/* * QEMU PC System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "hw/hw.h" #include "hw/i386/pc.h" #include "hw/char/serial.h" #include "hw/char/parallel.h" #include "hw/i386/apic.h" #include "hw/i386/topology.h" #include "hw/i386/fw_cfg.h" #include "sysemu/cpus.h" #include "hw/block/fdc.h" #include "hw/ide.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bus.h" #include "hw/nvram/fw_cfg.h" #include "hw/timer/hpet.h" #include "hw/firmware/smbios.h" #include "hw/loader.h" #include "elf.h" #include "multiboot.h" #include "hw/timer/mc146818rtc.h" #include "hw/dma/i8257.h" #include "hw/timer/i8254.h" #include "hw/input/i8042.h" #include "hw/audio/pcspk.h" #include "hw/pci/msi.h" #include "hw/sysbus.h" #include "sysemu/sysemu.h" #include "sysemu/tcg.h" #include "sysemu/numa.h" #include "sysemu/kvm.h" #include "sysemu/qtest.h" #include "sysemu/reset.h" #include "kvm_i386.h" #include "hw/xen/xen.h" #include "hw/xen/start_info.h" #include "ui/qemu-spice.h" #include "exec/memory.h" #include "exec/address-spaces.h" #include "sysemu/arch_init.h" #include "qemu/bitmap.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "qemu/option.h" #include "hw/acpi/acpi.h" #include "hw/acpi/cpu_hotplug.h" #include "hw/boards.h" #include "acpi-build.h" #include "hw/mem/pc-dimm.h" #include "qapi/error.h" #include "qapi/qapi-visit-common.h" #include "qapi/visitor.h" #include "qom/cpu.h" #include "hw/nmi.h" #include "hw/usb.h" #include "hw/i386/intel_iommu.h" #include "hw/net/ne2000-isa.h" #include "standard-headers/asm-x86/bootparam.h" #include "hw/virtio/virtio-pmem-pci.h" #include "hw/mem/memory-device.h" #include "sysemu/replay.h" #include "qapi/qmp/qerror.h" #include "config-devices.h" /* debug PC/ISA interrupts */ //#define DEBUG_IRQ #ifdef DEBUG_IRQ #define DPRINTF(fmt, ...) \ do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) #endif #define E820_NR_ENTRIES 16 struct e820_entry { uint64_t address; uint64_t length; uint32_t type; } QEMU_PACKED __attribute((__aligned__(4))); struct e820_table { uint32_t count; struct e820_entry entry[E820_NR_ENTRIES]; } QEMU_PACKED __attribute((__aligned__(4))); static struct e820_table e820_reserve; static struct e820_entry *e820_table; static unsigned e820_entries; struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; /* Physical Address of PVH entry point read from kernel ELF NOTE */ static size_t pvh_start_addr; GlobalProperty pc_compat_4_0[] = {}; const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0); GlobalProperty pc_compat_3_1[] = { { "intel-iommu", "dma-drain", "off" }, { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "EPYC" "-" TYPE_X86_CPU, "npt", "off" }, { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" }, { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" }, { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" }, { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" }, { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" }, { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" }, { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" }, { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" }, { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" }, }; const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1); GlobalProperty pc_compat_3_0[] = { { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" }, { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" }, { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" }, }; const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0); GlobalProperty pc_compat_2_12[] = { { TYPE_X86_CPU, "legacy-cache", "on" }, { TYPE_X86_CPU, "topoext", "off" }, { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" }, { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" }, }; const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12); GlobalProperty pc_compat_2_11[] = { { TYPE_X86_CPU, "x-migrate-smi-count", "off" }, { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" }, }; const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11); GlobalProperty pc_compat_2_10[] = { { TYPE_X86_CPU, "x-hv-max-vps", "0x40" }, { "i440FX-pcihost", "x-pci-hole64-fix", "off" }, { "q35-pcihost", "x-pci-hole64-fix", "off" }, }; const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10); GlobalProperty pc_compat_2_9[] = { { "mch", "extended-tseg-mbytes", "0" }, }; const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9); GlobalProperty pc_compat_2_8[] = { { TYPE_X86_CPU, "tcg-cpuid", "off" }, { "kvmclock", "x-mach-use-reliable-get-clock", "off" }, { "ICH9-LPC", "x-smi-broadcast", "off" }, { TYPE_X86_CPU, "vmware-cpuid-freq", "off" }, { "Haswell-" TYPE_X86_CPU, "stepping", "1" }, }; const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8); GlobalProperty pc_compat_2_7[] = { { TYPE_X86_CPU, "l3-cache", "off" }, { TYPE_X86_CPU, "full-cpuid-auto-level", "off" }, { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" }, { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" }, { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" }, { "isa-pcspk", "migrate", "off" }, }; const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7); GlobalProperty pc_compat_2_6[] = { { TYPE_X86_CPU, "cpuid-0xb", "off" }, { "vmxnet3", "romfile", "" }, { TYPE_X86_CPU, "fill-mtrr-mask", "off" }, { "apic-common", "legacy-instance-id", "on", } }; const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6); GlobalProperty pc_compat_2_5[] = {}; const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5); GlobalProperty pc_compat_2_4[] = { PC_CPU_MODEL_IDS("2.4.0") { "Haswell-" TYPE_X86_CPU, "abm", "off" }, { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" }, { "Broadwell-" TYPE_X86_CPU, "abm", "off" }, { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" }, { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" }, { TYPE_X86_CPU, "check", "off" }, { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" }, { "qemu64" "-" TYPE_X86_CPU, "abm", "on" }, { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" }, { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" }, { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" }, { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" }, { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" }, { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", } }; const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4); GlobalProperty pc_compat_2_3[] = { PC_CPU_MODEL_IDS("2.3.0") { TYPE_X86_CPU, "arat", "off" }, { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" }, { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" }, { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" }, { "n270" "-" TYPE_X86_CPU, "min-level", "5" }, { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" }, { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" }, { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" }, { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" }, { TYPE_X86_CPU, "kvm-no-smi-migration", "on" }, }; const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3); GlobalProperty pc_compat_2_2[] = { PC_CPU_MODEL_IDS("2.2.0") { "kvm64" "-" TYPE_X86_CPU, "vme", "off" }, { "kvm32" "-" TYPE_X86_CPU, "vme", "off" }, { "Conroe" "-" TYPE_X86_CPU, "vme", "off" }, { "Penryn" "-" TYPE_X86_CPU, "vme", "off" }, { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" }, { "Westmere" "-" TYPE_X86_CPU, "vme", "off" }, { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" }, { "Haswell" "-" TYPE_X86_CPU, "vme", "off" }, { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" }, { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" }, { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" }, { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" }, { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" }, { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" }, }; const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2); GlobalProperty pc_compat_2_1[] = { PC_CPU_MODEL_IDS("2.1.0") { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" }, { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" }, }; const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1); GlobalProperty pc_compat_2_0[] = { PC_CPU_MODEL_IDS("2.0.0") { "virtio-scsi-pci", "any_layout", "off" }, { "PIIX4_PM", "memory-hotplug-support", "off" }, { "apic", "version", "0x11" }, { "nec-usb-xhci", "superspeed-ports-first", "off" }, { "nec-usb-xhci", "force-pcie-endcap", "on" }, { "pci-serial", "prog_if", "0" }, { "pci-serial-2x", "prog_if", "0" }, { "pci-serial-4x", "prog_if", "0" }, { "virtio-net-pci", "guest_announce", "off" }, { "ICH9-LPC", "memory-hotplug-support", "off" }, { "xio3130-downstream", COMPAT_PROP_PCP, "off" }, { "ioh3420", COMPAT_PROP_PCP, "off" }, }; const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0); GlobalProperty pc_compat_1_7[] = { PC_CPU_MODEL_IDS("1.7.0") { TYPE_USB_DEVICE, "msos-desc", "no" }, { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" }, { "hpet", HPET_INTCAP, "4" }, }; const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7); GlobalProperty