/* * QEMU PowerPC XIVE interrupt controller model * * Copyright (c) 2017-2018, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "qapi/error.h" #include "target/ppc/cpu.h" #include "sysemu/cpus.h" #include "sysemu/dma.h" #include "sysemu/reset.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "monitor/monitor.h" #include "hw/irq.h" #include "hw/ppc/xive.h" #include "hw/ppc/xive_regs.h" /* * XIVE Thread Interrupt Management context */ /* * Convert a priority number to an Interrupt Pending Buffer (IPB) * register, which indicates a pending interrupt at the priority * corresponding to the bit number */ static uint8_t priority_to_ipb(uint8_t priority) { return priority > XIVE_PRIORITY_MAX ? 0 : 1 << (XIVE_PRIORITY_MAX - priority); } /* * Convert an Interrupt Pending Buffer (IPB) register to a Pending * Interrupt Priority Register (PIPR), which contains the priority of * the most favored pending notification. */ static uint8_t ipb_to_pipr(uint8_t ibp) { return ibp ? clz32((uint32_t)ibp << 24) : 0xff; } static void ipb_update(uint8_t *regs, uint8_t priority) { regs[TM_IPB] |= priority_to_ipb(priority); regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); } static uint8_t exception_mask(uint8_t ring) { switch (ring) { case TM_QW1_OS: return TM_QW1_NSR_EO; case TM_QW3_HV_PHYS: return TM_QW3_NSR_HE; default: g_assert_not_reached(); } } static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) { switch (ring) { case TM_QW0_USER: return 0; /* Not supported */ case TM_QW1_OS: return tctx->os_output; case TM_QW2_HV_POOL: case TM_QW3_HV_PHYS: return tctx->hv_output; default: return 0; } } static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) { uint8_t *regs = &tctx->regs[ring]; uint8_t nsr = regs[TM_NSR]; uint8_t mask = exception_mask(ring); qemu_irq_lower(xive_tctx_output(tctx, ring)); if (regs[TM_NSR] & mask) { uint8_t cppr = regs[TM_PIPR]; regs[TM_CPPR] = cppr; /* Reset the pending buffer bit */ regs[TM_IPB] &= ~priority_to_ipb(cppr); regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); /* Drop Exception bit */ regs[TM_NSR] &= ~mask; } return (nsr << 8) | regs[TM_CPPR]; } static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) { uint8_t *regs = &tctx->regs[ring]; if (regs[TM_PIPR] < regs[TM_CPPR]) { switch (ring) { case TM_QW1_OS: regs[TM_NSR] |= TM_QW1_NSR_EO; break; case TM_QW3_HV_PHYS: regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); break; default: g_assert_not_reached(); } qemu_irq_raise(xive_tctx_output(tctx, ring)); } } static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) { if (cppr > XIVE_PRIORITY_MAX) { cppr = 0xff; } tctx->regs[ring + TM_CPPR] = cppr; /* CPPR has changed, check if we need to raise a pending exception */ xive_tctx_notify(tctx, ring); } static inline uint32_t xive_tctx_word2(uint8_t *ring) { return *((uint32_t *) &ring[TM_WORD2]); } /* * XIVE Thread Interrupt Management Area (TIMA) */ static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset, uint64_t value, unsigned size) { xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); } static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size) { return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); } static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset, unsigned size) { uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); uint32_t qw2w2; qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); return qw2w2; } static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset, uint64_t value, unsigned size) { tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; } static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size) { return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; } /* * Define an access map for each page of the TIMA that we will use in * the memory region ops to filter values when doing loads and stores * of raw registers values * * Registers accessibility bits : * * 0x0 - no access * 0x1 - write only * 0x2 - read only * 0x3 - read/write */ static const uint8_t xive_tm_hw_view[] = { 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ }; static const uint8_t xive_tm_hv_view[] = { 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ }; static const uint8_t xive_tm_os_view[] = { 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ }; static const uint8_t xive_tm_user_view[] = { 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ }; /* * Overall TIMA access map for the thread interrupt management context * registers */ static const uint8_t *xive_tm_views[] = { [XIVE_TM_HW_PAGE] = xive_tm_hw_view, [XIVE_TM_HV_PAGE] = xive_tm_hv_view, [XIVE_TM_OS_PAGE] = xive_tm_os_view, [XIVE_TM_USER_PAGE] = xive_tm_user_view, }; /* * Computes a register access mask for a given offset in the TIMA */ static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) { uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; uint8_t reg_offset = offset & 0x3F; uint8_t reg_mask = write ? 