/* * QEMU emulation of an Intel IOMMU (VT-d) * (DMA Remapping device) * * Copyright (C) 2013 Knut Omang, Oracle * Copyright (C) 2014 Le Tan, * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "qapi/error.h" #include "hw/sysbus.h" #include "intel_iommu_internal.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bus.h" #include "hw/qdev-properties.h" #include "hw/i386/pc.h" #include "hw/i386/apic-msidef.h" #include "hw/i386/x86-iommu.h" #include "hw/pci-host/q35.h" #include "sysemu/kvm.h" #include "sysemu/dma.h" #include "sysemu/sysemu.h" #include "hw/i386/apic_internal.h" #include "kvm/kvm_i386.h" #include "migration/vmstate.h" #include "trace.h" /* context entry operations */ #define VTD_CE_GET_RID2PASID(ce) \ ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) /* pe operations */ #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) /* * PCI bus number (or SID) is not reliable since the device is usaully * initialized before guest can configure the PCI bridge * (SECONDARY_BUS_NUMBER). */ struct vtd_as_key { PCIBus *bus; uint8_t devfn; uint32_t pasid; }; /* bus/devfn is PCI device's real BDF not the aliased one */ struct vtd_hiod_key { PCIBus *bus; uint8_t devfn; }; struct vtd_iotlb_key { uint64_t gfn; uint32_t pasid; uint16_t sid; uint8_t level; }; static void vtd_address_space_refresh_all(IntelIOMMUState *s); static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); static void vtd_panic_require_caching_mode(void) { error_report("We need to set caching-mode=on for intel-iommu to enable " "device assignment with IOMMU protection."); exit(1); } static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, uint64_t wmask, uint64_t w1cmask) { stq_le_p(&s->csr[addr], val); stq_le_p(&s->wmask[addr], wmask); stq_le_p(&s->w1cmask[addr], w1cmask); } static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) { stq_le_p(&s->womask[addr], mask); } static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, uint32_t wmask, uint32_t w1cmask) { stl_le_p(&s->csr[addr], val); stl_le_p(&s->wmask[addr], wmask); stl_le_p(&s->w1cmask[addr], w1cmask); } static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) { stl_le_p(&s->womask[addr], mask); } /* "External" get/set operations */ static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) { uint64_t oldval = ldq_le_p(&s->csr[addr]); uint64_t wmask = ldq_le_p(&s->wmask[addr]); uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); stq_le_p(&s->csr[addr], ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); } static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) { uint32_t oldval = ldl_le_p(&s->csr[addr]); uint32_t wmask = ldl_le_p(&s->wmask[addr]); uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); stl_le_p(&s->csr[addr], ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); } static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) { uint64_t val = ldq_le_p(&s->csr[addr]); uint64_t womask = ldq_le_p(&s->womask[addr]); return val & ~womask; } static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) { uint32_t val = ldl_le_p(&s->csr[addr]); uint32_t womask = ldl_le_p(&s->womask[addr]); return val & ~womask; } /* "Internal" get/set operations */ static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) { return ldq_le_p(&s->csr[addr]); } static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) { return ldl_le_p(&s->csr[addr]); } static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) { stq_le_p(&s->csr[addr], val); } static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, uint32_t clear, uint32_t mask) { uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; stl_le_p(&s->csr[addr], new_val); return new_val; } static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, uint64_t clear, uint64_t mask) { uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; stq_le_p(&s->csr[addr], new_val); return new_val; } static inline void vtd_iommu_lock(IntelIOMMUState *s) { qemu_mutex_lock(&s->iommu_lock); } static inline void vtd_iommu_unlock(IntelIOMMUState *s) { qemu_mutex_unlock(&s->iommu_lock); } static void vtd_update_scalable_state(IntelIOMMUState *s) { uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); if (s->scalable_mode) { s->root_scalable = val & VTD_RTADDR_SMT; } } static void vtd_update_iq_dw(IntelIOMMUState *s) { uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG); if (s->ecap & VTD_ECAP_SMTS && val & VTD_IQA_DW_MASK) { s->iq_dw = true; } else { s->iq_dw = false; } } /* Whether the address space needs to notify new mappings */ static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) { return as->notifier_flags & IOMMU_NOTIFIER_MAP; } /* GHashTable functions */ static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2) { const struct vtd_iotlb_key *key1 = v1; const struct vtd_iotlb_key *key2 = v2; return key1->sid == key2->sid && key1->pasid == key2->pasid && key1->level == key2->level && key1->gfn == key2->gfn; } static guint vtd_iotlb_hash(gconstpointer v) { const struct vtd_iotlb_key *key = v; uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) | (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT | (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT; return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU)); } static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2) { const struct vtd_as_key *key1 = v1; const struct vtd_as_key *key2 = v2; return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) && (key1->pasid == key2->pasid); } /* * Note that we use pointer to PCIBus as the key, so hashing/shifting * based on the pointer value is intended. Note that we deal with * collisions through vtd_as_equal(). */ static guint vtd_as_hash(gconstpointer v) { const struct vtd_as_key *key = v; guint value = (guint)(uintptr_t)key->bus; return (guint)(value << 8 | key->devfn); } /* Same implementation as vtd_as_hash() */ static guint vtd_hiod_hash(gconstpointer v) { return vtd_as_hash(v); } static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2) { const struct vtd_hiod_key *key1 = v1; const struct vtd_hiod_key *key2 = v2; return (key1->bus == key2->bus) && (key1->devfn == key2->devfn); } static void vtd_hiod_destroy(gpointer v) { object_unref(v); } static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, gpointer