/* * SMSC LAN9118 Ethernet interface emulation * * Copyright (c) 2009 CodeSourcery, LLC. * Written by Paul Brook * * This code is licenced under the GNU GPL v2 */ #include "sysbus.h" #include "net.h" #include "devices.h" #include "sysemu.h" /* For crc32 */ #include <zlib.h> //#define DEBUG_LAN9118 #ifdef DEBUG_LAN9118 #define DPRINTF(fmt, ...) \ do { printf("lan9118: " fmt , ## __VA_ARGS__); } while (0) #define BADF(fmt, ...) \ do { hw_error("lan9118: error: " fmt , ## __VA_ARGS__);} while (0) #else #define DPRINTF(fmt, ...) do {} while(0) #define BADF(fmt, ...) \ do { fprintf(stderr, "lan9118: error: " fmt , ## __VA_ARGS__);} while (0) #endif #define CSR_ID_REV 0x50 #define CSR_IRQ_CFG 0x54 #define CSR_INT_STS 0x58 #define CSR_INT_EN 0x5c #define CSR_BYTE_TEST 0x64 #define CSR_FIFO_INT 0x68 #define CSR_RX_CFG 0x6c #define CSR_TX_CFG 0x70 #define CSR_HW_CFG 0x74 #define CSR_RX_DP_CTRL 0x78 #define CSR_RX_FIFO_INF 0x7c #define CSR_TX_FIFO_INF 0x80 #define CSR_PMT_CTRL 0x84 #define CSR_GPIO_CFG 0x88 #define CSR_GPT_CFG 0x8c #define CSR_GPT_CNT 0x90 #define CSR_WORD_SWAP 0x98 #define CSR_FREE_RUN 0x9c #define CSR_RX_DROP 0xa0 #define CSR_MAC_CSR_CMD 0xa4 #define CSR_MAC_CSR_DATA 0xa8 #define CSR_AFC_CFG 0xac #define CSR_E2P_CMD 0xb0 #define CSR_E2P_DATA 0xb4 /* IRQ_CFG */ #define IRQ_INT 0x00001000 #define IRQ_EN 0x00000100 #define IRQ_POL 0x00000010 #define IRQ_TYPE 0x00000001 /* INT_STS/INT_EN */ #define SW_INT 0x80000000 #define TXSTOP_INT 0x02000000 #define RXSTOP_INT 0x01000000 #define RXDFH_INT 0x00800000 #define TX_IOC_INT 0x00200000 #define RXD_INT 0x00100000 #define GPT_INT 0x00080000 #define PHY_INT 0x00040000 #define PME_INT 0x00020000 #define TXSO_INT 0x00010000 #define RWT_INT 0x00008000 #define RXE_INT 0x00004000 #define TXE_INT 0x00002000 #define TDFU_INT 0x00000800 #define TDFO_INT 0x00000400 #define TDFA_INT 0x00000200 #define TSFF_INT 0x00000100 #define TSFL_INT 0x00000080 #define RXDF_INT 0x00000040 #define RDFL_INT 0x00000020 #define RSFF_INT 0x00000010 #define RSFL_INT 0x00000008 #define GPIO2_INT 0x00000004 #define GPIO1_INT 0x00000002 #define GPIO0_INT 0x00000001 #define RESERVED_INT 0x7c001000 #define MAC_CR 1 #define MAC_ADDRH 2 #define MAC_ADDRL 3 #define MAC_HASHH 4 #define MAC_HASHL 5 #define MAC_MII_ACC 6 #define MAC_MII_DATA 7 #define MAC_FLOW 8 #define MAC_VLAN1 9 /* TODO */ #define MAC_VLAN2 10 /* TODO */ #define MAC_WUFF 11 /* TODO */ #define MAC_WUCSR 12 /* TODO */ #define MAC_CR_RXALL 0x80000000 #define MAC_CR_RCVOWN 0x00800000 #define MAC_CR_LOOPBK 0x00200000 #define MAC_CR_FDPX 0x00100000 #define MAC_CR_MCPAS 0x00080000 #define MAC_CR_PRMS 0x00040000 #define MAC_CR_INVFILT 0x00020000 #define MAC_CR_PASSBAD 0x00010000 #define MAC_CR_HO 0x00008000 #define MAC_CR_HPFILT 0x00002000 #define MAC_CR_LCOLL 0x00001000 #define MAC_CR_BCAST 0x00000800 #define MAC_CR_DISRTY 0x00000400 #define MAC_CR_PADSTR 0x00000100 #define MAC_CR_BOLMT 0x000000c0 #define MAC_CR_DFCHK 0x00000020 #define MAC_CR_TXEN 0x00000008 #define MAC_CR_RXEN 0x00000004 #define MAC_CR_RESERVED 0x7f404213 #define PHY_INT_ENERGYON 0x80 #define PHY_INT_AUTONEG_COMPLETE 0x40 #define PHY_INT_FAULT 0x20 #define PHY_INT_DOWN 0x10 #define