0x1 : 0x2; uint64_t mask = 0x0; int i; for (i = 0; i < size; i++) { if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { mask |= (uint64_t) 0xff << (8 * (size - i - 1)); } } return mask; } static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, unsigned size) { uint8_t ring_offset = offset & 0x30; uint8_t reg_offset = offset & 0x3F; uint64_t mask = xive_tm_mask(offset, size, true); int i; /* * Only 4 or 8 bytes stores are allowed and the User ring is * excluded */ if (size < 4 || !mask || ring_offset == TM_QW0_USER) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" HWADDR_PRIx"\n", offset); return; } /* * Use the register offset for the raw values and filter out * reserved values */ for (i = 0; i < size; i++) { uint8_t byte_mask = (mask >> (8 * (size - i - 1))); if (byte_mask) { tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & byte_mask; } } } static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) { uint8_t ring_offset = offset & 0x30; uint8_t reg_offset = offset & 0x3F; uint64_t mask = xive_tm_mask(offset, size, false); uint64_t ret; int i; /* * Only 4 or 8 bytes loads are allowed and the User ring is * excluded */ if (size < 4 || !mask || ring_offset == TM_QW0_USER) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" HWADDR_PRIx"\n", offset); return -1; } /* Use the register offset for the raw values */ ret = 0; for (i = 0; i < size; i++) { ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); } /* filter out reserved values */ return ret & mask; } /* * The TM context is mapped twice within each page. Stores and loads * to the first mapping below 2K write and read the specified values * without modification. The second mapping above 2K performs specific * state changes (side effects) in addition to setting/returning the * interrupt management area context of the processor thread. */ static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size) { return xive_tctx_accept(tctx, TM_QW1_OS); } static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset, uint64_t value, unsigned size) { xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); } /* * Adjust the IPB to allow a CPU to process event queues of other * priorities during one physical interrupt cycle. */ static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset, uint64_t value, unsigned size) { ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff); xive_tctx_notify(tctx, TM_QW1_OS); } static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset, unsigned size) { uint32_t qw1w2_prev = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); uint32_t qw1w2; qw1w2 = xive_set_field32(TM_QW1W2_VO, qw1w2_prev, 0); memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); return qw1w2; } /* * Define a mapping of "special" operations depending on the TIMA page * offset and the size of the operation. */ typedef struct XiveTmOp { uint8_t page_offset; uint32_t op_offset; unsigned size; void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value, unsigned size); uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size); } XiveTmOp; static const XiveTmOp xive_tm_operations[] = { /* * MMIOs below 2K : raw values and special operations without side * effects */ { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, /* MMIOs above 2K : special operations with side effects */ { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, }; static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write) { uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; uint32_t op_offset = offset & 0xFFF; int i; for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) { const XiveTmOp *xto = &xive_tm_operations[i]; /* Accesses done from a more privileged TIMA page is allowed */ if (xto->page_offset >= page_offset && xto->op_offset == op_offset && xto->size == size && ((write && xto->write_handler) || (!write && xto->read_handler))) { return xto; } } return NULL; } /* * TIMA MMIO handlers */ void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, unsigned size) { const XiveTmOp *xto; /* * TODO: check V bit in Q[0-3]W2 */ /* * First, check for special operations in the 2K region */ if (offset & 0x800) { xto = xive_tm_find_op(offset, size, true); if (!xto) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " "@%"HWADDR_PRIx"\n", offset); } else { xto->write_handler(tctx, offset, value, size); } return; } /* * Then, for special operations in the region below 2K. */ xto = xive_tm_find_op(offset, size, true); if (xto) { xto->write_handler(tctx, offset, value, size); return; } /* * Finish with raw access to the register values */ xive_tm_raw_write(tctx, offset, value, size); } uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size) { const XiveTmOp *xto; /* * TODO: