ov_04.html * Another example of a valid function that has no ROM support is the use * of the alternate video page for page-flipping animation. Since there * is no ROM call to flip pages, it is necessary to go play with the * right bit in the VIA chip (6522 Versatile Interface Adapter). * [CSA: don't know which one this is, but it's one of 'em!] */ /* * 6522 registers - see databook. * CSA: Assignments for VIA1 confirmed from CHRP spec. */ /* partial address decode. 0xYYXX : XX part for RBV, YY part for VIA */ /* Note: 15 VIA regs, 8 RBV regs */ #define vBufB 0x0000 /* [VIA/RBV] Register B */ #define vBufAH 0x0200 /* [VIA only] Buffer A, with handshake. DON'T USE! */ #define vDirB 0x0400 /* [VIA only] Data Direction Register B. */ #define vDirA 0x0600 /* [VIA only] Data Direction Register A. */ #define vT1CL 0x0800 /* [VIA only] Timer one counter low. */ #define vT1CH 0x0a00 /* [VIA only] Timer one counter high. */ #define vT1LL 0x0c00 /* [VIA only] Timer one latches low. */ #define vT1LH 0x0e00 /* [VIA only] Timer one latches high. */ #define vT2CL 0x1000 /* [VIA only] Timer two counter low. */ #define vT2CH 0x1200 /* [VIA only] Timer two counter high. */ #define vSR 0x1400 /* [VIA only] Shift register. */ #define vACR 0x1600 /* [VIA only] Auxiliary control register. */ #define vPCR 0x1800 /* [VIA only] Peripheral control register. */ /* * CHRP sez never ever to *write* this. * Mac family says never to *change* this. * In fact we need to initialize it once at start. */ #define vIFR 0x1a00 /* [VIA/RBV] Interrupt flag register. */ #define vIER 0x1c00 /* [VIA/RBV] Interrupt enable register. */ #define vBufA 0x1e00 /* [VIA/RBV] register A (no handshake) */ /* from linux 2.6 drivers/macintosh/via-macii.c */ /* Bits in ACR */ #define VIA1ACR_vShiftCtrl 0x1c /* Shift register control bits */ #define VIA1ACR_vShiftExtClk 0x0c /* Shift on external clock */ #define VIA1ACR_vShiftOut 0x10 /* Shift out if 1 */ /* * Apple Macintosh Family Hardware Refenece * Table 19-10 ADB transaction states */ #define ADB_STATE_NEW 0 #define ADB_STATE_EVEN 1 #define ADB_STATE_ODD 2 #define ADB_STATE_IDLE 3 #define VIA1B_vADB_StateMask (VIA1B_vADBS1 | VIA1B_vADBS2) #define VIA1B_vADB_StateShift 4 #define VIA_TIMER_FREQ (783360) #define VIA_ADB_POLL_FREQ 50 /* XXX: not real */ /* * Guide to the Macintosh Family Hardware ch. 12 "Displays" p. 401 gives the * precise 60Hz interrupt frequency as ~60.15Hz with a period of 16625.8 us */ #define VIA_60HZ_TIMER_PERIOD_NS 16625800 /* VIA returns time offset from Jan 1, 1904, not 1970 */ #define RTC_OFFSET 2082844800 enum { REG_0, REG_1, REG_2, REG_3, REG_TEST, REG_WPROTECT, REG_PRAM_ADDR, REG_PRAM_ADDR_LAST = REG_PRAM_ADDR + 19, REG_PRAM_SECT, REG_PRAM_SECT_LAST = REG_PRAM_SECT + 7, REG_INVALID, REG_EMPTY = 0xff, }; static void via1_sixty_hz_update(MOS6522Q800VIA1State *v1s) { /* 60 Hz irq */ v1s->next_sixty_hz = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + VIA_60HZ_TIMER_PERIOD_NS) / VIA_60HZ_TIMER_PERIOD_NS * VIA_60HZ_TIMER_PERIOD_NS; timer_mod(v1s->sixty_hz_timer, v1s->next_sixty_hz); } static void via1_one_second_update(MOS6522Q800VIA1State *v1s) { v1s->next_second = (qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000) / 1000 * 1000; timer_mod(v1s->one_second_timer, v1s->next_second); } static void via1_sixty_hz(void *opaque) { MOS6522Q800VIA1State *v1s = opaque; MOS6522State *s = MOS6522(v1s); qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_60HZ_BIT); /* Negative edge trigger */ qemu_irq_lower(irq); qemu_irq_raise(irq); via1_sixty_hz_update(v1s); } static void via1_one_second(void *opaque) { MOS6522Q800VIA1State *v1s = opaque; MOS6522State *s = MOS6522(v1s); qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA1_IRQ_ONE_SECOND_BIT); /* Negative edge trigger */ qemu_irq_lower(irq); qemu_irq_raise(irq); via1_one_second_update(v1s); } static void pram_update(MOS6522Q800VIA1State *v1s) { if (v1s->blk) { if (blk_pwrite(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0) < 0) { qemu_log("pram_update: cannot write to file\n"); } } } /* * RTC Commands * * Command byte Register addressed by the command * * z00x0001 Seconds register 0 (lowest-order byte) * z00x0101 Seconds register 1 * z00x1001 Seconds register 2 * z00x1101 Seconds register 3 (highest-order byte) * 00110001 Test register (write-only) * 00110101 Write-Protect Register (write-only) * z010aa01 RAM address 100aa ($10-$13) (first 20 bytes only) * z1aaaa01 RAM address 0aaaa ($00-$0F) (first 20 bytes only) * z0111aaa Extended memory designator and sector number * * For a read request, z=1, for a write z=0 * The letter x indicates don't care * The letter a indicates bits whose value depend on what parameter * RAM byte you want to address */ static int via1_rtc_compact_cmd(uint8_t value) { uint8_t read = value & 0x80; value &= 0x7f; /* the last 2 bits of a command byte must always be 0b01 ... */ if ((value & 0x78) == 0x38) { /* except for the extended memory designator */ return read | (REG_PRAM_SECT + (value & 0x07)); } if ((value & 0x03) == 0x01) { value >>= 2; if ((value & 0x18) == 0) { /* seconds registers */ return read | (REG_0 + (value & 0x03)); } else if ((value == 0x0c) && !read) { return REG_TEST; } else if ((value == 0x0d) && !read) { return REG_WPROTECT; } else if ((value & 0x1c) == 0x08) { /* RAM address 0x10 to 0x13 */ return read | (REG_PRAM_ADDR + 0x10 + (value & 0x03)); } else if ((value & 0x10) == 0x10) { /* RAM address 0x00 to 0x0f */ return read | (REG_PRAM_ADDR + (value & 0x0f)); } } return REG_INVALID; } static void via1_rtc_update(MOS6522Q800VIA1State *v1s) { MOS6522State *s = MOS6522(v1s); int cmd, sector, addr; uint32_t time; if (s->b & VIA1B_vRTCEnb) { return; } if (s->dirb & VIA1B_vRTCData) { /* send bits to the RTC */ if (!(v1s->last_b & VIA1B_vRTCClk) && (s->b & VIA1B_vRTCClk)) { v1s->data_out <<= 1; v1s->data_out |= s->b & VIA1B_vRTCData; v1s->data_out_cnt++; } trace_via1_rtc_update_data_out(v1s->data_out_cnt, v1s->data_out); } else { trace_via1_rtc_update_data_in(v1s->data_in_cnt, v1s->data_in); /* receive bits from the RTC */ if ((v1s->last_b & VIA1B_vRTCClk) && !(s->b & VIA1B_vRTCClk) && v1s->data_in_cnt) { s->b = (s->b & ~VIA1B_vRTCData) | ((v1s->data_in >> 7) & VIA1B_vRTCData); v1s->data_in <<= 1; v1s->data_in_cnt--; } return; } if (v1s->data_out_cnt != 8) { return; } v1s->data_out_cnt = 0; trace_via1_rtc_internal_status(v1s->cmd, v1s->alt, v1s->data_out); /* first byte: it's a command */ if (v1s->cmd == REG_EMPTY) { cmd = via1_rtc_compact_cmd(v1s->data_out); trace_via1_rtc_internal_cmd(cmd); if (cmd == REG_INVALID) { trace_via1_rtc_cmd_invalid(v1s->data_out); return; } if (cmd & 0x80) { /* this is a read command */ switch (cmd & 0x7f) { case REG_0...REG_3: /* seconds registers */ /* * register 0 is lowest-order byte * register 3 is highest-order byte */ time = v1s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / NANOSECONDS_PER_SECOND); trace_via1_rtc_internal_time(time); v1s->data_in = (time >> ((cmd & 0x03) << 3)) & 0xff; v1s->data_in_cnt = 8; trace_via1_rtc_cmd_seconds_read((cmd & 0x7f) - REG_0, v1s->data_in); break; case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST: /* PRAM address 0x00 -> 0x13 */ v1s->data_in = v1s->PRAM[(cmd & 0x7f) - REG_PRAM_ADDR]; v1s->data_in_cnt = 8; trace_via1_rtc_cmd_pram_read((cmd & 0x7f) - REG_PRAM_ADDR, v1s->data_in); break; case REG_PRAM_SECT...REG_PRAM_SECT_LAST: /* * extended memory designator and sector number * the only two-byte read command */ trace_via1_rtc_internal_set_cmd(cmd); v1s->cmd = cmd; break; default: g_assert_not_reached(); } return; } /* this is a write command, needs a parameter */ if (cmd == REG_WPROTECT || !v1s->wprotect) { trace_via1_rtc_internal_set_cmd(cmd); v1s->cmd = cmd; } else { trace_via1_rtc_internal_ignore_cmd(cmd); } return; } /* second byte: it's a parameter */ if (v1s->alt == REG_EMPTY) { switch (v1s->cmd & 0x7f) { case REG_0...REG_3: /* seconds register */ /* FIXME */ trace_via1_rtc_cmd_seconds_write(v1s->cmd - REG_0, v1s->data_out); v1s->cmd = REG_EMPTY; break; case REG_TEST: /* device control: nothing to do */ trace_via1_rtc_cmd_test_write(v1s->data_out); v1s->cmd = REG_EMPTY; break; case REG_WPROTECT: /* Write Protect register */ trace_via1_rtc_cmd_wprotect_write(v1s->data_out); v1s->wprotect = !!