PHY_INT_AUTONEG_LP 0x08 #define PHY_INT_PARFAULT 0x04 #define PHY_INT_AUTONEG_PAGE 0x02 #define GPT_TIMER_EN 0x20000000 enum tx_state { TX_IDLE, TX_B, TX_DATA }; typedef struct { enum tx_state state; uint32_t cmd_a; uint32_t cmd_b; int buffer_size; int offset; int pad; int fifo_used; int len; uint8_t data[2048]; } LAN9118Packet; typedef struct { SysBusDevice busdev; NICState *nic; NICConf conf; qemu_irq irq; int mmio_index; ptimer_state *timer; uint32_t irq_cfg; uint32_t int_sts; uint32_t int_en; uint32_t fifo_int; uint32_t rx_cfg; uint32_t tx_cfg; uint32_t hw_cfg; uint32_t pmt_ctrl; uint32_t gpio_cfg; uint32_t gpt_cfg; uint32_t word_swap; uint32_t free_timer_start; uint32_t mac_cmd; uint32_t mac_data; uint32_t afc_cfg; uint32_t e2p_cmd; uint32_t e2p_data; uint32_t mac_cr; uint32_t mac_hashh; uint32_t mac_hashl; uint32_t mac_mii_acc; uint32_t mac_mii_data; uint32_t mac_flow; uint32_t phy_status; uint32_t phy_control; uint32_t phy_advertise; uint32_t phy_int; uint32_t phy_int_mask; int eeprom_writable; uint8_t eeprom[128]; int tx_fifo_size; LAN9118Packet *txp; LAN9118Packet tx_packet; int tx_status_fifo_used; int tx_status_fifo_head; uint32_t tx_status_fifo[512]; int rx_status_fifo_size; int rx_status_fifo_used; int rx_status_fifo_head; uint32_t rx_status_fifo[896]; int rx_fifo_size; int rx_fifo_used; int rx_fifo_head; uint32_t rx_fifo[3360]; int rx_packet_size_head; int rx_packet_size_tail; int rx_packet_size[1024]; int rxp_offset; int rxp_size; int rxp_pad; } lan9118_state; static void lan9118_update(lan9118_state *s) { int level; /* TODO: Implement FIFO level IRQs. */ level = (s->int_sts & s->int_en) != 0; if (level) { s->irq_cfg |= IRQ_INT; } else { s->irq_cfg &= ~IRQ_INT; } if ((s->irq_cfg & IRQ_EN) == 0) { level = 0; } qemu_set_irq(s->irq, level); } static void lan9118_mac_changed(lan9118_state *s) { qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a); } static void lan9118_reload_eeprom(lan9118_state *s) { int i; if (s->eeprom[0] != 0xa5) { s->e2p_cmd &= ~0x10; DPRINTF("MACADDR load failed\n"); return; } for (i = 0; i < 6; i++) { s->conf.macaddr.a[i] = s->eeprom[i + 1]; } s->e2p_cmd |= 0x10; DPRINTF("MACADDR loaded from eeprom\n"); lan9118_mac_changed(s); } static void phy_update_irq(lan9118_state *s) { if (s->phy_int & s->phy_int_mask) { s->int_sts |= PHY_INT; } else { s->int_sts &= ~PHY_INT; } lan9118_update(s); } static void phy_update_link(lan9118_state *s) { /* Autonegotiation status mirrors link status. */ if (s->nic->nc.link_down) { s->phy_status &= ~0x0024; s->phy_int |= PHY_INT_DOWN; } else { s->phy_status |= 0x0024; s->phy_int |= PHY_INT_ENERGYON; s->phy_int |= PHY_INT_AUTONEG_COMPLETE; } phy_update_irq(s); } static void lan9118_set_link(VLANClientState *nc) { phy_update_link(DO_UPCAST(NICState, nc, nc)->opaque); } static void phy_reset(lan9118_state *s) { s->phy_status = 0x7809; s->phy_control = 0x3000; s->phy_advertise = 0x01e1; s->phy_int_mask = 0; s->phy_int = 0; phy_update_link(s); } static void lan9118_reset(DeviceState *d) { lan9118_state *s = FROM_SYSBUS(lan9118_state, sysbus_from_qdev(d)); s->irq_cfg &= ~(IRQ_TYPE | IRQ_POL); s->int_sts = 0; s->int_en = 0; s->fifo_int = 0x48000000; s->rx_cfg = 