check V bit in Q[0-3]W2 */ /* * First, check for special operations in the 2K region */ if (offset & 0x800) { xto = xive_tm_find_op(offset, size, false); if (!xto) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" "@%"HWADDR_PRIx"\n", offset); return -1; } return xto->read_handler(tctx, offset, size); } /* * Then, for special operations in the region below 2K. */ xto = xive_tm_find_op(offset, size, false); if (xto) { return xto->read_handler(tctx, offset, size); } /* * Finish with raw access to the register values */ return xive_tm_raw_read(tctx, offset, size); } static void xive_tm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu); xive_tctx_tm_write(tctx, offset, value, size); } static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size) { XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu); return xive_tctx_tm_read(tctx, offset, size); } const MemoryRegionOps xive_tm_ops = { .read = xive_tm_read, .write = xive_tm_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static char *xive_tctx_ring_print(uint8_t *ring) { uint32_t w2 = xive_tctx_word2(ring); return g_strdup_printf("%02x %02x %02x %02x %02x " "%02x %02x %02x %08x", ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], be32_to_cpu(w2)); } static const char * const xive_tctx_ring_names[] = { "USER", "OS", "POOL", "PHYS", }; void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) { int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; int i; if (kvm_irqchip_in_kernel()) { Error *local_err = NULL; kvmppc_xive_cpu_synchronize_state(tctx, &local_err); if (local_err) { error_report_err(local_err); return; } } monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" " W2\n", cpu_index); for (i = 0; i < XIVE_TM_RING_COUNT; i++) { char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, xive_tctx_ring_names[i], s); g_free(s); } } static void xive_tctx_reset(void *dev) { XiveTCTX *tctx = XIVE_TCTX(dev); memset(tctx->regs, 0, sizeof(tctx->regs)); /* Set some defaults */ tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; /* * Initialize PIPR to 0xFF to avoid phantom interrupts when the * CPPR is first set. */ tctx->regs[TM_QW1_OS + TM_PIPR] = ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); } static void xive_tctx_realize(DeviceState *dev, Error **errp) { XiveTCTX *tctx = XIVE_TCTX(dev); PowerPCCPU *cpu; CPUPPCState *env; Object *obj; Error *local_err = NULL; obj = object_property_get_link(OBJECT(dev), "cpu", &local_err); if (!obj) { error_propagate(errp, local_err); error_prepend(errp, "required link 'cpu' not found: "); return; } cpu = POWERPC_CPU(obj); tctx->cs = CPU(obj); env = &cpu->env; switch (PPC_INPUT(env)) { case PPC_FLAGS_INPUT_POWER9: tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT]; tctx->os_output = env->irq_inputs[POWER9_INPUT_INT]; break; default: error_setg(errp, "XIVE interrupt controller does not support " "this CPU bus model"); return; } /* Connect the presenter to the VCPU (required for CPU hotplug) */ if (kvm_irqchip_in_kernel()) { kvmppc_xive_cpu_connect(tctx, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } qemu_register_reset(xive_tctx_reset, dev); } static void xive_tctx_unrealize(DeviceState *dev, Error **errp) { qemu_unregister_reset(xive_tctx_reset, dev); } static int vmstate_xive_tctx_pre_save(void *opaque) { Error *local_err = NULL; if (kvm_irqchip_in_kernel()) { kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err); if (local_err) { error_report_err(local_err); return -1; } } return 0; } static int vmstate_xive_tctx_post_load(void *opaque, int version_id) { Error *local_err = NULL; if (kvm_irqchip_in_kernel()) { /* * Required for hotplugged CPU, for which the state comes * after all states of the machine. */ kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err); if (local_err) { error_report_err(local_err); return -1; } } return 0; } static const VMStateDescription vmstate_xive_tctx = { .name = TYPE_XIVE_TCTX, .version_id = 1, .minimum_version_id = 1, .pre_save = vmstate_xive_tctx_pre_save, .post_load = vmstate_xive_tctx_post_load, .fields = (VMStateField[]) { VMSTATE_BUFFER(regs, XiveTCTX), VMSTATE_END_OF_LIST() }, }; static void xive_tctx_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "XIVE Interrupt Thread Context"; dc->realize = xive_tctx_realize; dc->unrealize = xive_tctx_unrealize; dc->vmsd = &vmstate_xive_tctx; } static const TypeInfo xive_tctx_info = { .name = TYPE_XIVE_TCTX, .parent = TYPE_DEVICE, .instance_size = sizeof(XiveTCTX), .class_init = xive_tctx_class_init, }; Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp) { Error *local_err = NULL; Object *obj; obj = object_new(TYPE_XIVE_TCTX); object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort); object_unref(obj); object_property_add_const_link(obj, "cpu", cpu, &error_abort); object_property_set_bool(obj, true, "realized", &local_err); if (local_err) { goto error; } return obj; error: object_unparent(obj); error_propagate(errp, local_err); return NULL; } /* * XIVE ESB helpers */ static uint8_t xive_esb_set(uint8_t *pq, uint8_t value) { uint8_t old_pq = *pq & 0x3; *pq &= ~0x3; *pq |= value & 0x3; return old_pq; } static bool xive_esb_trigger(uint8_t *pq) { uint8_t old_pq = *pq & 0x3; switch (old_pq) { case XIVE_ESB_RESET: xive_esb_set(pq, XIVE_ESB_PENDING); return true; case XIVE_ESB_PENDING: case XIVE_ESB_QUEUED: xive_esb_set(pq, XIVE_ESB_QUEUED); return false; case XIVE_ESB_OFF: xive_esb_set(pq, XIVE_ESB_OFF); return false; default: g_assert_not_reached(); } } static bool xive_esb_eoi(uint8_t *pq) { uint8_t old_pq = *pq & 0x3; switch (old_pq) { case XIVE_ESB_RESET: case XIVE_ESB_PENDING: xive_esb_set(pq, XIVE_ESB_RESET); return false; case XIVE_ESB_QUEUED: xive_esb_set(pq, XIVE_ESB_PENDING); return true; case XIVE_ESB_OFF: xive_esb_set(pq, XIVE_ESB_OFF); return false; default: g_assert_not_reached(); } } /* * XIVE Interrupt Source (or IVSE) */ uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) { assert(srcno < xsrc->nr_irqs); return xsrc->status[srcno] & 0x3; } uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) { assert(srcno < xsrc->nr_irqs); return xive_esb_set(&xsrc->status[srcno], pq); } /* * Returns whether the event notification should be forwarded. */ static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) { uint8_t old_pq = xive_source_esb_get(xsrc, srcno); xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; switch (old_pq) { case XIVE_ESB_RESET: xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); return true; default: return false; } } /* * Returns whether the event notification should be forwarded. */ static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) { bool ret; assert(srcno < xsrc->nr_irqs); ret = xive_esb_trigger(&xsrc->status[srcno]); if (xive_source_irq_is_lsi(xsrc, srcno) && xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: queued an event on LSI IRQ %d\n", srcno); } return ret; } /* * Returns whether the event notification should be forwarded. */ static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) { bool ret; assert(srcno < xsrc->nr_irqs); ret = xive_esb_eoi(&xsrc->status[srcno]); /* * LSI sources do not set the Q bit but they can still be * asserted, in which case we should forward a new event * notification */ if (xive_source_irq_is_lsi(xsrc, srcno) && xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { ret = xive_source_lsi_trigger(xsrc, srcno); } return ret; } /* * Forward the source event notification to the Router */ static void xive_source_notify(XiveSource *xsrc, int srcno) { XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); if (xnc->notify) { xnc->notify(xsrc->xive, srcno); } } /* * In a two pages ESB MMIO setting, even page is the trigger page, odd * page is for management */ static inline bool addr_is_even(hwaddr addr, uint32_t shift) { return !((addr >> shift) & 1); } static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) { return xive_source_esb_has_2page(xsrc) && addr_is_even(addr, xsrc->esb_shift - 1); } /* * ESB MMIO loads * Trigger page Management/EOI page * * ESB MMIO setting 2 pages 1 or 2 pages * * 0x000 .. 0x3FF -1 EOI and return 0|1 * 0x400 .. 0x7FF -1 EOI and return 0|1 * 0x800 .. 0xBFF -1 return PQ * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 */ static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) { XiveSource *xsrc = XIVE_SOURCE(opaque); uint32_t offset = addr & 0xFFF; uint32_t srcno = addr >> xsrc->esb_shift; uint64_t ret = -1; /* In a two pages ESB MMIO setting, trigger page should not be read */ if (xive_source_is_trigger_page(xsrc, addr)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid load on IRQ %d trigger page at " "0x%"HWADDR_PRIx"\n", srcno, addr); return -1; } switch (offset) { case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: ret = xive_source_esb_eoi(xsrc, srcno); /* Forward the source event notification for routing */ if (ret) { xive_source_notify(xsrc, srcno); } break; case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: ret = xive_source_esb_get(xsrc, srcno); break; case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); break; default: qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", offset); } return ret; } /* * ESB MMIO stores * Trigger page Management/EOI page * * ESB MMIO setting 2 pages 1 or 2 pages * * 0x000 .. 0x3FF Trigger Trigger * 0x400 .. 0x7FF Trigger EOI * 0x800 .. 0xBFF Trigger undefined * 0xC00 .. 0xCFF Trigger PQ=00 * 0xD00 .. 0xDFF Trigger PQ=01 * 0xE00 .. 0xDFF Trigger PQ=10 * 0xF00 .. 