(v1s->data_out & 0x80); v1s->cmd = REG_EMPTY; break; case REG_PRAM_ADDR...REG_PRAM_ADDR_LAST: /* PRAM address 0x00 -> 0x13 */ trace_via1_rtc_cmd_pram_write(v1s->cmd - REG_PRAM_ADDR, v1s->data_out); v1s->PRAM[v1s->cmd - REG_PRAM_ADDR] = v1s->data_out; pram_update(v1s); v1s->cmd = REG_EMPTY; break; case REG_PRAM_SECT...REG_PRAM_SECT_LAST: addr = (v1s->data_out >> 2) & 0x1f; sector = (v1s->cmd & 0x7f) - REG_PRAM_SECT; if (v1s->cmd & 0x80) { /* it's a read */ v1s->data_in = v1s->PRAM[sector * 32 + addr]; v1s->data_in_cnt = 8; trace_via1_rtc_cmd_pram_sect_read(sector, addr, sector * 32 + addr, v1s->data_in); v1s->cmd = REG_EMPTY; } else { /* it's a write, we need one more parameter */ trace_via1_rtc_internal_set_alt(addr, sector, addr); v1s->alt = addr; } break; default: g_assert_not_reached(); } return; } /* third byte: it's the data of a REG_PRAM_SECT write */ g_assert(REG_PRAM_SECT <= v1s->cmd && v1s->cmd <= REG_PRAM_SECT_LAST); sector = v1s->cmd - REG_PRAM_SECT; v1s->PRAM[sector * 32 + v1s->alt] = v1s->data_out; pram_update(v1s); trace_via1_rtc_cmd_pram_sect_write(sector, v1s->alt, sector * 32 + v1s->alt, v1s->data_out); v1s->alt = REG_EMPTY; v1s->cmd = REG_EMPTY; } static void adb_via_poll(void *opaque) { MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); MOS6522State *s = MOS6522(v1s); ADBBusState *adb_bus = &v1s->adb_bus; uint8_t obuf[9]; uint8_t *data = &s->sr; int olen; /* * Setting vADBInt below indicates that an autopoll reply has been * received, however we must block autopoll until the point where * the entire reply has been read back to the host */ adb_autopoll_block(adb_bus); if (v1s->adb_data_in_size > 0 && v1s->adb_data_in_index == 0) { /* * For older Linux kernels that switch to IDLE mode after sending the * ADB command, detect if there is an existing response and return that * as a "fake" autopoll reply or bus timeout accordingly */ *data = v1s->adb_data_out[0]; olen = v1s->adb_data_in_size; s->b &= ~VIA1B_vADBInt; qemu_irq_raise(v1s->adb_data_ready); } else { /* * Otherwise poll as normal */ v1s->adb_data_in_index = 0; v1s->adb_data_out_index = 0; olen = adb_poll(adb_bus, obuf, adb_bus->autopoll_mask); if (olen > 0) { /* Autopoll response */ *data = obuf[0]; olen--; memcpy(v1s->adb_data_in, &obuf[1], olen); v1s->adb_data_in_size = olen; s->b &= ~VIA1B_vADBInt; qemu_irq_raise(v1s->adb_data_ready); } else { *data = v1s->adb_autopoll_cmd; obuf[0] = 0xff; obuf[1] = 0xff; olen = 2; memcpy(v1s->adb_data_in, obuf, olen); v1s->adb_data_in_size = olen; s->b &= ~VIA1B_vADBInt; qemu_irq_raise(v1s->adb_data_ready); } } trace_via1_adb_poll(*data, (s->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status, v1s->adb_data_in_index, olen); } static int adb_via_send_len(uint8_t data) { /* Determine the send length from the given ADB command */ uint8_t cmd = data & 0xc; uint8_t reg = data & 0x3; switch (cmd) { case 0x8: /* Listen command */ switch (reg) { case 2: /* Register 2 is only used for the keyboard */ return 3; case 3: /* * Fortunately our devices only implement writes * to register 3 which is fixed at 2 bytes */ return 3; default: qemu_log_mask(LOG_UNIMP, "ADB unknown length for register %d\n", reg); return 1; } default: /* Talk, BusReset */ return 1; } } static void adb_via_send(MOS6522Q800VIA1State *v1s, int state, uint8_t data) { MOS6522State *ms = MOS6522(v1s); ADBBusState *adb_bus = &v1s->adb_bus; uint16_t autopoll_mask; switch (state) { case ADB_STATE_NEW: /* * Command byte: vADBInt tells host autopoll data already present * in VIA shift register and ADB transceiver */ adb_autopoll_block(adb_bus); if (adb_bus->status & ADB_STATUS_POLLREPLY) { /* Tell the host the existing data is from autopoll */ ms->b &= ~VIA1B_vADBInt; } else { ms->b |= VIA1B_vADBInt; v1s->adb_data_out_index = 0; v1s->adb_data_out[v1s->adb_data_out_index++] = data; } trace_via1_adb_send(" NEW", data, (ms->b & VIA1B_vADBInt) ? "+" : "-"); qemu_irq_raise(v1s->adb_data_ready); break; case ADB_STATE_EVEN: case ADB_STATE_ODD: ms->b |= VIA1B_vADBInt; v1s->adb_data_out[v1s->adb_data_out_index++] = data; trace_via1_adb_send(state == ADB_STATE_EVEN ? "EVEN" : " ODD", data, (ms->b & VIA1B_vADBInt) ? "+" : "-"); qemu_irq_raise(v1s->adb_data_ready); break; case ADB_STATE_IDLE: ms->b |= VIA1B_vADBInt; adb_autopoll_unblock(adb_bus); trace_via1_adb_send("IDLE", data, (ms->b & VIA1B_vADBInt) ? "+" : "-"); return; } /* If the command is complete, execute it */ if (v1s->adb_data_out_index == adb_via_send_len(v1s->adb_data_out[0])) { v1s->adb_data_in_size = adb_request(adb_bus, v1s->adb_data_in, v1s->adb_data_out, v1s->adb_data_out_index); v1s->adb_data_in_index = 0; if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { /* * Bus timeout (but allow first EVEN and ODD byte to indicate * timeout via vADBInt and SRQ status) */ v1s->adb_data_in[0] = 0xff; v1s->adb_data_in[1] = 0xff; v1s->adb_data_in_size = 2; } /* * If last command is TALK, store it for use by autopoll and adjust * the autopoll mask accordingly */ if ((v1s->adb_data_out[0] & 0xc) == 0xc) { v1s->adb_autopoll_cmd = v1s->adb_data_out[0]; autopoll_mask = 1 << (v1s->adb_autopoll_cmd >> 4); adb_set_autopoll_mask(adb_bus, autopoll_mask); } } } static void adb_via_receive(MOS6522Q800VIA1State *v1s, int state, uint8_t *data) { MOS6522State *ms = MOS6522(v1s); ADBBusState *adb_bus = &v1s->adb_bus; uint16_t pending; switch (state) { case ADB_STATE_NEW: ms->b |= VIA1B_vADBInt; return; case ADB_STATE_IDLE: ms->b |= VIA1B_vADBInt; adb_autopoll_unblock(adb_bus); trace_via1_adb_receive("IDLE", *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status, v1s->adb_data_in_index, v1s->adb_data_in_size); break; case ADB_STATE_EVEN: case ADB_STATE_ODD: switch (v1s->adb_data_in_index) { case 0: /* First EVEN byte: vADBInt indicates bus timeout */ *data = v1s->adb_data_in[v1s->adb_data_in_index]; if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { ms->b &= ~VIA1B_vADBInt; } else { ms->b |= VIA1B_vADBInt; } trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status, v1s->adb_data_in_index, v1s->adb_data_in_size); v1s->adb_data_in_index++; break; case 1: /* First ODD byte: vADBInt indicates SRQ */ *data = v1s->adb_data_in[v1s->adb_data_in_index]; pending = adb_bus->pending & ~(1 << (v1s->adb_autopoll_cmd >> 4)); if (pending) { ms->b &= ~VIA1B_vADBInt; } else { ms->b |= VIA1B_vADBInt; } trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status, v1s->adb_data_in_index, v1s->adb_data_in_size); v1s->adb_data_in_index++; break; default: /* * Otherwise vADBInt indicates end of data. Note that Linux * specifically checks for the sequence 0x0 0xff to confirm the * end of the poll reply, so provide these extra bytes below to * keep it happy */ if (v1s->adb_data_in_index < v1s->adb_data_in_size) { /* Next data byte */ *data = v1s->adb_data_in[v1s->adb_data_in_index]; ms->b |= VIA1B_vADBInt; } else if (v1s->adb_data_in_index == v1s->adb_data_in_size) { if (adb_bus->status & ADB_STATUS_BUSTIMEOUT) { /* Bus timeout (no more data) */ *data = 0xff; } else { /* Return 0x0 after reply */ *data = 0; } ms->b &= ~VIA1B_vADBInt; } else { /* Bus timeout (no more data) */ *data = 0xff; ms->b &= ~VIA1B_vADBInt; adb_bus->status = 0; adb_autopoll_unblock(adb_bus); } trace_via1_adb_receive(state == ADB_STATE_EVEN ? "EVEN" : " ODD", *data, (ms->b & VIA1B_vADBInt) ? "+" : "-", adb_bus->status, v1s->adb_data_in_index, v1s->adb_data_in_size); if (v1s->adb_data_in_index <= v1s->adb_data_in_size) { v1s->adb_data_in_index++; } break; } qemu_irq_raise(v1s->adb_data_ready); break; } } static void via1_adb_update(MOS6522Q800VIA1State *v1s) { MOS6522State *s = MOS6522(v1s); int oldstate, state; oldstate = (v1s->last_b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; state = (s->b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; if (state != oldstate) { if (s->acr & VIA1ACR_vShiftOut) { /* output mode */ adb_via_send(v1s, state, s->sr); } else { /* input mode */ adb_via_receive(v1s, state, &s->sr); } } } static void via1_auxmode_update(MOS6522Q800VIA1State *v1s) { MOS6522State *s = MOS6522(v1s); int oldirq, irq; oldirq = (v1s->last_b & VIA1B_vMystery) ? 