pc_compat_1_6[] = { PC_CPU_MODEL_IDS("1.6.0") { "e1000", "mitigation", "off" }, { "qemu64-" TYPE_X86_CPU, "model", "2" }, { "qemu32-" TYPE_X86_CPU, "model", "3" }, { "i440FX-pcihost", "short_root_bus", "1" }, { "q35-pcihost", "short_root_bus", "1" }, }; const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6); GlobalProperty pc_compat_1_5[] = { PC_CPU_MODEL_IDS("1.5.0") { "Conroe-" TYPE_X86_CPU, "model", "2" }, { "Conroe-" TYPE_X86_CPU, "min-level", "2" }, { "Penryn-" TYPE_X86_CPU, "model", "2" }, { "Penryn-" TYPE_X86_CPU, "min-level", "2" }, { "Nehalem-" TYPE_X86_CPU, "model", "2" }, { "Nehalem-" TYPE_X86_CPU, "min-level", "2" }, { "virtio-net-pci", "any_layout", "off" }, { TYPE_X86_CPU, "pmu", "on" }, { "i440FX-pcihost", "short_root_bus", "0" }, { "q35-pcihost", "short_root_bus", "0" }, }; const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5); GlobalProperty pc_compat_1_4[] = { PC_CPU_MODEL_IDS("1.4.0") { "scsi-hd", "discard_granularity", "0" }, { "scsi-cd", "discard_granularity", "0" }, { "scsi-disk", "discard_granularity", "0" }, { "ide-hd", "discard_granularity", "0" }, { "ide-cd", "discard_granularity", "0" }, { "ide-drive", "discard_granularity", "0" }, { "virtio-blk-pci", "discard_granularity", "0" }, /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */ { "virtio-serial-pci", "vectors", "0xFFFFFFFF" }, { "virtio-net-pci", "ctrl_guest_offloads", "off" }, { "e1000", "romfile", "pxe-e1000.rom" }, { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" }, { "pcnet", "romfile", "pxe-pcnet.rom" }, { "rtl8139", "romfile", "pxe-rtl8139.rom" }, { "virtio-net-pci", "romfile", "pxe-virtio.rom" }, { "486-" TYPE_X86_CPU, "model", "0" }, { "n270" "-" TYPE_X86_CPU, "movbe", "off" }, { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" }, }; const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4); void gsi_handler(void *opaque, int n, int level) { GSIState *s = opaque; DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); if (n < ISA_NUM_IRQS) { qemu_set_irq(s->i8259_irq[n], level); } qemu_set_irq(s->ioapic_irq[n], level); } static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { } static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) { return 0xffffffffffffffffULL; } /* MSDOS compatibility mode FPU exception support */ static qemu_irq ferr_irq; void pc_register_ferr_irq(qemu_irq irq) { ferr_irq = irq; } /* XXX: add IGNNE support */ void cpu_set_ferr(CPUX86State *s) { qemu_irq_raise(ferr_irq); } static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { qemu_irq_lower(ferr_irq); } static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) { return 0xffffffffffffffffULL; } /* TSC handling */ uint64_t cpu_get_tsc(CPUX86State *env) { return cpu_get_ticks(); } /* IRQ handling */ int cpu_get_pic_interrupt(CPUX86State *env) { X86CPU *cpu = env_archcpu(env); int intno; if (!kvm_irqchip_in_kernel()) { intno = apic_get_interrupt(cpu->apic_state); if (intno >= 0) { return intno; } /* read the irq from the PIC */ if (!apic_accept_pic_intr(cpu->apic_state)) { return -1; } } intno = pic_read_irq(isa_pic); return intno; } static void pic_irq_request(void *opaque, int irq, int level) { CPUState *cs = first_cpu; X86CPU *cpu = X86_CPU(cs); DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); if (cpu->apic_state && !kvm_irqchip_in_kernel()) { CPU_FOREACH(cs) { cpu = X86_CPU(cs); if (apic_accept_pic_intr(cpu->apic_state)) { apic_deliver_pic_intr(cpu->apic_state, level); } } } else { if (level) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } } /* PC cmos mappings */ #define REG_EQUIPMENT_BYTE 0x14 int cmos_get_fd_drive_type(FloppyDriveType fd0) { int val; switch (fd0) { case FLOPPY_DRIVE_TYPE_144: /* 1.44 Mb 3"5 drive */ val = 4; break; case FLOPPY_DRIVE_TYPE_288: /* 2.88 Mb 3"5 drive */ val = 5; break; case FLOPPY_DRIVE_TYPE_120: /* 1.2 Mb 5"5 drive */ val = 2; break; case FLOPPY_DRIVE_TYPE_NONE: default: val = 0; break; } return val; } static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, int16_t cylinders, int8_t heads, int8_t sectors) { rtc_set_memory(s, type_ofs, 47); rtc_set_memory(s, info_ofs, cylinders); rtc_set_memory(s, info_ofs + 1, cylinders >> 8); rtc_set_memory(s, info_ofs + 2, heads); rtc_set_memory(s, info_ofs + 3, 0xff); rtc_set_memory(s, info_ofs + 4, 0xff); rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); rtc_set_memory(s, info_ofs + 6, cylinders); rtc_set_memory(s, info_ofs + 7, cylinders >> 8); rtc_set_memory(s, info_ofs + 8, sectors); } /* convert boot_device letter to something recognizable by the bios */ static int boot_device2nibble(char boot_device) { switch(boot_device) { case 'a': case 'b': return 0x01; /* floppy boot */ case 'c': return 0x02; /* hard drive boot */ case 'd': return 0x03; /* CD-ROM boot */ case 'n': return 0x04; /* Network boot */ } return 0; } static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) { #define PC_MAX_BOOT_DEVICES 3 int nbds, bds[3] = { 0, }; int i; nbds = strlen(boot_device); if (nbds > PC_MAX_BOOT_DEVICES) { error_setg(errp, "Too many boot devices for PC"); return; } for (i = 0; i < nbds; i++) { bds[i] = boot_device2nibble(boot_device[i]); if (bds[i] == 0) { error_setg(errp, "Invalid boot device for PC: '%c'", boot_device[i]); return; } } rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); } static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) { set_boot_dev(opaque, boot_device, errp); } static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) { int val, nb, i; FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, FLOPPY_DRIVE_TYPE_NONE }; /* floppy type */ if (floppy) { for (i = 0; i < 2; i++) { fd_type[i] = isa_fdc_get_drive_type(floppy, i); } } val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | cmos_get_fd_drive_type(fd_type[1]); rtc_set_memory(rtc_state, 0x10, val); val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); nb = 0; if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { nb++; } if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { nb++; } switch (nb) { case 0: break; case 1: val |= 0x01; /* 1 drive, ready for boot */ break; case 2: val |= 0x41; /* 2 drives, ready for boot */ break; } rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); } typedef struct pc_cmos_init_late_arg { ISADevice *rtc_state; BusState *idebus[2]; } pc_cmos_init_late_arg; typedef struct check_fdc_state { ISADevice *floppy; bool multiple; } CheckFdcState; static int check_fdc(Object *obj, void *opaque) { CheckFdcState *state = opaque; Object *fdc; uint32_t iobase; Error *local_err = NULL; fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); if (!fdc) { return 0; } iobase = object_property_get_uint(obj, "iobase", &local_err); if (local_err || iobase != 0x3f0) { error_free(local_err); return 0; } if (state->floppy) { state->multiple = true; } else { state->floppy = ISA_DEVICE(obj); } return 0; } static const char * const fdc_container_path[] = { "/unattached", "/peripheral", "/peripheral-anon" }; /* * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers * and ACPI objects. */ ISADevice *pc_find_fdc0(void) { int i; Object *container; CheckFdcState state = { 0 }; for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { container = container_get(qdev_get_machine(), fdc_container_path[i]); object_child_foreach(container, check_fdc, &state); } if (state.multiple) { warn_report("multiple floppy disk controllers with " "iobase=0x3f0 have been found"); error_printf("the one being picked for CMOS setup might not reflect " "your intent"); } return state.floppy; } static void pc_cmos_init_late(void *opaque) { pc_cmos_init_late_arg *arg = opaque; ISADevice *s = arg->rtc_state; int16_t cylinders; int8_t heads, sectors; int val; int i, trans; val = 0; if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0, &cylinders, &heads, §ors) >= 0) { cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); val |= 0xf0; } if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1, &cylinders, &heads, §ors) >= 0) { cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); val |= 0x0f; } rtc_set_memory(s, 0x12, val); val = 0; for (i = 0; i < 4; i++) { /* NOTE: ide_get_geometry() returns the physical geometry. It is always such that: 1 <= sects <= 63, 1 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS geometry can be different if a translation is done. */ if (arg->idebus[i / 2] && ide_get_geometry(arg->idebus[i / 2], i % 2, &cylinders, &heads, §ors) >= 0) { trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; assert((trans & ~3) == 0); val |= trans << (i * 2); } } rtc_set_memory(s, 0x39, val); pc_cmos_init_floppy(s, pc_find_fdc0()); qemu_unregister_reset(pc_cmos_init_late, opaque); } void pc_cmos_init(PCMachineState *pcms, BusState *idebus0, BusState *idebus1, ISADevice *s) { int val; static pc_cmos_init_late_arg arg; /* various important CMOS locations needed by PC/Bochs bios */ /* memory size */ /* base memory (first MiB) */ val = MIN(pcms->below_4g_mem_size / KiB, 640); rtc_set_memory(s, 0x15, val); rtc_set_memory(s, 0x16, val >> 8); /* extended memory (next 64MiB) */ if (pcms->below_4g_mem_size > 1 * MiB) { val = (pcms->below_4g_mem_size - 1 * MiB) / KiB; } else { val = 0; } if (val > 65535) val = 65535; rtc_set_memory(s, 0x17, val); rtc_set_memory(s, 0x18, val >> 8); rtc_set_memory(s, 0x30, val); rtc_set_memory(s, 0x31, val >> 8); /* memory between 16MiB and 4GiB */ if (pcms->below_4g_mem_size > 16 * MiB) { val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB); } else { val = 0; } if (val > 65535) val = 65535; rtc_set_memory(s, 0x34, val); rtc_set_memory(s, 0x35, val >> 8); /* memory above 4GiB */ val = pcms->above_4g_mem_size / 65536; rtc_set_memory(s, 0x5b, val); rtc_set_memory(s, 0x5c, val >> 8); rtc_set_memory(s, 0x5d, val >> 16); object_property_add_link(OBJECT(pcms), "rtc_state", TYPE_ISA_DEVICE, (Object **)&pcms->rtc, object_property_allow_set_link, OBJ_PROP_LINK_STRONG, &error_abort); object_property_set_link(OBJECT(pcms), OBJECT(s), "rtc_state", &error_abort); set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); val = 0; val |= 0x02; /* FPU is there */ val |= 0x04; /* PS/2 mouse installed */ rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); /* hard drives and FDC */ arg.rtc_state = s; arg.idebus[0] = idebus0; arg.idebus[1] = idebus1; qemu_register_reset(pc_cmos_init_late, &arg); } #define TYPE_PORT92 "port92" #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) /* port 92 stuff: could be split off */ typedef struct Port92State { ISADevice parent_obj; MemoryRegion io; uint8_t outport; qemu_irq a20_out; } Port92State; static void port92_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { Port92State *s = opaque; int oldval = s->outport; DPRINTF("port92: write 0x%02" PRIx64 "\n", val); s->outport = val; qemu_set_irq(s->a20_out, (val >> 1) & 1); if ((val & 1) && !(oldval & 1)) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } } static uint64_t port92_read(void *opaque, hwaddr addr, unsigned size) { Port92State *s = opaque; uint32_t ret; ret = s->outport; DPRINTF("port92: read 0x%02x\n", ret); return ret; } static void port92_init(ISADevice *dev, qemu_irq a20_out) { qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); } static const VMStateDescription vmstate_port92_isa = { .name = "port92", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(outport, Port92State), VMSTATE_END_OF_LIST() } }; static void port92_reset(DeviceState *d) { Port92State *s = PORT92(d); s->outport &= ~1; } static const MemoryRegionOps port92_ops = { .read = port92_read, .write = port92_write, .impl = { .min_access_size = 1, .max_access_size = 1, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static void port92_initfn(Object *obj) { Port92State *s = PORT92(obj); memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); s->outport = 0; qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); } static void port92_realizefn(DeviceState *dev, Error **errp) { ISADevice *isadev = ISA_DEVICE(dev); Port92State *s = PORT92(dev); isa_register_ioport(isadev, &s->io, 0x92); } static void port92_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = port92_realizefn; dc->reset = port92_reset; dc->vmsd = &vmstate_port92_isa; /* * Reason: unlike ordinary ISA devices, this one needs additional * wiring: its A20 output line needs to be wired up by * port92_init(). */ dc->user_creatable = false; } static const TypeInfo port92_info = { .name = TYPE_PORT92, .parent = TYPE_ISA_DEVICE, .instance_size = sizeof(Port92State), .instance_init = port92_initfn, .class_init = port92_class_initfn, }; static void port92_register_types(void) { type_register_static(&port92_info); } type_init(port92_register_types) static void handle_a20_line_change(void *opaque, int irq, int level) { X86CPU *cpu = opaque; /* XXX: send to all CPUs ? */ /* XXX: add logic to handle multiple A20 line sources */ x86_cpu_set_a20(cpu, level); } int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) { int index = le32_to_cpu(e820_reserve.count); struct e820_entry *entry; if (type != E820_RAM) { /* old FW_CFG_E820_TABLE entry -- reservations only */ if (index >= E820_NR_ENTRIES) { return -EBUSY; } entry = &e820_reserve.entry[index++]; entry->address = cpu_to_le64(address); entry->length = cpu_to_le64(length); entry->type = cpu_to_le32(type); e820_reserve.count = cpu_to_le32(index); } /* new "etc/e820" file -- include ram too */ e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); e820_table[e820_entries].address = cpu_to_le64(address); e820_table[e820_entries].length = cpu_to_le64(length); e820_table[e820_entries].type = cpu_to_le32(type); e820_entries++; return e820_entries; } int e820_get_num_entries(void) { return e820_entries; } bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) { if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { *address = le64_to_cpu(e820_table[idx].address); *length = le64_to_cpu(e820_table[idx].length); return true; } return false; } /* Calculates initial APIC ID for a specific CPU index * * Currently we need to be able to calculate the APIC ID from the CPU index * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of * all CPUs up to max_cpus. */ static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms, unsigned int cpu_index) { MachineState *ms = MACHINE(pcms); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); uint32_t correct_id; static bool warned; correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores, ms->smp.threads, cpu_index); if (pcmc->compat_apic_id_mode) { if (cpu_index != correct_id && !warned && !qtest_enabled()) { error_report("APIC IDs set in compatibility mode, " "CPU topology won't match the configuration"); warned = true; } return cpu_index; } else { return correct_id; } } static void pc_build_smbios(PCMachineState *pcms) { uint8_t *smbios_tables, *smbios_anchor; size_t smbios_tables_len, smbios_anchor_len; struct smbios_phys_mem_area *mem_array; unsigned i, array_count; MachineState *ms = MACHINE(pcms); X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); /* tell smbios about cpuid version and features */ smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len); if (smbios_tables) { fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES, smbios_tables, smbios_tables_len); } /* build the array of physical mem area from e820 table */ mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { uint64_t addr, len; if (e820_get_entry(i, E820_RAM, &addr, &len)) { mem_array[array_count].address = addr; mem_array[array_count].length = len; array_count++; } } smbios_get_tables(ms, mem_array, array_count, &smbios_tables, &smbios_tables_len, &smbios_anchor, &smbios_anchor_len); g_free(mem_array); if (smbios_anchor) { fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables", smbios_tables, smbios_tables_len); fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor", smbios_anchor, smbios_anchor_len); } } static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) { FWCfgState *fw_cfg; uint64_t *numa_fw_cfg; int i; const CPUArchIdList *cpus; MachineClass *mc = MACHINE_GET_CLASS(pcms); fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: * * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface * for CPU hotplug also uses APIC ID and not "CPU index". * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", * but the "limit to the APIC ID values SeaBIOS may see". * * So for compatibility reasons with old BIOSes we are stuck with * "etc/max-cpus" actually being apic_id_limit */ fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, acpi_tables, acpi_tables_len); fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, &e820_reserve, sizeof(e820_reserve)); fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, sizeof(struct e820_entry) * e820_entries); fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); /* allocate memory for the NUMA channel: one (64bit) word for the number * of nodes, one word for each VCPU->node and one word for each node to * hold the amount of memory. */ numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); cpus = mc->possible_cpu_arch_ids(MACHINE(pcms)); for (i = 0; i < cpus->len; i++) { unsigned int apic_id = cpus->cpus[i].arch_id; assert(apic_id < pcms->apic_id_limit); numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); } for (i = 0; i < nb_numa_nodes; i++) { numa_fw_cfg[pcms->apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem); } fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, (1 + pcms->apic_id_limit + nb_numa_nodes) * sizeof(*numa_fw_cfg)); return fw_cfg; } static long get_file_size(FILE *f) { long where, size; /* XXX: on Unix systems, using fstat() probably makes more sense */ where = ftell(f); fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, where, SEEK_SET); return size; } struct setup_data { uint64_t next; uint32_t type; uint32_t len; uint8_t data[0]; } __attribute__((packed)); /* * The entry point into the kernel for PVH boot is different from * the native entry point. The PVH entry is defined by the x86/HVM * direct boot ABI and is available in an ELFNOTE in the kernel binary. * * This function is passed to load_elf() when it is called from * load_elfboot() which then additionally checks for an ELF Note of * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to * parse the PVH entry address from the ELF Note. * * Due to trickery in elf_opts.h, load_elf() is actually available as * load_elf32() or load_elf64() and this routine