0; s->tx_cfg = 0; s->hw_cfg = 0x00050000; s->pmt_ctrl &= 0x45; s->gpio_cfg = 0; s->txp->fifo_used = 0; s->txp->state = TX_IDLE; s->txp->cmd_a = 0xffffffffu; s->txp->cmd_b = 0xffffffffu; s->txp->len = 0; s->txp->fifo_used = 0; s->tx_fifo_size = 4608; s->tx_status_fifo_used = 0; s->rx_status_fifo_size = 704; s->rx_fifo_size = 2640; s->rx_fifo_used = 0; s->rx_status_fifo_size = 176; s->rx_status_fifo_used = 0; s->rxp_offset = 0; s->rxp_size = 0; s->rxp_pad = 0; s->rx_packet_size_tail = s->rx_packet_size_head; s->rx_packet_size[s->rx_packet_size_head] = 0; s->mac_cmd = 0; s->mac_data = 0; s->afc_cfg = 0; s->e2p_cmd = 0; s->e2p_data = 0; s->free_timer_start = qemu_get_clock_ns(vm_clock) / 40; ptimer_stop(s->timer); ptimer_set_count(s->timer, 0xffff); s->gpt_cfg = 0xffff; s->mac_cr = MAC_CR_PRMS; s->mac_hashh = 0; s->mac_hashl = 0; s->mac_mii_acc = 0; s->mac_mii_data = 0; s->mac_flow = 0; phy_reset(s); s->eeprom_writable = 0; lan9118_reload_eeprom(s); } static int lan9118_can_receive(VLANClientState *nc) { return 1; } static void rx_fifo_push(lan9118_state *s, uint32_t val) { int fifo_pos; fifo_pos = s->rx_fifo_head + s->rx_fifo_used; if (fifo_pos >= s->rx_fifo_size) fifo_pos -= s->rx_fifo_size; s->rx_fifo[fifo_pos] = val; s->rx_fifo_used++; } /* Return nonzero if the packet is accepted by the filter. */ static int lan9118_filter(lan9118_state *s, const uint8_t *addr) { int multicast; uint32_t hash; if (s->mac_cr & MAC_CR_PRMS) { return 1; } if (addr[0] == 0xff && addr[1] == 0xff && addr[2] == 0xff && addr[3] == 0xff && addr[4] == 0xff && addr[5] == 0xff) { return (s->mac_cr & MAC_CR_BCAST) == 0; } multicast = addr[0] & 1; if (multicast &&s->mac_cr & MAC_CR_MCPAS) { return 1; } if (multicast ? (s->mac_cr & MAC_CR_HPFILT) == 0 : (s->mac_cr & MAC_CR_HO) == 0) { /* Exact matching. */ hash = memcmp(addr, s->conf.macaddr.a, 6); if (s->mac_cr & MAC_CR_INVFILT) { return hash != 0; } else { return hash == 0; } } else { /* Hash matching */ hash = (crc32(~0, addr, 6) >> 26); if (hash & 0x20) { return (s->mac_hashh >> (hash & 0x1f)) & 1; } else { return (s->mac_hashl >> (hash & 0x1f)) & 1; } } } static ssize_t lan9118_receive(VLANClientState *nc, const uint8_t *buf, size_t size) { lan9118_state *s = DO_UPCAST(NICState, nc, nc)->opaque; int fifo_len; int offset; int src_pos; int n; int filter; uint32_t val; uint32_t crc; uint32_t status; if ((s->mac_cr & MAC_CR_RXEN) == 0) { return -1; } if (size >= 2048 || size < 14) { return -1; } /* TODO: Implement FIFO overflow notification. */ if (s->rx_status_fifo_used == s->rx_status_fifo_size) { return -1; } filter = lan9118_filter(s, buf); if (!filter && (s->mac_cr & MAC_CR_RXALL) == 0) { return size; } offset = (s->rx_cfg >> 8) & 0x1f; n = offset & 3; fifo_len = (size + n + 3) >> 2; /* Add a word for the CRC. */ fifo_len++; if (s->rx_fifo_size - s->rx_fifo_used < fifo_len) { return -1; } DPRINTF("Got packet len:%d fifo:%d filter:%s\n", (int)size, fifo_len, filter ? "pass" : "fail"); val = 0; crc = bswap32(crc32(~0, buf, size)); for (src_pos = 0; src_pos < size; src_pos++) { val = (val >> 8) | ((uint32_t)buf[src_pos] << 24); n++; if (n == 4) { n = 0; rx_fifo_push(s, val); val = 0; } } if (n) { val >>= ((4 - n) * 8); val |= crc << (n * 8); rx_fifo_push(s, val); val = crc >> ((4 - n) * 8); rx_fifo_push(s, val); } else { rx_fifo_push(s, crc); } n = s->rx_status_fifo_head + s->rx_status_fifo_used; if (n >= s->rx_status_fifo_size) { n -= s->rx_status_fifo_size; } s->rx_packet_size[s->rx_packet_size_tail] = fifo_len; s->rx_packet_size_tail = (s->rx_packet_size_tail + 1023) & 1023; s->rx_status_fifo_used++; status = (size + 4) << 16; if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff && buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) { status |= 0x00002000; } else if (buf[0] & 1) { status |= 0x00000400; } if (!filter) { status |= 0x40000000; } s->rx_status_fifo[n] = status; if (s->rx_status_fifo_used > (s->fifo_int & 0xff)) { s->int_sts |= RSFL_INT; } lan9118_update(s); return size; } static uint32_t rx_fifo_pop(lan9118_state *s) { int n; uint32_t val; if (s->rxp_size == 0 && s->rxp_pad == 0) { s->rxp_size = s->rx_packet_size[s->rx_packet_size_head]; s->rx_packet_size[s->rx_packet_size_head] = 0; if (s->rxp_size != 0) { s->rx_packet_size_head = (s->rx_packet_size_head + 1023) & 1023; s->rxp_offset = (s->rx_cfg >> 10) & 7; n = s->rxp_offset + s->rxp_size; switch (s->rx_cfg >> 30) { case 1: n = (-n) & 3; break; case 2: n = (-n) & 7; break; default: n = 0; break; } s->rxp_pad = n; DPRINTF("Pop packet size:%d offset:%d pad: %d\n", s->rxp_size, s->rxp_offset, s->rxp_pad); } } if (s->rxp_offset > 0) { s->rxp_offset--; val = 0; } else if (s->rxp_size > 0) { s->rxp_size--; val = s->rx_fifo[s->rx_fifo_head++]; if (s->rx_fifo_head >= s->rx_fifo_size) { s->rx_fifo_head -= s->rx_fifo_size; } s->rx_fifo_used--; } else if (s->rxp_pad > 0) { s->rxp_pad--; val = 0; } else { DPRINTF("RX underflow\n"); s->int_sts |= RXE_INT; val = 0; } lan9118_update(s); return val; } static void do_tx_packet(lan9118_state *s) { int n; uint32_t status; /* FIXME: Honor TX disable, and allow queueing of packets. */ if (s->phy_control & 0x4000) { /* This assumes the receive routine doesn't touch the VLANClient. */ lan9118_receive(&s->nic->nc, s->txp->data, s->txp->len); } else { qemu_send_packet(&s->nic->nc, s->txp->data, s->txp->len); } s->txp->fifo_used = 0; if (s->tx_status_fifo_used == 512) { /* Status FIFO full */ return; } /* Add entry to status FIFO. */ status = s->txp->cmd_b & 0xffff0000u; DPRINTF("Sent packet tag:%04x len %d\n", status >> 16, s->txp->len); n = (s->tx_status_fifo_head + s->tx_status_fifo_used) & 511; s->tx_status_fifo[n] = status; s->tx_status_fifo_used++; if (s->tx_status_fifo_used == 512) { s->int_sts |= TSFF_INT; /* TODO: Stop transmission. */ } } static uint32_t rx_status_fifo_pop(lan9118_state *s) { uint32_t val; val = s->rx_status_fifo[s->rx_status_fifo_head]; if (s->rx_status_fifo_used != 0) { s->rx_status_fifo_used--; s->rx_status_fifo_head++; if (s->rx_status_fifo_head >= s->rx_status_fifo_size) { s->rx_status_fifo_head -= s->rx_status_fifo_size; } /* ??? What value should be returned when the FIFO is empty? */ DPRINTF("RX status pop 0x%08x\n", val); } return val; } static uint32_t tx_status_fifo_pop(lan9118_state *s) { uint32_t val; val = s->tx_status_fifo[s->tx_status_fifo_head]; if (s->tx_status_fifo_used != 