0xDFF Trigger PQ=11 */ static void xive_source_esb_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { XiveSource *xsrc = XIVE_SOURCE(opaque); uint32_t offset = addr & 0xFFF; uint32_t srcno = addr >> xsrc->esb_shift; bool notify = false; /* In a two pages ESB MMIO setting, trigger page only triggers */ if (xive_source_is_trigger_page(xsrc, addr)) { notify = xive_source_esb_trigger(xsrc, srcno); goto out; } switch (offset) { case 0 ... 0x3FF: notify = xive_source_esb_trigger(xsrc, srcno); break; case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid Store EOI for IRQ %d\n", srcno); return; } notify = xive_source_esb_eoi(xsrc, srcno); break; case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); break; default: qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", offset); return; } out: /* Forward the source event notification for routing */ if (notify) { xive_source_notify(xsrc, srcno); } } static const MemoryRegionOps xive_source_esb_ops = { .read = xive_source_esb_read, .write = xive_source_esb_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; void xive_source_set_irq(void *opaque, int srcno, int val) { XiveSource *xsrc = XIVE_SOURCE(opaque); bool notify = false; if (xive_source_irq_is_lsi(xsrc, srcno)) { if (val) { notify = xive_source_lsi_trigger(xsrc, srcno); } else { xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; } } else { if (val) { notify = xive_source_esb_trigger(xsrc, srcno); } } /* Forward the source event notification for routing */ if (notify) { xive_source_notify(xsrc, srcno); } } void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) { int i; for (i = 0; i < xsrc->nr_irqs; i++) { uint8_t pq = xive_source_esb_get(xsrc, i); if (pq == XIVE_ESB_OFF) { continue; } monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", pq & XIVE_ESB_VAL_P ? 'P' : '-', pq & XIVE_ESB_VAL_Q ? 'Q' : '-', xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' '); } } static void xive_source_reset(void *dev) { XiveSource *xsrc = XIVE_SOURCE(dev); /* Do not clear the LSI bitmap */ /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */ memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs); } static void xive_source_realize(DeviceState *dev, Error **errp) { XiveSource *xsrc = XIVE_SOURCE(dev); Object *obj; Error *local_err = NULL; obj = object_property_get_link(OBJECT(dev), "xive", &local_err); if (!obj) { error_propagate(errp, local_err); error_prepend(errp, "required link 'xive' not found: "); return; } xsrc->xive = XIVE_NOTIFIER(obj); if (!xsrc->nr_irqs) { error_setg(errp, "Number of interrupt needs to be greater than 0"); return; } if (xsrc->esb_shift != XIVE_ESB_4K && xsrc->esb_shift != XIVE_ESB_4K_2PAGE && xsrc->esb_shift != XIVE_ESB_64K && xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { error_setg(errp, "Invalid ESB shift setting"); return; } xsrc->status = g_malloc0(xsrc->nr_irqs); xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); if (!kvm_irqchip_in_kernel()) { memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), &xive_source_esb_ops, xsrc, "xive.esb", (1ull << xsrc->esb_shift) * xsrc->nr_irqs); } qemu_register_reset(xive_source_reset, dev); } static const VMStateDescription vmstate_xive_source = { .name = TYPE_XIVE_SOURCE, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), VMSTATE_END_OF_LIST() }, }; /* * The default XIVE interrupt source setting for the ESB MMIOs is two * 64k pages without Store EOI, to be in sync with KVM. */ static Property xive_source_properties[] = { DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), DEFINE_PROP_END_OF_LIST(), }; static void xive_source_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "XIVE Interrupt Source"; dc->props = xive_source_properties; dc->realize = xive_source_realize; dc->vmsd = &vmstate_xive_source; } static const TypeInfo xive_source_info = { .name = TYPE_XIVE_SOURCE, .parent = TYPE_DEVICE, .instance_size = sizeof(XiveSource), .class_init = xive_source_class_init, }; /* * XiveEND helpers */ void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) { uint64_t qaddr_base = xive_end_qaddr(end); uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); uint32_t qentries = 1 << (qsize + 10); int i; /* * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window */ monitor_printf(mon, " [ "); qindex = (qindex - (width - 1)) & (qentries - 1); for (i = 0; i < width; i++) { uint64_t qaddr = qaddr_base + (qindex << 2); uint32_t qdata = -1; if (dma_memory_read(&address_space_memory, qaddr, &qdata, sizeof(qdata))) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" HWADDR_PRIx "\n", qaddr); return; } monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", be32_to_cpu(qdata)); qindex = (qindex + 1) & (qentries - 1); } } void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) { uint64_t qaddr_base = xive_end_qaddr(end); uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); uint32_t qentries = 1 << (qsize + 10); uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6); uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); if (!xive_end_is_valid(end)) { return; } monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64 "% 6d/%5d ^%d", end_idx, xive_end_is_valid(end) ? 