1 : 0; irq = (s->b & VIA1B_vMystery) ? 1 : 0; /* Check to see if the A/UX mode bit has changed */ if (irq != oldirq) { trace_via1_auxmode(irq); qemu_set_irq(v1s->auxmode_irq, irq); /* * Clear the ADB interrupt. MacOS can leave VIA1B_vADBInt asserted * (low) if a poll sequence doesn't complete before NetBSD disables * interrupts upon boot. Fortunately NetBSD switches to the so-called * "A/UX" interrupt mode after it initialises, so we can use this as * a convenient place to clear the ADB interrupt for now. */ s->b |= VIA1B_vADBInt; } } /* * Addresses and real values for TimeDBRA/TimeSCCB to allow timer calibration * to succeed (NOTE: both values have been multiplied by 3 to cope with the * speed of QEMU execution on a modern host */ #define MACOS_TIMEDBRA 0xd00 #define MACOS_TIMESCCB 0xd02 #define MACOS_TIMEDBRA_VALUE (0x2a00 * 3) #define MACOS_TIMESCCB_VALUE (0x079d * 3) static bool via1_is_toolbox_timer_calibrated(void) { /* * Indicate whether the MacOS toolbox has been calibrated by checking * for the value of our magic constants */ uint16_t timedbra = lduw_be_phys(&address_space_memory, MACOS_TIMEDBRA); uint16_t timesccdb = lduw_be_phys(&address_space_memory, MACOS_TIMESCCB); return (timedbra == MACOS_TIMEDBRA_VALUE && timesccdb == MACOS_TIMESCCB_VALUE); } static void via1_timer_calibration_hack(MOS6522Q800VIA1State *v1s, int addr, uint64_t val, int size) { /* * Work around timer calibration to ensure we that we have non-zero and * known good values for TIMEDRBA and TIMESCCDB. * * This works by attempting to detect the reset and calibration sequence * of writes to VIA1 */ int old_timer_hack_state = v1s->timer_hack_state; switch (v1s->timer_hack_state) { case 0: if (addr == VIA_REG_PCR && val == 0x22) { /* VIA_REG_PCR: configure VIA1 edge triggering */ v1s->timer_hack_state = 1; } break; case 1: if (addr == VIA_REG_T2CL && val == 0xc) { /* VIA_REG_T2CL: low byte of 1ms counter */ if (!via1_is_toolbox_timer_calibrated()) { v1s->timer_hack_state = 2; } else { v1s->timer_hack_state = 0; } } break; case 2: if (addr == VIA_REG_T2CH && val == 0x3) { /* * VIA_REG_T2CH: high byte of 1ms counter (very likely at the * start of SETUPTIMEK) */ if (!via1_is_toolbox_timer_calibrated()) { v1s->timer_hack_state = 3; } else { v1s->timer_hack_state = 0; } } break; case 3: if (addr == VIA_REG_IER && val == 0x20) { /* * VIA_REG_IER: update at end of SETUPTIMEK * * Timer calibration has finished: unfortunately the values in * TIMEDBRA (0xd00) and TIMESCCDB (0xd02) are so far out they * cause divide by zero errors. * * Update them with values obtained from a real Q800 but with * a x3 scaling factor which seems to work well */ stw_be_phys(&address_space_memory, MACOS_TIMEDBRA, MACOS_TIMEDBRA_VALUE); stw_be_phys(&address_space_memory, MACOS_TIMESCCB, MACOS_TIMESCCB_VALUE); v1s->timer_hack_state = 4; } break; case 4: /* * This is the normal post-calibration timer state: we should * generally remain here unless we detect the A/UX calibration * loop, or a write to VIA_REG_PCR suggesting a reset */ if (addr == VIA_REG_PCR && val == 0x22) { /* Looks like there has been a reset? */ v1s->timer_hack_state = 1; } if (addr == VIA_REG_T2CL && val == 0xf0) { /* VIA_REG_T2CL: low byte of counter (A/UX) */ v1s->timer_hack_state = 5; } break; case 5: if (addr == VIA_REG_T2CH && val == 0x3c) { /* * VIA_REG_T2CH: high byte of counter (A/UX). We are now