needs to be able * to deal with being called as 32 or 64 bit. * * The address of the PVH entry point is saved to the 'pvh_start_addr' * global variable. (although the entry point is 32-bit, the kernel * binary can be either 32-bit or 64-bit). */ static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) { size_t *elf_note_data_addr; /* Check if ELF Note header passed in is valid */ if (arg1 == NULL) { return 0; } if (is64) { struct elf64_note *nhdr64 = (struct elf64_note *)arg1; uint64_t nhdr_size64 = sizeof(struct elf64_note); uint64_t phdr_align = *(uint64_t *)arg2; uint64_t nhdr_namesz = nhdr64->n_namesz; elf_note_data_addr = ((void *)nhdr64) + nhdr_size64 + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); } else { struct elf32_note *nhdr32 = (struct elf32_note *)arg1; uint32_t nhdr_size32 = sizeof(struct elf32_note); uint32_t phdr_align = *(uint32_t *)arg2; uint32_t nhdr_namesz = nhdr32->n_namesz; elf_note_data_addr = ((void *)nhdr32) + nhdr_size32 + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); } pvh_start_addr = *elf_note_data_addr; return pvh_start_addr; } static bool load_elfboot(const char *kernel_filename, int kernel_file_size, uint8_t *header, size_t pvh_xen_start_addr, FWCfgState *fw_cfg) { uint32_t flags = 0; uint32_t mh_load_addr = 0; uint32_t elf_kernel_size = 0; uint64_t elf_entry; uint64_t elf_low, elf_high; int kernel_size; if (ldl_p(header) != 0x464c457f) { return false; /* no elfboot */ } bool elf_is64 = header[EI_CLASS] == ELFCLASS64; flags = elf_is64 ? ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ error_report("elfboot unsupported flags = %x", flags); exit(1); } uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; kernel_size = load_elf(kernel_filename, read_pvh_start_addr, NULL, &elf_note_type, &elf_entry, &elf_low, &elf_high, 0, I386_ELF_MACHINE, 0, 0); if (kernel_size < 0) { error_report("Error while loading elf kernel"); exit(1); } mh_load_addr = elf_low; elf_kernel_size = elf_high - elf_low; if (pvh_start_addr == 0) { error_report("Error loading uncompressed kernel without PVH ELF Note"); exit(1); } fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); return true; } static void load_linux(PCMachineState *pcms, FWCfgState *fw_cfg) { uint16_t protocol; int setup_size, kernel_size, cmdline_size; int dtb_size, setup_data_offset; uint32_t initrd_max; uint8_t header[8192], *setup, *kernel; hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; FILE *f; char *vmode; MachineState *machine = MACHINE(pcms); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); struct setup_data *setup_data; const char *kernel_filename = machine->kernel_filename; const char *initrd_filename = machine->initrd_filename; const char *dtb_filename = machine->dtb; const char *kernel_cmdline = machine->kernel_cmdline; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline)+16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f || !(kernel_size = get_file_size(f)) || fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != MIN(ARRAY_SIZE(header), kernel_size)) { fprintf(stderr, "qemu: could not load kernel '%s': %s\n", kernel_filename, strerror(errno)); exit(1); } /* kernel protocol version */ #if 0 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); #endif if (ldl_p(header+0x202) == 0x53726448) { protocol = lduw_p(header+0x206); } else { /* * This could be a multiboot kernel. If it is, let's stop treating it * like a Linux kernel. * Note: some multiboot images could be in the ELF format (the same of * PVH), so we try multiboot first since we check the multiboot magic * header before to load it. */ if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, kernel_cmdline, kernel_size, header)) { return; } /* * Check if the file is an uncompressed kernel file (ELF) and load it, * saving the PVH entry point used by the x86/HVM direct boot ABI. * If load_elfboot() is successful, populate the fw_cfg info. */ if (pcmc->pvh_enabled && load_elfboot(kernel_filename, kernel_size, header, pvh_start_addr, fw_cfg)) { fclose(f); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, header, sizeof(header)); /* load initrd */ if (initrd_filename) { gsize initrd_size; gchar *initrd_data; GError *gerr = NULL; if (!g_file_get_contents(initrd_filename, &initrd_data, &initrd_size, &gerr)) { fprintf(stderr, "qemu: error reading initrd %s: %s\n", initrd_filename, gerr->message); exit(1); } initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; if (initrd_size >= initrd_max) { fprintf(stderr, "qemu: initrd is too large, cannot support." "(max: %"PRIu32", need %"PRId64")\n", initrd_max, (uint64_t)initrd_size); exit(1); } initrd_addr = (initrd_max - initrd_size) & ~4095; fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); } option_rom[nb_option_roms].bootindex = 0; option_rom[nb_option_roms].name = "pvh.bin"; nb_option_roms++; return; } protocol = 0; } if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x10000; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x100000; } else { /* High and recent kernel */ real_addr = 0x10000; cmdline_addr = 0x20000; prot_addr = 0x100000; } #if 0 fprintf(stderr, "qemu: real_addr = 0x" TARGET_FMT_plx "\n" "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", real_addr, cmdline_addr, prot_addr); #endif /* highest address for loading the initrd */ if (protocol >= 0x20c && lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { /* * Linux has supported initrd up to 4 GB for a very long time (2007, * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), * though it only sets initrd_max to 2 GB to "work around bootloader * bugs". Luckily, QEMU firmware(which does something like bootloader) * has supported this. * * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can * be loaded into any address. * * In addition, initrd_max is uint32_t simply because QEMU doesn't * support the 64-bit boot protocol (specifically the ext_ramdisk_image * field). * * Therefore here just limit initrd_max to UINT32_MAX simply as well. */ initrd_max = UINT32_MAX; } else if (protocol >= 0x203) { initrd_max = ldl_p(header+0x22c); } else { initrd_max = 0x37ffffff; } if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; } fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); if (protocol >= 0x202) { stl_p(header+0x228, cmdline_addr); } else { stw_p(header+0x20, 0xA33F); stw_p(header+0x22, cmdline_addr-real_addr); } /* handle vga= parameter */ vmode = strstr(kernel_cmdline, "vga="); if (vmode) { unsigned int video_mode; /* skip "vga=" */ vmode += 4; if (!strncmp(vmode, "normal", 6)) { video_mode = 0xffff; } else if (!strncmp(vmode, "ext", 3)) { video_mode = 0xfffe; } else if (!strncmp(vmode, "ask", 3)) { video_mode = 0xfffd; } else { video_mode = strtol(vmode, NULL, 0); } stw_p(header+0x1fa, video_mode); } /* loader type */ /* High nybble = B reserved for QEMU; low nybble is revision number. If this code is substantially changed, you may want to consider incrementing the revision. */ if (protocol >= 0x200) { header[0x210] = 0xB0; } /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header+0x224, cmdline_addr-real_addr-0x200); } /* load initrd */ if (initrd_filename) { gsize initrd_size; gchar *initrd_data; GError *gerr = NULL; if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); exit(1); } if (!g_file_get_contents(initrd_filename, &initrd_data, &initrd_size, &gerr)) { fprintf(stderr, "qemu: error reading initrd %s: %s\n", initrd_filename, gerr->message); exit(1); } if (initrd_size >= initrd_max) { fprintf(stderr, "qemu: initrd is too large, cannot support." "(max: %"PRIu32", need %"PRId64")\n", initrd_max, (uint64_t)initrd_size); exit(1); } initrd_addr = (initrd_max-initrd_size) & ~4095; fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); stl_p(header+0x218, initrd_addr); stl_p(header+0x21c, initrd_size); } /* load kernel and setup */ setup_size = header[0x1f1]; if (setup_size == 0) { setup_size = 4; } setup_size = (setup_size+1)*512; if (setup_size > kernel_size) { fprintf(stderr, "qemu: invalid kernel header\n"); exit(1); } kernel_size -= setup_size; setup = g_malloc(setup_size); kernel = g_malloc(kernel_size); fseek(f, 0, SEEK_SET); if (fread(setup, 1, setup_size, f) != setup_size) { fprintf(stderr, "fread() failed\n"); exit(1); } if (fread(kernel, 1, kernel_size, f) != kernel_size) { fprintf(stderr, "fread() failed\n"); exit(1); } fclose(f); /* append dtb to kernel */ if (dtb_filename) { if (protocol < 0x209) { fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); exit(1); } dtb_size = get_image_size(dtb_filename); if (dtb_size <= 0) { fprintf(stderr, "qemu: error reading dtb %s: %s\n", dtb_filename, strerror(errno)); exit(1); } setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; kernel = g_realloc(kernel, kernel_size); stq_p(header+0x250, prot_addr + setup_data_offset); setup_data = (struct setup_data *)(kernel + setup_data_offset); setup_data->next = 0; setup_data->type = cpu_to_le32(SETUP_DTB); setup_data->len = cpu_to_le32(dtb_size); load_image_size(dtb_filename, setup_data->data, dtb_size); } memcpy(setup, header, MIN(sizeof(header), setup_size)); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); option_rom[nb_option_roms].bootindex = 0; option_rom[nb_option_roms].name = "linuxboot.bin"; if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { option_rom[nb_option_roms].name = "linuxboot_dma.bin"; } nb_option_roms++; } #define NE2000_NB_MAX 6 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) { static int nb_ne2k = 0; if (nb_ne2k == NE2000_NB_MAX) return; isa_ne2000_init(bus, ne2000_io[nb_ne2k], ne2000_irq[nb_ne2k], nd); nb_ne2k++; } DeviceState *cpu_get_current_apic(void) { if (current_cpu) { X86CPU *cpu = X86_CPU(current_cpu); return cpu->apic_state; } else { return NULL; } } void pc_acpi_smi_interrupt(void *opaque, int irq, int level) { X86CPU *cpu = opaque; if (level) { cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); } } static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp) { Object *cpu = NULL; Error *local_err = NULL; CPUX86State *env = NULL; cpu = object_new(MACHINE(pcms)->cpu_type); env = &X86_CPU(cpu)->env; env->nr_dies = pcms->smp_dies; object_property_set_uint(cpu, apic_id, "apic-id", &local_err); object_property_set_bool(cpu, true, "realized", &local_err); object_unref(cpu); error_propagate(errp, local_err); } /* * This function is very similar to smp_parse() * in hw/core/machine.c but includes CPU die support. */ void pc_smp_parse(MachineState *ms, QemuOpts *opts) { PCMachineState *pcms = PC_MACHINE(ms); if (opts) { unsigned cpus = qemu_opt_get_number(opts, "cpus", 0); unsigned sockets = qemu_opt_get_number(opts, "sockets", 0); unsigned dies = qemu_opt_get_number(opts, "dies", 1); unsigned cores = qemu_opt_get_number(opts, "cores", 0); unsigned threads = qemu_opt_get_number(opts, "threads", 0); /* compute missing values, prefer sockets over cores over threads */ if (cpus == 0 || sockets == 0) { cores = cores > 0 ? cores : 1; threads = threads > 0 ? threads : 1; if (cpus == 0) { sockets = sockets > 0 ? sockets : 1; cpus = cores * threads * dies * sockets; } else { ms->smp.max_cpus = qemu_opt_get_number(opts, "maxcpus", cpus); sockets = ms->smp.max_cpus / (cores * threads * dies); } } else if (cores == 0) { threads = threads > 0 ? threads : 1; cores = cpus / (sockets * dies * threads); cores = cores > 0 ? cores : 1; } else if (threads == 0) { threads = cpus / (cores * dies * sockets); threads = threads > 0 ? threads : 1; } else if (sockets * dies * cores * threads < cpus) { error_report("cpu topology: " "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < " "smp_cpus (%u)", sockets, dies, cores, threads, cpus); exit(1); } ms->smp.max_cpus = qemu_opt_get_number(opts, "maxcpus", cpus); if (ms->smp.max_cpus < cpus) { error_report("maxcpus must be equal to or greater than smp"); exit(1); } if (sockets * dies * cores * threads > ms->smp.max_cpus) { error_report("cpu topology: " "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > " "maxcpus (%u)", sockets, dies, cores, threads, ms->smp.max_cpus); exit(1); } if (sockets * dies * cores * threads != ms->smp.max_cpus) { warn_report("Invalid CPU topology deprecated: " "sockets (%u) * dies (%u) * cores (%u) * threads (%u) " "!= maxcpus (%u)", sockets, dies, cores, threads, ms->smp.max_cpus); } ms->smp.cpus = cpus; ms->smp.cores = cores; ms->smp.threads = threads; pcms->smp_dies = dies; } if (ms->smp.cpus > 1) { Error *blocker = NULL; error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp"); replay_add_blocker(blocker); } } void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp) { PCMachineState *pcms = PC_MACHINE(ms); int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id); Error *local_err = NULL; if (id < 0) { error_setg(errp, "Invalid CPU id: %" PRIi64, id); return; } if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { error_setg(errp, "Unable to add CPU: %" PRIi64 ", resulting APIC ID (%" PRIi64 ") is too large", id, apic_id); return; } pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } void pc_cpus_init(PCMachineState *pcms) { int i; const CPUArchIdList *possible_cpus; MachineState *ms = MACHINE(pcms); MachineClass *mc = MACHINE_GET_CLASS(pcms); PCMachineClass *pcmc = PC_MACHINE_CLASS(mc); x86_cpu_set_default_version(pcmc->default_cpu_version); /* Calculates the limit to CPU APIC ID values * * Limit for the APIC ID value, so that all * CPU APIC IDs are < pcms->apic_id_limit. * * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). */ pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms, ms->smp.max_cpus - 1) + 1; possible_cpus = mc->possible_cpu_arch_ids(ms); for (i = 0; i < ms->smp.cpus; i++) { pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal); } } static void pc_build_feature_control_file(PCMachineState *pcms) { MachineState *ms = MACHINE(pcms); X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); CPUX86State *env = &cpu->env; uint32_t unused, ecx, edx; uint64_t feature_control_bits = 0; uint64_t *val; cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); if (ecx & CPUID_EXT_VMX) { feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; } if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && (env->mcg_cap & MCG_LMCE_P)) { feature_control_bits |= FEATURE_CONTROL_LMCE; } if (!feature_control_bits) { return; } val = g_malloc(sizeof(*val)); *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); } static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) { if (cpus_count > 0xff) { /* If the number of CPUs can't be represented in 8 bits, the * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just * to make old BIOSes fail more predictably. */ rtc_set_memory(rtc, 0x5f, 0); } else { rtc_set_memory(rtc, 0x5f, cpus_count - 1); } } static void pc_machine_done(Notifier *notifier, void *data) { PCMachineState *pcms = container_of(notifier, PCMachineState, machine_done); PCIBus *bus = pcms->bus; /* set the number of CPUs */ rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); if (bus) { int extra_hosts = 0; QLIST_FOREACH(bus, &bus->child, sibling) { /* look for expander root buses */ if (pci_bus_is_root(bus)) { extra_hosts++; } } if (extra_hosts && pcms->fw_cfg) { uint64_t *val = g_malloc(sizeof(*val)); *val = cpu_to_le64(extra_hosts); fw_cfg_add_file(pcms->fw_cfg, "etc/extra-pci-roots", val, sizeof(*val)); } } acpi_setup(); if (pcms->fw_cfg) { pc_build_smbios(pcms); pc_build_feature_control_file(pcms); /* update FW_CFG_NB_CPUS to account for -device added CPUs */ fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); } if (pcms->apic_id_limit > 255 && !xen_enabled()) { IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) || iommu->intr_eim != ON_OFF_AUTO_ON) { error_report("current -smp configuration requires " "Extended Interrupt Mode enabled. " "You can add an IOMMU using: " "-device intel-iommu,intremap=on,eim=on"); exit(EXIT_FAILURE); } } } void pc_guest_info_init(PCMachineState *pcms) { int i; pcms->apic_xrupt_override = kvm_allows_irq0_override(); pcms->numa_nodes = nb_numa_nodes; pcms->node_mem = g_malloc0(pcms->numa_nodes * sizeof *pcms->node_mem); for (i = 0; i < nb_numa_nodes; i++) { pcms->node_mem[i] = numa_info[i].node_mem; } pcms->machine_done.notify = pc_machine_done; qemu_add_machine_init_done_notifier(&pcms->machine_done); } /* setup pci memory address space mapping into system address space */ void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, MemoryRegion *pci_address_space) { /* Set to lower priority than RAM */ memory_region_add_subregion_overlap(system_memory, 0x0, pci_address_space, -1); } void xen_load_linux(PCMachineState *pcms) { int i; FWCfgState *fw_cfg; assert(MACHINE(pcms)->kernel_filename != NULL); fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); rom_set_fw(fw_cfg); load_linux(pcms, fw_cfg); for (i = 0; i < nb_option_roms; i++) { assert(!strcmp(option_rom[i].name, "linuxboot.bin") || !strcmp(option_rom[i].name, "linuxboot_dma.bin") || !strcmp(option_rom[i].name, "pvh.bin") || !strcmp(option_rom[i].name, "multiboot.bin")); rom_add_option(option_rom[i].name, option_rom[i].bootindex); } pcms->fw_cfg = fw_cfg; } void pc_memory_init(PCMachineState *pcms, MemoryRegion *system_memory, MemoryRegion *rom_memory, MemoryRegion **ram_memory) { int linux_boot, i; MemoryRegion *ram, *option_rom_mr; MemoryRegion *ram_below_4g, *ram_above_4g; FWCfgState *fw_cfg; MachineState *machine = MACHINE(pcms); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); assert(machine->ram_size == pcms->below_4g_mem_size + pcms->above_4g_mem_size); linux_boot = (machine->kernel_filename != NULL); /* Allocate RAM. We allocate it as a single memory region and use * aliases to address portions of it, mostly for backwards compatibility * with older qemus that used qemu_ram_alloc(). */ ram = g_malloc(sizeof(*ram)); memory_region_allocate_system_memory(ram, NULL, "pc.ram", machine->ram_size); *ram_memory = ram; ram_below_4g = g_malloc(sizeof(*ram_below_4g)); memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 0, pcms->below_4g_mem_size); memory_region_add_subregion(system_memory, 0, ram_below_4g); e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); if (pcms->above_4g_mem_size > 0) { ram_above_4g = g_malloc(sizeof(*ram_above_4g)); memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, pcms->below_4g_mem_size, pcms->above_4g_mem_size); memory_region_add_subregion(system_memory, 