'v' : '-', xive_end_is_enqueue(end) ? 'q' : '-', xive_end_is_notify(end) ? 'n' : '-', xive_end_is_backlog(end) ? 'b' : '-', xive_end_is_escalate(end) ? 'e' : '-', priority, nvt, qaddr_base, qindex, qentries, qgen); xive_end_queue_pic_print_info(end, 6, mon); monitor_printf(mon, "]\n"); } static void xive_end_enqueue(XiveEND *end, uint32_t data) { uint64_t qaddr_base = xive_end_qaddr(end); uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); uint64_t qaddr = qaddr_base + (qindex << 2); uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); uint32_t qentries = 1 << (qsize + 10); if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" HWADDR_PRIx "\n", qaddr); return; } qindex = (qindex + 1) & (qentries - 1); if (qindex == 0) { qgen ^= 1; end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); } end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); } /* * XIVE Router (aka. Virtualization Controller or IVRE) */ int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, XiveEAS *eas) { XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); } int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, XiveEND *end) { XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); return xrc->get_end(xrtr, end_blk, end_idx, end); } int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, XiveEND *end, uint8_t word_number) { XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); } int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt) { XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); } int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt, uint8_t word_number) { XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); } XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs) { XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); return xrc->get_tctx(xrtr, cs); } /* * Encode the HW CAM line in the block group mode format : * * chip << 19 | 0000000 0 0001 thread (7Bit) */ static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx) { CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; uint32_t pir = env->spr_cb[SPR_PIR].default_value; return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f)); } /* * The thread context register words are in big-endian format. */ static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint32_t logic_serv) { uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); /* * TODO (PowerNV): ignore mode. The low order bits of the NVT * identifier are ignored in the "CAM" match. */ if (format == 0) { if (cam_ignore == true) { /* * F=0 & i=1: Logical server notification (bits ignored at * the end of the NVT identifier) */ qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", nvt_blk, nvt_idx); return -1; } /* F=0 & i=0: Specific NVT notification */ /* PHYS ring */ if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && cam == xive_tctx_hw_cam_line(tctx)) { return TM_QW3_HV_PHYS; } /* HV POOL ring */ if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { return TM_QW2_HV_POOL; } /* OS ring */ if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { return TM_QW1_OS; } } else { /* F=1 : User level Event-Based Branch (EBB) notification */ /* USER ring */ if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { return TM_QW0_USER; } } return -1; } typedef struct XiveTCTXMatch { XiveTCTX *tctx; uint8_t ring; } XiveTCTXMatch; static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint8_t priority, uint32_t logic_serv, XiveTCTXMatch *match) { CPUState *cs; /* * TODO (PowerNV): handle chip_id overwrite of block field for * hardwired CAM compares */ CPU_FOREACH(cs) { XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs); int ring; /* * HW checks that the CPU is enabled in the Physical Thread * Enable Register (PTER). */ /* * Check the thread context CAM lines and record matches. We * will handle CPU exception delivery later */ ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx, cam_ignore, logic_serv); /* * Save the context and follow on to catch duplicates, that we * don't support yet. */ if (ring != -1) { if (match->tctx) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread " "context NVT %x/%x\n", nvt_blk, nvt_idx); return false; } match->ring = ring; match->tctx = tctx; } } if (!match->tctx) { qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n", nvt_blk, nvt_idx); return false; } return true; } /* * This is our simple Xive Presenter Engine model. It is merged in the * Router as it does not require an extra object. * * It receives notification requests sent by the IVRE to find one * matching NVT (or more) dispatched on the processor threads. In case * of a single