0) { s->tx_status_fifo_used--; s->tx_status_fifo_head = (s->tx_status_fifo_head + 1) & 511; /* ??? What value should be returned when the FIFO is empty? */ } return val; } static void tx_fifo_push(lan9118_state *s, uint32_t val) { int n; if (s->txp->fifo_used == s->tx_fifo_size) { s->int_sts |= TDFO_INT; return; } switch (s->txp->state) { case TX_IDLE: s->txp->cmd_a = val & 0x831f37ff; s->txp->fifo_used++; s->txp->state = TX_B; break; case TX_B: if (s->txp->cmd_a & 0x2000) { /* First segment */ s->txp->cmd_b = val; s->txp->fifo_used++; s->txp->buffer_size = s->txp->cmd_a & 0x7ff; s->txp->offset = (s->txp->cmd_a >> 16) & 0x1f; /* End alignment does not include command words. */ n = (s->txp->buffer_size + s->txp->offset + 3) >> 2; switch ((n >> 24) & 3) { case 1: n = (-n) & 3; break; case 2: n = (-n) & 7; break; default: n = 0; } s->txp->pad = n; s->txp->len = 0; } DPRINTF("Block len:%d offset:%d pad:%d cmd %08x\n", s->txp->buffer_size, s->txp->offset, s->txp->pad, s->txp->cmd_a); s->txp->state = TX_DATA; break; case TX_DATA: if (s->txp->offset >= 4) { s->txp->offset -= 4; break; } if (s->txp->buffer_size <= 0 && s->txp->pad != 0) { s->txp->pad--; } else { n = 4; while (s->txp->offset) { val >>= 8; n--; s->txp->offset--; } /* Documentation is somewhat unclear on the ordering of bytes in FIFO words. Empirical results show it to be little-endian. */ /* TODO: FIFO overflow checking. */ while (n--) { s->txp->data[s->txp->len] = val & 0xff; s->txp->len++; val >>= 8; s->txp->buffer_size--; } s->txp->fifo_used++; } if (s->txp->buffer_size <= 0 && s->txp->pad == 0) { if (s->txp->cmd_a & 0x1000) { do_tx_packet(s); } if (s->txp->cmd_a & 0x80000000) { s->int_sts |= TX_IOC_INT; } s->txp->state = TX_IDLE; } break; } } static uint32_t do_phy_read(lan9118_state *s, int reg) { uint32_t val; switch (reg) { case 0: /* Basic Control */ return s->phy_control; case 1: /* Basic Status */ return s->phy_status; case 2: /* ID1 */ return 0x0007; case 3: /* ID2 */ return 0xc0d1; case 4: /* Auto-neg advertisment */ return s->phy_advertise; case 5: /* Auto-neg Link Partner Ability */ return 0x0f71; case 6: /* Auto-neg Expansion */ return 1; /* TODO 17, 18, 27, 29, 30, 31 */ case 29: /* Interrupt source. */ val = s->phy_int; s->phy_int = 0; phy_update_irq(s); return val; case 30: /* Interrupt mask */ return s->phy_int_mask; default: BADF("PHY read reg %d\n", reg); return 0; } } static void do_phy_write(lan9118_state *s, int reg, uint32_t val) { switch (reg) { case 0: /* Basic Control */ if (val & 0x8000) { phy_reset(s); break; } s->phy_control = val & 0x7980; /* Complete autonegotiation imediately. */ if (val & 0x1000) { s->phy_status |= 0x0020; } break; case 4: /* Auto-neg advertisment */ s->phy_advertise = (val & 0x2d7f) | 0x80; break; /* TODO 17, 18, 27, 31 */ case 30: /* Interrupt mask */ s->phy_int_mask = val & 0xff; phy_update_irq(s); break; default: BADF("PHY write reg %d = 0x%04x\n", reg, val); } } static void do_mac_write(lan9118_state *s, int reg, uint32_t val) { switch (reg) { case MAC_CR: if ((s->mac_cr & MAC_CR_RXEN) != 0 && (val & MAC_CR_RXEN) == 0) { s->int_sts |= RXSTOP_INT; } s->mac_cr = val & ~MAC_CR_RESERVED; DPRINTF("MAC_CR: %08x\n", val); break; case MAC_ADDRH: s->conf.macaddr.a[4] = val & 0xff; s->conf.macaddr.a[5] = (val >> 8) & 0xff; lan9118_mac_changed(s); break; case MAC_ADDRL: s->conf.macaddr.a[0] = val & 0xff; s->conf.macaddr.a[1] = (val >> 8) & 0xff; s->conf.macaddr.a[2] = (val >> 16) & 0xff; s->conf.macaddr.a[3] = (val >> 24) & 0xff; lan9118_mac_changed(s); break; case MAC_HASHH: s->mac_hashh = val; break; case MAC_HASHL: s->mac_hashl = val; break; case MAC_MII_ACC: s->mac_mii_acc = val & 0xffc2; if (val & 2) { DPRINTF("PHY write %d = 0x%04x\n", (val >> 6) & 0x1f, s->mac_mii_data); do_phy_write(s, (val >> 6) & 0x1f, s->mac_mii_data); } else { s->mac_mii_data = do_phy_read(s, (val >> 6) & 0x1f); DPRINTF("PHY read %d = 0x%04x\n", (val >> 6) & 0x1f, s->mac_mii_data); } break; case MAC_MII_DATA: s->mac_mii_data = val & 0xffff; break; case MAC_FLOW: s->mac_flow = val & 0xffff0000; break; default: hw_error("lan9118: Unimplemented MAC register write: %d = 0x%x\n", s->mac_cmd & 0xf, val); } } static uint32_t do_mac_read(lan9118_state *s, int reg) { switch (reg) { case MAC_CR: return s->mac_cr; case MAC_ADDRH: return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8); case MAC_ADDRL: return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8) | (s->conf.macaddr.a[2] << 16) | (s->conf.macaddr.a[3] << 24); case MAC_HASHH: return s->mac_hashh; break; case MAC_HASHL: return s->mac_hashl; break; case MAC_MII_ACC: return s->mac_mii_acc; case MAC_MII_DATA: return s->mac_mii_data; case MAC_FLOW: return s->mac_flow; default: hw_error("lan9118: Unimplemented MAC register read: %d\n", s->mac_cmd & 0xf); } } static void lan9118_eeprom_cmd(lan9118_state *s, int cmd, int addr) { s->e2p_cmd = (s->e2p_cmd & 0x10) | (cmd << 28) | addr; switch (cmd) { case 0: s->e2p_data = s->eeprom[addr]; DPRINTF("EEPROM Read %d = 0x%02x\n", addr, s->e2p_data); break; case 1: s->eeprom_writable = 0; DPRINTF("EEPROM Write Disable\n"); break; case 2: /* EWEN */ s->eeprom_writable = 1; DPRINTF("EEPROM Write Enable\n"); break; case 3: /* WRITE */ if (s->eeprom_writable) { s->eeprom[addr] &= s->e2p_data; DPRINTF("EEPROM Write %d = 0x%02x\n", addr, s->e2p_data); } else { DPRINTF("EEPROM Write %d (ignored)\n", addr); } break; case 4: /* WRAL */ if (s->eeprom_writable) { for (addr = 0; addr < 128; addr++) { s->eeprom[addr] &= s->e2p_data; } DPRINTF("EEPROM Write All 0x%02x\n", s->e2p_data); } else { DPRINTF("EEPROM Write All (ignored)\n"); } case 5: /* ERASE */ if (s->eeprom_writable) { s->eeprom[addr] = 0xff; DPRINTF("EEPROM Erase %d\n", addr); } else { DPRINTF("EEPROM Erase %d (ignored)\n", addr); } break; case 6: /* ERAL */ if (s->eeprom_writable) { memset(s->eeprom, 0xff, 128); DPRINTF("EEPROM Erase All\n"); } else { DPRINTF("EEPROM Erase All (ignored)\n"); } break; case 7: /* RELOAD */ lan9118_reload_eeprom(s); break; } } static void lan9118_tick(void *opaque) { lan9118_state *s = (lan9118_state *)opaque; if (s->int_en & GPT_INT) { s->int_sts |= GPT_INT; } lan9118_update(s); } static void lan9118_writel(void *opaque, target_phys_addr_t offset, uint32_t val) { lan9118_state *s = (lan9118_state *)opaque; offset &= 0xff; //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val); if (offset >= 0x20 && offset < 0x40) { /* TX FIFO */ tx_fifo_push(s, val); return; } switch (offset) { case CSR_IRQ_CFG: /* TODO: Implement interrupt deassertion intervals. */ s->irq_cfg = (s->irq_cfg & IRQ_INT) | (val & IRQ_EN); break; case CSR_INT_STS: s->int_sts &= ~val; break; case CSR_INT_EN: s->int_en = val & ~RESERVED_INT; s->int_sts |= val & SW_INT; break; case CSR_FIFO_INT: DPRINTF("FIFO INT levels %08x\n", val); s->fifo_int = val; break; case CSR_RX_CFG: if (val & 0x8000) { /* RX_DUMP */ s->rx_fifo_used = 0; s->rx_status_fifo_used = 0; s->rx_packet_size_tail = s->rx_packet_size_head; s->rx_packet_size[s->rx_packet_size_head] = 0; } s->rx_cfg = val & 0xcfff1ff0; break; case CSR_TX_CFG: if (val & 0x8000) { s->tx_status_fifo_used = 0; } if (val & 0x4000) { s->txp->state = TX_IDLE; s->txp->fifo_used = 0; s->txp->cmd_a = 0xffffffff; } s->tx_cfg = val & 6; break; case CSR_HW_CFG: if (val & 1) { /* SRST */ lan9118_reset(&s->busdev.qdev); } else { s->hw_cfg = val & 0x003f300; } break; case CSR_RX_DP_CTRL: if (val & 0x80000000) { /* Skip forward to next packet. */ s->rxp_pad = 0; s->rxp_offset = 0; if (s->rxp_size == 0) { /* Pop a word to start the next packet. */ rx_fifo_pop(s); s->rxp_pad = 0; s->rxp_offset = 0; } s->rx_fifo_head += s->rxp_size; if (s->rx_fifo_head >= s->rx_fifo_size) { s->rx_fifo_head -= s->rx_fifo_size; } } break; case CSR_PMT_CTRL: if (val & 0x400) { phy_reset(s); } s->pmt_ctrl &= ~0x34e; s->pmt_ctrl |= (val & 0x34e); break; case CSR_GPIO_CFG: /* Probably just enabling LEDs. */ s->gpio_cfg = val & 0x7777071f; break; case CSR_GPT_CFG: if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) { if (val & GPT_TIMER_EN) { ptimer_set_count(s->timer, val & 0xffff); ptimer_run(s->timer, 0); } else { ptimer_stop(s->timer); ptimer_set_count(s->timer, 0xffff); } } s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff); break; case CSR_WORD_SWAP: /* Ignored because we're in 32-bit mode. */ s->word_swap = val; break; case CSR_MAC_CSR_CMD: s->mac_cmd = val & 0x4000000f; if (val & 0x80000000) { if (val & 0x40000000) { s->mac_data = do_mac_read(s, val & 0xf); DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data); } else { DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data); do_mac_write(s, val & 0xf, s->mac_data); } } break; case CSR_MAC_CSR_DATA: s->mac_data = val; break; case CSR_AFC_CFG: s->afc_cfg = val & 0x00ffffff; break; case CSR_E2P_CMD: lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f); break; case CSR_E2P_DATA: s->e2p_data = val & 0xff; break; default: hw_error("lan9118_write: Bad reg 0x%x = %x\n", (int)offset, val); break; } lan9118_update(s); } static uint32_t lan9118_readl(void *opaque, target_phys_addr_t offset) { lan9118_state *s = (lan9118_state *)opaque; //DPRINTF("Read reg 0x%02x\n", (int)offset); if (offset < 0x20) { /* RX FIFO */ return rx_fifo_pop(s); } switch (offset) { case 0x40: return rx_status_fifo_pop(s); case 0x44: return s->rx_status_fifo[s->tx_status_fifo_head]; case 0x48: return tx_status_fifo_pop(s); case 0x4c: return s->tx_status_fifo[s->tx_status_fifo_head]; case CSR_ID_REV: return 0x01180001; case CSR_IRQ_CFG: return s->irq_cfg; case CSR_INT_STS: return