0x100000000ULL, ram_above_4g); e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); } if (!pcmc->has_reserved_memory && (machine->ram_slots || (machine->maxram_size > machine->ram_size))) { MachineClass *mc = MACHINE_GET_CLASS(machine); error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", mc->name); exit(EXIT_FAILURE); } /* always allocate the device memory information */ machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); /* initialize device memory address space */ if (pcmc->has_reserved_memory && (machine->ram_size < machine->maxram_size)) { ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { error_report("unsupported amount of memory slots: %"PRIu64, machine->ram_slots); exit(EXIT_FAILURE); } if (QEMU_ALIGN_UP(machine->maxram_size, TARGET_PAGE_SIZE) != machine->maxram_size) { error_report("maximum memory size must by aligned to multiple of " "%d bytes", TARGET_PAGE_SIZE); exit(EXIT_FAILURE); } machine->device_memory->base = ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB); if (pcmc->enforce_aligned_dimm) { /* size device region assuming 1G page max alignment per slot */ device_mem_size += (1 * GiB) * machine->ram_slots; } if ((machine->device_memory->base + device_mem_size) < device_mem_size) { error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, machine->maxram_size); exit(EXIT_FAILURE); } memory_region_init(&machine->device_memory->mr, OBJECT(pcms), "device-memory", device_mem_size); memory_region_add_subregion(system_memory, machine->device_memory->base, &machine->device_memory->mr); } /* Initialize PC system firmware */ pc_system_firmware_init(pcms, rom_memory); option_rom_mr = g_malloc(sizeof(*option_rom_mr)); memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, &error_fatal); if (pcmc->pci_enabled) { memory_region_set_readonly(option_rom_mr, true); } memory_region_add_subregion_overlap(rom_memory, PC_ROM_MIN_VGA, option_rom_mr, 1); fw_cfg = bochs_bios_init(&address_space_memory, pcms); rom_set_fw(fw_cfg); if (pcmc->has_reserved_memory && machine->device_memory->base) { uint64_t *val = g_malloc(sizeof(*val)); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); uint64_t res_mem_end = machine->device_memory->base; if (!pcmc->broken_reserved_end) { res_mem_end += memory_region_size(&machine->device_memory->mr); } *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB)); fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); } if (linux_boot) { load_linux(pcms, fw_cfg); } for (i = 0; i < nb_option_roms; i++) { rom_add_option(option_rom[i].name, option_rom[i].bootindex); } pcms->fw_cfg = fw_cfg; /* Init default IOAPIC address space */ pcms->ioapic_as = &address_space_memory; } /* * The 64bit pci hole starts after "above 4G RAM" and * potentially the space reserved for memory hotplug. */ uint64_t pc_pci_hole64_start(void) { PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); MachineState *ms = MACHINE(pcms); uint64_t hole64_start = 0; if (pcmc->has_reserved_memory && ms->device_memory->base) { hole64_start = ms->device_memory->base; if (!pcmc->broken_reserved_end) { hole64_start += memory_region_size(&ms->device_memory->mr); } } else { hole64_start = 0x100000000ULL + pcms->above_4g_mem_size; } return ROUND_UP(hole64_start, 1 * GiB); } qemu_irq pc_allocate_cpu_irq(void) { return qemu_allocate_irq(pic_irq_request, NULL, 0); } DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) { DeviceState *dev = NULL; rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); if (pci_bus) { PCIDevice *pcidev = pci_vga_init(pci_bus); dev = pcidev ? &pcidev->qdev : NULL; } else if (isa_bus) { ISADevice *isadev = isa_vga_init(isa_bus); dev = isadev ? DEVICE(isadev) : NULL; } rom_reset_order_override(); return dev; } static const MemoryRegionOps ioport80_io_ops = { .write = ioport80_write, .read = ioport80_read, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 1, }, }; static const MemoryRegionOps ioportF0_io_ops = { .write = ioportF0_write, .read = ioportF0_read, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 1, }, }; static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport) { int i; DriveInfo *fd[MAX_FD]; qemu_irq *a20_line; ISADevice *i8042, *port92, *vmmouse; serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS); parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); for (i = 0; i < MAX_FD; i++) { fd[i] = drive_get(IF_FLOPPY, 0, i); create_fdctrl |= !!fd[i]; } if (create_fdctrl) { fdctrl_init_isa(isa_bus, fd); } i8042 = isa_create_simple(isa_bus, "i8042"); if (!no_vmport) { vmport_init(isa_bus); vmmouse = isa_try_create(isa_bus, "vmmouse"); } else { vmmouse = NULL; } if (vmmouse) { DeviceState *dev = DEVICE(vmmouse); qdev_prop_set_ptr(dev, "ps2_mouse", i8042); qdev_init_nofail(dev); } port92 = isa_create_simple(isa_bus, "port92"); a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); i8042_setup_a20_line(i8042, a20_line[0]); port92_init(port92, a20_line[1]); g_free(a20_line); } void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, ISADevice **rtc_state, bool create_fdctrl, bool no_vmport, bool has_pit, uint32_t hpet_irqs) { int i; DeviceState *hpet = NULL; int pit_isa_irq = 0; qemu_irq pit_alt_irq = NULL; qemu_irq rtc_irq = NULL; ISADevice *pit = NULL; MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); /* * Check if an HPET shall be created. * * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT * when the HPET wants to take over. Thus we have to disable the latter. */ if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { /* In order to set property, here not using sysbus_try_create_simple */ hpet = qdev_try_create(NULL, TYPE_HPET); if (hpet) { /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, * IRQ8 and IRQ2. */ uint8_t compat = object_property_get_uint(OBJECT(hpet), HPET_INTCAP, NULL); if (!compat) { qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); } qdev_init_nofail(hpet); sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); for (i = 0; i < GSI_NUM_PINS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); } pit_isa_irq = -1; pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); } } *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq); qemu_register_boot_set(pc_boot_set, *rtc_state); if (!xen_enabled() && has_pit) { if (kvm_pit_in_kernel()) { pit = kvm_pit_init(isa_bus, 0x40); } else { pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); } if (hpet) { /* connect PIT to output control line of the HPET */ qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); } pcspk_init(isa_bus, pit); } i8257_dma_init(isa_bus, 0); /* Super I/O */ pc_superio_init(isa_bus, create_fdctrl, no_vmport); } void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus) { int i; rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; const char *model = nd->model ? nd->model : pcmc->default_nic_model; if (g_str_equal(model, "ne2k_isa")) { pc_init_ne2k_isa(isa_bus, nd); } else { pci_nic_init_nofail(nd, pci_bus, model, NULL); } } rom_reset_order_override(); } void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) { DeviceState *dev; SysBusDevice *d; unsigned int i; if (kvm_ioapic_in_kernel()) { dev = qdev_create(NULL, TYPE_KVM_IOAPIC); } else { dev = qdev_create(NULL, TYPE_IOAPIC); } if (parent_name) { object_property_add_child(object_resolve_path(parent_name, NULL), "ioapic", OBJECT(dev), NULL); } qdev_init_nofail(dev); d = SYS_BUS_DEVICE(dev); sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); for (i = 0; i < IOAPIC_NUM_PINS; i++) { gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); } } static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { const PCMachineState *pcms = PC_MACHINE(hotplug_dev); const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); const MachineState *ms = MACHINE(hotplug_dev); const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); const uint64_t legacy_align = TARGET_PAGE_SIZE; Error *local_err = NULL; /* * When -no-acpi is used with Q35 machine type, no ACPI is built, * but pcms->acpi_dev is still created. Check !acpi_enabled in * addition to cover this case. */ if (!pcms->acpi_dev || !acpi_enabled) { error_setg(errp, "memory hotplug is not enabled: missing acpi device or acpi disabled"); return; } if (is_nvdimm && !ms->nvdimms_state->is_enabled) { error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'"); return; } hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp); } static void pc_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { Error *local_err = NULL; PCMachineState *pcms = PC_MACHINE(hotplug_dev); MachineState *ms = MACHINE(hotplug_dev); bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err); if (local_err) { goto out; } if (is_nvdimm) { nvdimm_plug(ms->nvdimms_state); } hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); out: error_propagate(errp, local_err); } static void pc_memory_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { Error *local_err = NULL; PCMachineState *pcms = PC_MACHINE(hotplug_dev); /* * When -no-acpi is used with Q35 machine type, no ACPI is built, * but pcms->acpi_dev is still created. Check !acpi_enabled in * addition to cover this case. */ if (!pcms->acpi_dev || !acpi_enabled) { error_setg(&local_err, "memory hotplug is not enabled: missing acpi device or acpi disabled"); goto out; } if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { error_setg(&local_err, "nvdimm device hot unplug is not supported yet."); goto out; } hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); out: error_propagate(errp, local_err); } static void pc_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { PCMachineState *pcms = PC_MACHINE(hotplug_dev); Error *local_err = NULL; hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); if (local_err) { goto out; } pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms)); object_property_set_bool(OBJECT(dev), false, "realized", NULL); out: error_propagate(errp, local_err); } static int pc_apic_cmp(const void *a, const void *b) { CPUArchId *apic_a = (CPUArchId *)a; CPUArchId *apic_b = (CPUArchId *)b; return apic_a->arch_id - apic_b->arch_id; } /* returns pointer to CPUArchId descriptor that matches CPU's apic_id * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no * entry corresponding to CPU's apic_id returns NULL. */ static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) { CPUArchId apic_id, *found_cpu; apic_id.arch_id = id; found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), pc_apic_cmp); if (found_cpu && idx) { *idx = found_cpu - ms->possible_cpus->cpus; } return found_cpu; } static void pc_cpu_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { CPUArchId *found_cpu; Error *local_err = NULL; X86CPU *cpu = X86_CPU(dev); PCMachineState *pcms = PC_MACHINE(hotplug_dev); if (pcms->acpi_dev) { hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); if (local_err) { goto out; } } /* increment the number of CPUs */ pcms->boot_cpus++; if (pcms->rtc) { rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); } if (pcms->fw_cfg) { fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); } found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); found_cpu->cpu = OBJECT(dev); out: error_propagate(errp, local_err); } static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { int idx = -1; Error *local_err = NULL; X86CPU *cpu = X86_CPU(dev); PCMachineState *pcms = PC_MACHINE(hotplug_dev); if (!pcms->acpi_dev) { error_setg(&local_err, "CPU hot unplug not supported without ACPI"); goto out; } pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); assert(idx != -1); if (idx == 0) { error_setg(&local_err, "Boot CPU is unpluggable"); goto out; } hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); if (local_err) { goto out; } out: error_propagate(errp, local_err); } static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { CPUArchId *found_cpu; Error *local_err = NULL; X86CPU *cpu = X86_CPU(dev); PCMachineState *pcms = PC_MACHINE(hotplug_dev); hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); if (local_err) { goto out; } found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL); found_cpu->cpu = NULL; object_property_set_bool(OBJECT(dev), false, "realized", NULL); /* decrement the number of CPUs */ pcms->boot_cpus--; /* Update the number of CPUs in CMOS */ rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus); fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus); out: error_propagate(errp, local_err); } static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { int idx; CPUState *cs; CPUArchId *cpu_slot; X86CPUTopoInfo topo; X86CPU *cpu = X86_CPU(dev); CPUX86State *env = &cpu->env; MachineState *ms = MACHINE(hotplug_dev); PCMachineState *pcms = PC_MACHINE(hotplug_dev); unsigned int smp_cores = ms->smp.cores; unsigned int smp_threads = ms->smp.threads; if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", ms->cpu_type); return; } env->nr_dies = pcms->smp_dies; /* * If APIC ID is not set, * set it based on socket/die/core/thread properties. */ if (cpu->apic_id == UNASSIGNED_APIC_ID) { int max_socket = (ms->smp.max_cpus - 1) / smp_threads / smp_cores / pcms->smp_dies; if (cpu->socket_id < 0) { error_setg(errp, "CPU socket-id is not set"); return; } else if (cpu->socket_id > max_socket) { error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", cpu->socket_id, max_socket); return; } else if (cpu->die_id > pcms->smp_dies - 1) { error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", cpu->die_id, max_socket); return; } if (cpu->core_id < 0) { error_setg(errp, "CPU core-id is not set"); return; } else if (cpu->core_id > (smp_cores - 1)) { error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", cpu->core_id, smp_cores - 1); return; } if (cpu->thread_id < 0) { error_setg(errp, "CPU thread-id is not set"); return; } else if (cpu->thread_id > (smp_threads - 1)) { error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", cpu->thread_id, smp_threads - 1); return; } topo.pkg_id = cpu->socket_id; topo.die_id = cpu->die_id; topo.core_id = cpu->core_id; topo.smt_id = cpu->thread_id; cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores, smp_threads, &topo); } cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx); if (!cpu_slot) { MachineState *ms = MACHINE(pcms); x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies, smp_cores, smp_threads, &topo); error_setg(errp, "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" " APIC ID %" PRIu32 ", valid index range 0:%d", topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id, cpu->apic_id, ms->possible_cpus->len - 1); return; } if (cpu_slot->cpu) { error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", idx, cpu->apic_id); return; } /* if 'address' properties socket-id/core-id/thread-id are not set, set them * so that machine_query_hotpluggable_cpus would show correct values */ /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() * once -smp refactoring is complete and there will be CPU private * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies, smp_cores, smp_threads, &topo); if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { error_setg(errp, "property socket-id: %u doesn't match set apic-id:" " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); return; } cpu->socket_id = topo.pkg_id; if (cpu->die_id != -1 && cpu->die_id != topo.die_id) { error_setg(errp, "property die-id: %u doesn't match set apic-id:" " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id); return; } cpu->die_id = topo.die_id; if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { error_setg(errp, "property core-id: %u doesn't match set apic-id:" " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); return; } cpu->core_id = topo.core_id; if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { error_setg(errp, "property thread-id: %u doesn't match set apic-id:" " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); return; } cpu->thread_id = topo.smt_id; if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !kvm_hv_vpindex_settable()) { error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); return; } cs = CPU(cpu); cs->cpu_index = idx; numa_cpu_pre_plug(cpu_slot, dev, errp); } static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev); Error *local_err = NULL; if (!hotplug_dev2) { /* * Without a bus hotplug handler, we cannot control the plug/unplug * order. This should never be the case on x86, however better add * a safety net. */ error_setg(errp, "virtio-pmem-pci not supported on this bus."); return; } /* * First, see if we can plug this memory device at all. If that * succeeds, branch of to the actual hotplug handler. */ memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL, &local_err); if (!local_err) { hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err); } error_propagate(errp, local_err); } static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev); Error *local_err = NULL; /* * Plug the memory device first and then branch off to the actual * hotplug handler. If that one fails, we can easily undo the memory * device bits. */ memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev)); hotplug_handler_plug(hotplug_dev2, dev, &local_err); if (local_err) { memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev)); } error_propagate(errp, local_err); } static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { /* We don't support virtio pmem hot unplug */ error_setg(errp, "virtio pmem device unplug not supported."); } static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { /* We don't support virtio pmem hot unplug */ } static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_pre_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { pc_cpu_pre_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) { pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp); } } static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { pc_cpu_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) { pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp); } } static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_unplug_request(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) { pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp); } else { error_setg(errp, "acpi: device unplug request for not supported device" " type: %s", object_get_typename(OBJECT(dev))); } } static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { pc_memory_unplug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { pc_cpu_unplug_cb(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) { pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp); } else { error_setg(errp, "acpi: device unplug for not supported device" " type: %s", object_get_typename(OBJECT(dev))); } } static HotplugHandler *pc_get_hotplug_handler(MachineState *machine, DeviceState *dev) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || object_dynamic_cast(OBJECT(dev), TYPE_CPU) || object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) { return HOTPLUG_HANDLER(machine); } return NULL; } static void pc_machine_get_device_memory_region_size(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); int64_t value = 0; if (ms->device_memory) { value = memory_region_size(&ms->device_memory->mr); } visit_type_int(v, name, &value, errp); } static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); uint64_t value = pcms->max_ram_below_4g; visit_type_size(v, name, &value, errp); } static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); Error *error = NULL; uint64_t value; visit_type_size(v, name, &value, &error); if (error) { error_propagate(errp, error); return; } if (value > 4 * GiB) { error_setg(&error, "Machine option 'max-ram-below-4g=%"PRIu64 "' expects size less than or equal to 4G", value); error_propagate(errp, error); return; } if (value < 1 * MiB) { warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary," "BIOS may not work with less than 1MiB", value); } pcms->max_ram_below_4g = value; } static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); OnOffAuto vmport = pcms->vmport; visit_type_OnOffAuto(v, name, &vmport, errp); } static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); visit_type_OnOffAuto(v, name, &pcms->vmport, errp); } bool pc_machine_is_smm_enabled(PCMachineState *pcms) { bool smm_available = false; if (pcms->smm == ON_OFF_AUTO_OFF) { return false; } if (tcg_enabled() || qtest_enabled()) { smm_available = true; } else if (kvm_enabled()) { smm_available = kvm_has_smm(); } if (smm_available) { return true; } if (pcms->smm == ON_OFF_AUTO_ON) { error_report("System Management Mode not supported by this hypervisor."); exit(1); } return false; } static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); OnOffAuto smm = pcms->smm; visit_type_OnOffAuto(v, name, &smm, errp); } static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); visit_type_OnOffAuto(v, name, &pcms->smm, errp); } static bool pc_machine_get_smbus(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->smbus_enabled; } static void pc_machine_set_smbus(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->smbus_enabled = value; } static bool pc_machine_get_sata(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->sata_enabled; } static void pc_machine_set_sata(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->sata_enabled = value; } static bool pc_machine_get_pit(Object *obj, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); return pcms->pit_enabled; } static void pc_machine_set_pit(Object *obj, bool value, Error **errp) { PCMachineState *pcms = PC_MACHINE(obj); pcms->pit_enabled = value; } static void pc_machine_initfn(Object *obj) { PCMachineState *pcms = PC_MACHINE(obj); pcms->max_ram_below_4g = 0; /* use default */ pcms->smm = ON_OFF_AUTO_AUTO; #ifdef CONFIG_VMPORT pcms->vmport = ON_OFF_AUTO_AUTO; #else pcms->vmport = ON_OFF_AUTO_OFF; #endif /* CONFIG_VMPORT */ /* acpi build is enabled by default if machine supports it */ pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; pcms->smbus_enabled = true; pcms->sata_enabled = true; pcms->pit_enabled = true; pcms->smp_dies = 1; pc_system_flash_create(pcms); } static void pc_machine_reset(MachineState *machine) { CPUState *cs; X86CPU *cpu; qemu_devices_reset(); /* Reset APIC after devices have been reset to cancel * any changes that qemu_devices_reset() might have done. */ CPU_FOREACH(cs) { cpu = X86_CPU(cs); if (cpu->apic_state) { device_reset(cpu->apic_state); } } } static CpuInstanceProperties pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index) { MachineClass *mc = MACHINE_GET_CLASS(ms); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); assert(cpu_index < possible_cpus->len); return possible_cpus->cpus[cpu_index].props; } static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx) { X86CPUTopoInfo topo; PCMachineState *pcms = PC_MACHINE(ms); assert(idx < ms->possible_cpus->len); x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, pcms->smp_dies, ms->smp.cores, ms->smp.threads, &topo); return topo.pkg_id % nb_numa_nodes; } static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms) { PCMachineState *pcms = PC_MACHINE(ms); int i; unsigned int max_cpus = ms->smp.max_cpus; if (ms->possible_cpus) { /* * make sure that max_cpus hasn't changed since the first use, i.e. * -smp hasn't been parsed after it */ assert(ms->possible_cpus->len == max_cpus); return ms->possible_cpus; } ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + sizeof(CPUArchId) * max_cpus); ms->possible_cpus->len = max_cpus; for (i = 0; i < ms->possible_cpus->len; i++) { X86CPUTopoInfo topo; ms->possible_cpus->cpus[i].type = ms->cpu_type; ms->possible_cpus->cpus[i].vcpus_count = 1; ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i); x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, pcms->smp_dies, ms->smp.cores, ms->smp.threads, &topo); ms->possible_cpus->cpus[i].props.has_socket_id = true; ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; ms->possible_cpus->cpus[i].props.has_die_id = true; ms->possible_cpus->cpus[i].props.die_id = topo.die_id; ms->possible_cpus->cpus[i].props.has_core_id = true; ms->possible_cpus->cpus[i].props.core_id = topo.core_id; ms->possible_cpus->cpus[i].props.has_thread_id = true; ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; } return ms->possible_cpus; } static void x86_nmi(NMIState *n, int cpu_index, Error **errp) { /* cpu index isn't used */ CPUState *cs; CPU_FOREACH(cs) { X86CPU *cpu = X86_CPU(cs); if (!cpu->apic_state) { cpu_interrupt(cs, CPU_INTERRUPT_NMI); } else { apic_deliver_nmi(cpu->apic_state); } } } static void pc_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); NMIClass *nc = NMI_CLASS(oc); pcmc->pci_enabled = true; pcmc->has_acpi_build = true; pcmc->rsdp_in_ram = true; pcmc->smbios_defaults = true; pcmc->smbios_uuid_encoded = true; pcmc->gigabyte_align = true; pcmc->has_reserved_memory = true; pcmc->kvmclock_enabled = true; pcmc->enforce_aligned_dimm = true; /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported * to be used at the moment, 32K should be enough for a while. */ pcmc->acpi_data_size = 0x20000 + 0x8000; pcmc->save_tsc_khz = true; pcmc->linuxboot_dma_enabled = true; pcmc->pvh_enabled = true; assert(!mc->get_hotplug_handler); mc->get_hotplug_handler = pc_get_hotplug_handler; mc->cpu_index_to_instance_props = pc_cpu_index_to_props; mc->get_default_cpu_node_id = pc_get_default_cpu_node_id; mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; mc->auto_enable_numa_with_memhp = true; mc->has_hotpluggable_cpus = true; mc->default_boot_order = "cad"; mc->hot_add_cpu = pc_hot_add_cpu; mc->smp_parse = pc_smp_parse; mc->block_default_type = IF_IDE; mc->max_cpus = 255; mc->reset = pc_machine_reset; hc->pre_plug = pc_machine_device_pre_plug_cb; hc->plug = pc_machine_device_plug_cb; hc->unplug_request = pc_machine_device_unplug_request_cb; hc->unplug = pc_machine_device_unplug_cb; nc->nmi_monitor_handler = x86_nmi; mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE; mc->nvdimm_supported = true; mc->numa_mem_supported = true; object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int", pc_machine_get_device_memory_region_size, NULL, NULL, NULL, &error_abort); object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, NULL, NULL, &error_abort); object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", pc_machine_get_smm, pc_machine_set_smm, NULL, NULL, &error_abort); object_class_property_set_description(oc, PC_MACHINE_SMM, "Enable SMM (pc & q35)", &error_abort); object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", pc_machine_get_vmport, pc_machine_set_vmport, NULL, NULL, &error_abort); object_class_property_set_description(oc, PC_MACHINE_VMPORT, "Enable vmport (pc & q35)", &error_abort); object_class_property_add_bool(oc, PC_MACHINE_SMBUS, pc_machine_get_smbus, pc_machine_set_smbus, &error_abort); object_class_property_add_bool(oc, PC_MACHINE_SATA, pc_machine_get_sata, pc_machine_set_sata, &error_abort); object_class_property_add_bool(oc, PC_MACHINE_PIT, pc_machine_get_pit, pc_machine_set_pit, &error_abort); } static const TypeInfo pc_machine_info = { .name = TYPE_PC_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(PCMachineState), .instance_init = pc_machine_initfn, .class_size = sizeof(PCMachineClass), .class_init = pc_machine_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { TYPE_NMI }, { } }, }; static void pc_machine_register_types(void) { type_register_static(&pc_machine_info); } type_init(pc_machine_register_types)