NVT notification, the process is abreviated and the * thread is signaled if a match is found. In case of a logical server * notification (bits ignored at the end of the NVT identifier), the * IVPE and IVRE select a winning thread using different filters. This * involves 2 or 3 exchanges on the PowerBus that the model does not * support. * * The parameters represent what is sent on the PowerBus */ static bool xive_presenter_notify(XiveRouter *xrtr, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint8_t priority, uint32_t logic_serv) { XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; bool found; found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore, priority, logic_serv, &match); if (found) { ipb_update(&match.tctx->regs[match.ring], priority); xive_tctx_notify(match.tctx, match.ring); } return found; } /* * Notification using the END ESe/ESn bit (Event State Buffer for * escalation and notification). Profide futher coalescing in the * Router. */ static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, XiveEND *end, uint32_t end_esmask) { uint8_t pq = xive_get_field32(end_esmask, end->w1); bool notify = xive_esb_trigger(&pq); if (pq != xive_get_field32(end_esmask, end->w1)) { end->w1 = xive_set_field32(end_esmask, end->w1, pq); xive_router_write_end(xrtr, end_blk, end_idx, end, 1); } /* ESe/n[Q]=1 : end of notification */ return notify; } /* * An END trigger can come from an event trigger (IPI or HW) or from * another chip. We don't model the PowerBus but the END trigger * message has the same parameters than in the function below. */ static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, uint32_t end_data) { XiveEND end; uint8_t priority; uint8_t format; uint8_t nvt_blk; uint32_t nvt_idx; XiveNVT nvt; bool found; /* END cache lookup */ if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, end_idx); return; } if (!xive_end_is_valid(&end)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", end_blk, end_idx); return; } if (xive_end_is_enqueue(&end)) { xive_end_enqueue(&end, end_data); /* Enqueuing event data modifies the EQ toggle and index */ xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); } /* * When the END is silent, we skip the notification part. */ if (xive_end_is_silent_escalation(&end)) { goto do_escalation; } /* * The W7 format depends on the F bit in W6. It defines the type * of the notification : * * F=0 : single or multiple NVT notification * F=1 : User level Event-Based Branch (EBB) notification, no * priority */ format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); /* The END is masked */ if (format == 0 && priority == 0xff) { return; } /* * Check the END ESn (Event State Buffer for notification) for * even futher coalescing in the Router */ if (!xive_end_is_notify(&end)) { /* ESn[Q]=1 : end of notification */ if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, &end, END_W1_ESn)) { return; } } /* * Follows IVPE notification */ nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); /* NVT cache lookup */ if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", nvt_blk, nvt_idx); return; } if (!xive_nvt_is_valid(&nvt)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", nvt_blk, nvt_idx); return; } found = xive_presenter_notify(xrtr, format, nvt_blk, nvt_idx, xive_get_field32(END_W7_F0_IGNORE, end.w7), priority, xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); /* TODO: Auto EOI. */ if (found) { return; } /* * If no matching NVT is dispatched on a HW thread : * - specific VP: update the NVT structure if backlog is activated * - logical server : forward request to IVPE (not supported) */ if (xive_end_is_backlog(&end)) { if (format == 1) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x invalid config: F1 & backlog\n", end_blk, end_idx); return; } /* Record the IPB in the associated NVT structure */ ipb_update((uint8_t *) &nvt.w4, priority); xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); /* * On HW, follows a "Broadcast Backlog" to IVPEs */ } do_escalation: /* * If activated, escalate notification using the ESe PQ bits and * the EAS in w4-5 */ if (!xive_end_is_escalate(&end)) { return; } /* * Check the END ESe (Event State Buffer for escalation) for even * futher coalescing in the Router */ if (!xive_end_is_uncond_escalation(&end)) { /* ESe[Q]=1 : end of notification */ if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, &end, END_W1_ESe)) { return; } } /* * The END trigger becomes an Escalation trigger */ xive_router_end_notify(xrtr, xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), xive_get_field32(END_W4_ESC_END_INDEX, end.w4), xive_get_field32(END_W5_ESC_END_DATA, end.w5)); } void xive_router_notify(XiveNotifier *xn, uint32_t lisn) { XiveRouter *xrtr = XIVE_ROUTER(xn); uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn); uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn); XiveEAS