extremely * likely to be in the A/UX timer calibration routine, so move to * the next state where we enable the calibration hack. */ v1s->timer_hack_state = 6; } else if ((addr == VIA_REG_IER && val == 0x20) || addr == VIA_REG_T2CH) { /* We're doing something else with the timer, not calibration */ v1s->timer_hack_state = 0; } break; case 6: if ((addr == VIA_REG_IER && val == 0x20) || addr == VIA_REG_T2CH) { /* End of A/UX timer calibration routine, or another write */ v1s->timer_hack_state = 7; } else { v1s->timer_hack_state = 0; } break; case 7: /* * This is the normal post-calibration timer state once both the * MacOS toolbox and A/UX have been calibrated, until we see a write * to VIA_REG_PCR to suggest a reset */ if (addr == VIA_REG_PCR && val == 0x22) { /* Looks like there has been a reset? */ v1s->timer_hack_state = 1; } break; default: g_assert_not_reached(); } if (old_timer_hack_state != v1s->timer_hack_state) { trace_via1_timer_hack_state(v1s->timer_hack_state); } } static uint64_t mos6522_q800_via1_read(void *opaque, hwaddr addr, unsigned size) { MOS6522Q800VIA1State *s = MOS6522_Q800_VIA1(opaque); MOS6522State *ms = MOS6522(s); uint64_t ret; int64_t now; addr = (addr >> 9) & 0xf; ret = mos6522_read(ms, addr, size); switch (addr) { case VIA_REG_A: case VIA_REG_ANH: /* Quadra 800 Id */ ret = (ret & ~VIA1A_CPUID_MASK) | VIA1A_CPUID_Q800; break; case VIA_REG_T2CH: if (s->timer_hack_state == 6) { /* * The A/UX timer calibration loop runs continuously until 2 * consecutive iterations differ by at least 0x492 timer ticks. * Modern hosts execute the timer calibration loop so fast that * this situation never occurs causing a hang on boot. Use a * similar method to Shoebill which is to randomly add 0x500 to * the T2 counter value during calibration to enable it to * eventually succeed. */ now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); if (now & 1) { ret += 0x5; } } break; } return ret; } static void mos6522_q800_via1_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); MOS6522State *ms = MOS6522(v1s); int oldstate, state; int oldsr = ms->sr; addr = (addr >> 9) & 0xf; via1_timer_calibration_hack(v1s, addr, val, size); mos6522_write(ms, addr, val, size); switch (addr) { case VIA_REG_B: via1_rtc_update(v1s); via1_adb_update(v1s); via1_auxmode_update(v1s); v1s->last_b = ms->b; break; case VIA_REG_SR: { /* * NetBSD assumes it can send its first ADB command after sending * the ADB_BUSRESET command in ADB_STATE_NEW without changing the * state back to ADB_STATE_IDLE first as detailed in the ADB * protocol. * * Add a workaround to detect this condition at the start of ADB * enumeration and send the next command written to SR after a * ADB_BUSRESET onto the bus regardless, even if we don't detect a * state transition to ADB_STATE_NEW. * * Note that in my tests the NetBSD state machine takes one ADB * operation to recover which means the probe for an ADB device at * address 1 always fails. However since the first device is at * address 2 then this will work fine, without having to come up * with a more complicated and invasive solution. */ oldstate = (v1s->last_b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; state = (ms->b & VIA1B_vADB_StateMask) >> VIA1B_vADB_StateShift; if (oldstate == ADB_STATE_NEW && state == ADB_STATE_NEW && (ms->acr & VIA1ACR_vShiftOut) && oldsr == 0 /* ADB_BUSRESET */) { trace_via1_adb_netbsd_enum_hack(); adb_via_send(v1s, state, ms->sr); } } break; } } static const MemoryRegionOps mos6522_q800_via1_ops = { .read = mos6522_q800_via1_read, .write = mos6522_q800_via1_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4, }, }; static uint64_t mos6522_q800_via2_read(void *opaque, hwaddr addr, unsigned size) { MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque); MOS6522State *ms = MOS6522(s); uint64_t val; addr = (addr >> 9) & 0xf; val = mos6522_read(ms, addr, size); switch (addr) { case VIA_REG_IFR: /* * On a Q800 an emulated VIA2 is