s->int_sts; case CSR_INT_EN: return s->int_en; case CSR_BYTE_TEST: return 0x87654321; case CSR_FIFO_INT: return s->fifo_int; case CSR_RX_CFG: return s->rx_cfg; case CSR_TX_CFG: return s->tx_cfg; case CSR_HW_CFG: return s->hw_cfg | 0x4; case CSR_RX_DP_CTRL: return 0; case CSR_RX_FIFO_INF: return (s->rx_status_fifo_used << 16) | (s->rx_fifo_used << 2); case CSR_TX_FIFO_INF: return (s->tx_status_fifo_used << 16) | (s->tx_fifo_size - s->txp->fifo_used); case CSR_PMT_CTRL: return s->pmt_ctrl; case CSR_GPIO_CFG: return s->gpio_cfg; case CSR_GPT_CFG: return s->gpt_cfg; case CSR_GPT_CNT: return ptimer_get_count(s->timer); case CSR_WORD_SWAP: return s->word_swap; case CSR_FREE_RUN: return (qemu_get_clock_ns(vm_clock) / 40) - s->free_timer_start; case CSR_RX_DROP: /* TODO: Implement dropped frames counter. */ return 0; case CSR_MAC_CSR_CMD: return s->mac_cmd; case CSR_MAC_CSR_DATA: return s->mac_data; case CSR_AFC_CFG: return s->afc_cfg; case CSR_E2P_CMD: return s->e2p_cmd; case CSR_E2P_DATA: return s->e2p_data; } hw_error("lan9118_read: Bad reg 0x%x\n", (int)offset); return 0; } static CPUReadMemoryFunc * const lan9118_readfn[] = { lan9118_readl, lan9118_readl, lan9118_readl }; static CPUWriteMemoryFunc * const lan9118_writefn[] = { lan9118_writel, lan9118_writel, lan9118_writel }; static void lan9118_cleanup(VLANClientState *nc) { lan9118_state *s = DO_UPCAST(NICState, nc, nc)->opaque; s->nic = NULL; } static NetClientInfo net_lan9118_info = { .type = NET_CLIENT_TYPE_NIC, .size = sizeof(NICState), .can_receive = lan9118_can_receive, .receive = lan9118_receive, .cleanup = lan9118_cleanup, .link_status_changed = lan9118_set_link, }; static int lan9118_init1(SysBusDevice *dev) { lan9118_state *s = FROM_SYSBUS(lan9118_state, dev); QEMUBH *bh; int i; s->mmio_index = cpu_register_io_memory(lan9118_readfn, lan9118_writefn, s, DEVICE_NATIVE_ENDIAN); sysbus_init_mmio(dev, 0x100, s->mmio_index); sysbus_init_irq(dev, &s->irq); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_lan9118_info, &s->conf, dev->qdev.info->name, dev->qdev.id, s); qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a); s->eeprom[0] = 0xa5; for (i = 0; i < 6; i++) { s->eeprom[i + 1] = s->conf.macaddr.a[i]; } s->pmt_ctrl = 1; s->txp = &s->tx_packet; bh = qemu_bh_new(lan9118_tick, s); s->timer = ptimer_init(bh); ptimer_set_freq(s->timer, 10000); ptimer_set_limit(s->timer, 0xffff, 1); /* ??? Save/restore. */ return 0; } static SysBusDeviceInfo lan9118_info = { .init = lan9118_init1, .qdev.name = "lan9118", .qdev.size = sizeof(lan9118_state), .qdev.reset = lan9118_reset, .qdev.props = (Property[]) { DEFINE_NIC_PROPERTIES(lan9118_state, conf), DEFINE_PROP_END_OF_LIST(), } }; static void lan9118_register_devices(void) { sysbus_register_withprop(&lan9118_info); } /* Legacy helper function. Should go away when machine config files are implemented. */ void lan9118_init(NICInfo *nd, uint32_t base, qemu_irq irq) { DeviceState *dev; SysBusDevice *s; qemu_check_nic_model(nd, "lan9118"); dev = qdev_create(NULL, "lan9118"); qdev_set_nic_properties(dev, nd); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, base); sysbus_connect_irq(s, 0, irq); } device_init(lan9118_register_devices)