eas; /* EAS cache lookup */ if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); return; } /* * The IVRE checks the State Bit Cache at this point. We skip the * SBC lookup because the state bits of the sources are modeled * internally in QEMU. */ if (!xive_eas_is_valid(&eas)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); return; } if (xive_eas_is_masked(&eas)) { /* Notification completed */ return; } /* * The event trigger becomes an END trigger */ xive_router_end_notify(xrtr, xive_get_field64(EAS_END_BLOCK, eas.w), xive_get_field64(EAS_END_INDEX, eas.w), xive_get_field64(EAS_END_DATA, eas.w)); } static void xive_router_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); dc->desc = "XIVE Router Engine"; xnc->notify = xive_router_notify; } static const TypeInfo xive_router_info = { .name = TYPE_XIVE_ROUTER, .parent = TYPE_SYS_BUS_DEVICE, .abstract = true, .class_size = sizeof(XiveRouterClass), .class_init = xive_router_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_XIVE_NOTIFIER }, { } } }; void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) { if (!xive_eas_is_valid(eas)) { return; } monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", lisn, xive_eas_is_masked(eas) ? "M" : " ", (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); } /* * END ESB MMIO loads */ static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) { XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); uint32_t offset = addr & 0xFFF; uint8_t end_blk; uint32_t end_idx; XiveEND end; uint32_t end_esmask; uint8_t pq; uint64_t ret = -1; end_blk = xsrc->block_id; end_idx = addr >> (xsrc->esb_shift + 1); if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, end_idx); return -1; } if (!xive_end_is_valid(&end)) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", end_blk, end_idx); return -1; } end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; pq = xive_get_field32(end_esmask, end.w1); switch (offset) { case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: ret = xive_esb_eoi(&pq); /* Forward the source event notification for routing ?? */ break; case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: ret = pq; break; case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: ret = xive_esb_set(&pq, (offset >> 8) & 0x3); break; default: qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", offset); return -1; } if (pq != xive_get_field32(end_esmask, end.w1)) { end.w1 = xive_set_field32(end_esmask, end.w1, pq); xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); } return ret; } /* * END ESB MMIO stores are invalid */ static void xive_end_source_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" HWADDR_PRIx"\n", addr); } static const MemoryRegionOps xive_end_source_ops = { .read = xive_end_source_read, .write = xive_end_source_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static void xive_end_source_realize(DeviceState *dev, Error **errp) { XiveENDSource *xsrc = XIVE_END_SOURCE(dev); Object *obj; Error *local_err = NULL; obj = object_property_get_link(OBJECT(dev), "xive", &local_err); if (!obj) { error_propagate(errp, local_err); error_prepend(errp, "required link 'xive' not found: "); return; } xsrc->xrtr = XIVE_ROUTER(obj); if (!xsrc->nr_ends) { error_setg(errp, "Number of interrupt needs to be greater than 0"); return; } if (xsrc->esb_shift != XIVE_ESB_4K && xsrc->esb_shift != XIVE_ESB_64K) { error_setg(errp, "Invalid ESB shift setting"); return; } /* * Each END is assigned an even/odd pair of MMIO pages, the even page * manages the ESn field while the odd page manages the ESe field. */ memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), &xive_end_source_ops, xsrc, "xive.end", (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); } static Property xive_end_source_properties[] = { DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0), DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), DEFINE_PROP_END_OF_LIST(), }; static void xive_end_source_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "XIVE END Source"; dc->props = xive_end_source_properties; dc->realize = xive_end_source_realize; } static const TypeInfo xive_end_source_info = { .name = TYPE_XIVE_END_SOURCE, .parent = TYPE_DEVICE, .instance_size = sizeof(XiveENDSource), .class_init = xive_end_source_class_init, }; /* * XIVE Notifier */ static const TypeInfo xive_notifier_info = { .name = TYPE_XIVE_NOTIFIER, .parent = TYPE_INTERFACE, .class_size = sizeof(XiveNotifierClass), }; static void xive_register_types(void) { type_register_static(&xive_source_info); type_register_static(&xive_notifier_info); type_register_static(&xive_router_info); type_register_static(&xive_end_source_info); type_register_static(&xive_tctx_info); } type_init(xive_register_types)