integrated into the onboard logic. The * expectation of most OSs is that the DRQ bit is live, rather than * latched as it would be on a real VIA so do the same here. * * Note: DRQ is negative edge triggered */ val &= ~VIA2_IRQ_SCSI_DATA; val |= (~ms->last_irq_levels & VIA2_IRQ_SCSI_DATA); break; } return val; } static void mos6522_q800_via2_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { MOS6522Q800VIA2State *s = MOS6522_Q800_VIA2(opaque); MOS6522State *ms = MOS6522(s); addr = (addr >> 9) & 0xf; mos6522_write(ms, addr, val, size); } static const MemoryRegionOps mos6522_q800_via2_ops = { .read = mos6522_q800_via2_read, .write = mos6522_q800_via2_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 4, }, }; static void via1_postload_update_cb(void *opaque, bool running, RunState state) { MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); qemu_del_vm_change_state_handler(v1s->vmstate); v1s->vmstate = NULL; pram_update(v1s); } static int via1_post_load(void *opaque, int version_id) { MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(opaque); if (v1s->blk) { v1s->vmstate = qemu_add_vm_change_state_handler( via1_postload_update_cb, v1s); } return 0; } /* VIA 1 */ static void mos6522_q800_via1_reset_hold(Object *obj, ResetType type) { MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj); MOS6522State *ms = MOS6522(v1s); MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms); ADBBusState *adb_bus = &v1s->adb_bus; if (mdc->parent_phases.hold) { mdc->parent_phases.hold(obj, type); } ms->timers[0].frequency = VIA_TIMER_FREQ; ms->timers[1].frequency = VIA_TIMER_FREQ; ms->b = VIA1B_vADB_StateMask | VIA1B_vADBInt | VIA1B_vRTCEnb; /* ADB/RTC */ adb_set_autopoll_enabled(adb_bus, true); v1s->cmd = REG_EMPTY; v1s->alt = REG_EMPTY; /* Timer calibration hack */ v1s->timer_hack_state = 0; } static void mos6522_q800_via1_realize(DeviceState *dev, Error **errp) { MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(dev); ADBBusState *adb_bus = &v1s->adb_bus; struct tm tm; int ret; v1s->one_second_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, via1_one_second, v1s); via1_one_second_update(v1s); v1s->sixty_hz_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, via1_sixty_hz, v1s); via1_sixty_hz_update(v1s); qemu_get_timedate(&tm, 0); v1s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; adb_register_autopoll_callback(adb_bus, adb_via_poll, v1s); v1s->adb_data_ready = qdev_get_gpio_in(dev, VIA1_IRQ_ADB_READY_BIT); if (v1s->blk) { int64_t len = blk_getlength(v1s->blk); if (len < 0) { error_setg_errno(errp, -len, "could not get length of backing image"); return; } ret = blk_set_perm(v1s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, BLK_PERM_ALL, errp); if (ret < 0) { return; } ret = blk_pread(v1s->blk, 0, sizeof(v1s->PRAM), v1s->PRAM, 0); if (ret < 0) { error_setg(errp, "can't read PRAM contents"); return; } } } static void mos6522_q800_via1_init(Object *obj) { MOS6522Q800VIA1State *v1s = MOS6522_Q800_VIA1(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(v1s); memory_region_init_io(&v1s->via_mem, obj, &mos6522_q800_via1_ops, v1s, "via1", VIA_SIZE); sysbus_init_mmio(sbd, &v1s->via_mem); /* ADB */ qbus_init((BusState *)&v1s->adb_bus, sizeof(v1s->adb_bus), TYPE_ADB_BUS, DEVICE(v1s), "adb.0"); /* A/UX mode */ qdev_init_gpio_out(DEVICE(obj), &v1s->auxmode_irq, 1); } static const VMStateDescription vmstate_q800_via1 = { .name = "q800-via1", .version_id = 0, .minimum_version_id = 0, .post_load = via1_post_load, .fields = (const VMStateField[]) { VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA1State, 0, vmstate_mos6522, MOS6522State), VMSTATE_UINT8(last_b, MOS6522Q800VIA1State), /* RTC */ VMSTATE_BUFFER(PRAM, MOS6522Q800VIA1State), VMSTATE_UINT32(tick_offset, MOS6522Q800VIA1State), VMSTATE_UINT8(data_out, MOS6522Q800VIA1State), VMSTATE_INT32(data_out_cnt, MOS6522Q800VIA1State), VMSTATE_UINT8(data_in, MOS6522Q800VIA1State), VMSTATE_UINT8(data_in_cnt, MOS6522Q800VIA1State), VMSTATE_UINT8(cmd, MOS6522Q800VIA1State), VMSTATE_INT32(wprotect, MOS6522Q800VIA1State), VMSTATE_INT32(alt, MOS6522Q800VIA1State), /* ADB */ VMSTATE_INT32(adb_data_in_size, MOS6522Q800VIA1State), VMSTATE_INT32(adb_data_in_index, MOS6522Q800VIA1State), VMSTATE_INT32(adb_data_out_index, MOS6522Q800VIA1State), VMSTATE_BUFFER(adb_data_in, MOS6522Q800VIA1State), VMSTATE_BUFFER(adb_data_out, MOS6522Q800VIA1State), VMSTATE_UINT8(adb_autopoll_cmd, MOS6522Q800VIA1State), /* Timers */ VMSTATE_TIMER_PTR(one_second_timer, MOS6522Q800VIA1State), VMSTATE_INT64(next_second, MOS6522Q800VIA1State), VMSTATE_TIMER_PTR(sixty_hz_timer, MOS6522Q800VIA1State), VMSTATE_INT64(next_sixty_hz, MOS6522Q800VIA1State), /* Timer hack */ VMSTATE_INT32(timer_hack_state, MOS6522Q800VIA1State), VMSTATE_END_OF_LIST() } }; static Property mos6522_q800_via1_properties[] = { DEFINE_PROP_DRIVE("drive", MOS6522Q800VIA1State, blk), DEFINE_PROP_END_OF_LIST(), }; static void mos6522_q800_via1_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); ResettableClass *rc = RESETTABLE_CLASS(oc); MOS6522DeviceClass *mdc = MOS6522_CLASS(oc); dc->realize = mos6522_q800_via1_realize; resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via1_reset_hold, NULL, &mdc->parent_phases); dc->vmsd = &vmstate_q800_via1; device_class_set_props(dc, mos6522_q800_via1_properties); } static const TypeInfo mos6522_q800_via1_type_info = { .name = TYPE_MOS6522_Q800_VIA1, .parent = TYPE_MOS6522, .instance_size = sizeof(MOS6522Q800VIA1State), .instance_init = mos6522_q800_via1_init, .class_init = mos6522_q800_via1_class_init, }; /* VIA 2 */ static void mos6522_q800_via2_portB_write(MOS6522State *s) { if (s->dirb & VIA2B_vPower && (s->b & VIA2B_vPower) == 0) { /* shutdown */ qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); } } static void mos6522_q800_via2_reset_hold(Object *obj, ResetType type) { MOS6522State *ms = MOS6522(obj); MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms); if (mdc->parent_phases.hold) { mdc->parent_phases.hold(obj, type); } ms->timers[0].frequency = VIA_TIMER_FREQ; ms->timers[1].frequency = VIA_TIMER_FREQ; ms->dirb = 0; ms->b = 0; ms->dira = 0; ms->a = 0x7f; } static void via2_nubus_irq_request(void *opaque, int n, int level) { MOS6522Q800VIA2State *v2s = opaque; MOS6522State *s = MOS6522(v2s); qemu_irq irq = qdev_get_gpio_in(DEVICE(s), VIA2_IRQ_NUBUS_BIT); if (level) { /* Port A nubus IRQ inputs are active LOW */ s->a &= ~(1 << n); } else { s->a |= (1 << n); } /* Negative edge trigger */ qemu_set_irq(irq, !level); } static void mos6522_q800_via2_init(Object *obj) { MOS6522Q800VIA2State *v2s = MOS6522_Q800_VIA2(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(v2s); memory_region_init_io(&v2s->via_mem, obj, &mos6522_q800_via2_ops, v2s, "via2", VIA_SIZE); sysbus_init_mmio(sbd, &v2s->via_mem); qdev_init_gpio_in_named(DEVICE(obj), via2_nubus_irq_request, "nubus-irq", VIA2_NUBUS_IRQ_NB); } static const VMStateDescription vmstate_q800_via2 = { .name = "q800-via2", .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_STRUCT(parent_obj, MOS6522Q800VIA2State, 0, vmstate_mos6522, MOS6522State), VMSTATE_END_OF_LIST() } }; static void mos6522_q800_via2_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); ResettableClass *rc = RESETTABLE_CLASS(oc); MOS6522DeviceClass *mdc = MOS6522_CLASS(oc); resettable_class_set_parent_phases(rc, NULL, mos6522_q800_via2_reset_hold, NULL, &mdc->parent_phases); dc->vmsd = &vmstate_q800_via2; mdc->portB_write = mos6522_q800_via2_portB_write; } static const TypeInfo mos6522_q800_via2_type_info = { .name = TYPE_MOS6522_Q800_VIA2, .parent = TYPE_MOS6522, .instance_size = sizeof(MOS6522Q800VIA2State), .instance_init = mos6522_q800_via2_init, .class_init = mos6522_q800_via2_class_init, }; static void mac_via_register_types(void) { type_register_static(&mos6522_q800_via1_type_info); type_register_static(&mos6522_q800_via2_type_info); } type_init(mac_via_register_types);