user_data) { VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; uint16_t domain_id = *(uint16_t *)user_data; return entry->domain_id == domain_id; } /* The shift of an addr for a certain level of paging structure */ static inline uint32_t vtd_slpt_level_shift(uint32_t level) { assert(level != 0); return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; } static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) { return ~((1ULL << vtd_slpt_level_shift(level)) - 1); } static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, gpointer user_data) { VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; return (entry->domain_id == info->domain_id) && (((entry->gfn & info->mask) == gfn) || (entry->gfn == gfn_tlb)); } /* Reset all the gen of VTDAddressSpace to zero and set the gen of * IntelIOMMUState to 1. Must be called with IOMMU lock held. */ static void vtd_reset_context_cache_locked(IntelIOMMUState *s) { VTDAddressSpace *vtd_as; GHashTableIter as_it; trace_vtd_context_cache_reset(); g_hash_table_iter_init(&as_it, s->vtd_address_spaces); while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { vtd_as->context_cache_entry.context_cache_gen = 0; } s->context_cache_gen = 1; } /* Must be called with IOMMU lock held. */ static void vtd_reset_iotlb_locked(IntelIOMMUState *s) { assert(s->iotlb); g_hash_table_remove_all(s->iotlb); } static void vtd_reset_iotlb(IntelIOMMUState *s) { vtd_iommu_lock(s); vtd_reset_iotlb_locked(s); vtd_iommu_unlock(s); } static void vtd_reset_caches(IntelIOMMUState *s) { vtd_iommu_lock(s); vtd_reset_iotlb_locked(s); vtd_reset_context_cache_locked(s); vtd_iommu_unlock(s); } static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) { return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; } /* Must be called with IOMMU lock held */ static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, uint32_t pasid, hwaddr addr) { struct vtd_iotlb_key key; VTDIOTLBEntry *entry; unsigned level; for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { key.gfn = vtd_get_iotlb_gfn(addr, level); key.level = level; key.sid = source_id; key.pasid = pasid; entry = g_hash_table_lookup(s->iotlb, &key); if (entry) { goto out; } } out: return entry; } /* Must be with IOMMU lock held */ static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, uint16_t domain_id, hwaddr addr, uint64_t slpte, uint8_t access_flags, uint32_t level, uint32_t pasid) { VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); struct vtd_iotlb_key *key = g_malloc(sizeof(*key)); uint64_t gfn = vtd_get_iotlb_gfn(addr, level); trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { trace_vtd_iotlb_reset("iotlb exceeds size limit"); vtd_reset_iotlb_locked(s); } entry->gfn = gfn; entry->domain_id = domain_id; entry->slpte = slpte; entry->access_flags = access_flags; entry->mask = vtd_slpt_level_page_mask(level); entry->pasid = pasid; key->gfn = gfn; key->sid = source_id; key->level = level; key->pasid = pasid; g_hash_table_replace(s->iotlb, key, entry); } /* Given the reg addr of both the message data and address, generate an * interrupt via MSI. */ static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, hwaddr mesg_data_reg) { MSIMessage msi; assert(mesg_data_reg < DMAR_REG_SIZE); assert(mesg_addr_reg < DMAR_REG_SIZE); msi.address = vtd_get_long_raw(s, mesg_addr_reg); msi.data = vtd_get_long_raw(s, mesg_data_reg); trace_vtd_irq_generate(msi.address, msi.data); apic_get_class(NULL)->send_msi(&msi); } /* Generate a fault event to software via MSI if conditions are met. * Notice that the value of FSTS_REG being passed to it should be the one * before any update. */ static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) { if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || pre_fsts & VTD_FSTS_IQE) { error_report_once("There are previous interrupt conditions " "to be serviced by software, fault event " "is not generated"); return; } vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { error_report_once("Interrupt Mask set, irq is not generated"); } else { vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); } } /* Check if the Fault (F) field of the Fault Recording Register referenced by * @index is Set. */ static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) { /* Each reg is 128-bit */ hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); addr += 8; /* Access the high 64-bit half */ assert(index < DMAR_FRCD_REG_NR); return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; } /* Update the PPF field of Fault Status Register. * Should be called whenever change the F field of any fault recording * registers. */ static void vtd_update_fsts_ppf(IntelIOMMUState *s) { uint32_t i; uint32_t ppf_mask = 0; for (i = 0; i < DMAR_FRCD_REG_NR; i++) { if (vtd_is_frcd_set(s, i)) { ppf_mask = VTD_FSTS_PPF; break; } } vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); trace_vtd_fsts_ppf(!!ppf_mask); } static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) { /* Each reg is 128-bit */ hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); addr += 8; /* Access the high 64-bit half */ assert(index < DMAR_FRCD_REG_NR); vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); vtd_update_fsts_ppf(s); } /* Must not update F field now, should be done later */ static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, uint64_t hi, uint64_t lo) { hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); assert(index < DMAR_FRCD_REG_NR); vtd_set_quad_raw(s, frcd_reg_addr, lo); vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); trace_vtd_frr_new(index, hi, lo); } /* Try to collapse multiple pending faults from the same requester */ static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) { uint32_t i; uint64_t frcd_reg; hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ for (i = 0; i < DMAR_FRCD_REG_NR; i++) { frcd_reg = vtd_get_quad_raw(s, addr); if ((frcd_reg & VTD_FRCD_F) && ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { return true; } addr += 16; /* 128-bit for each */ } return false; } /* Log and report an DMAR (address translation) fault to software */ static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id, uint64_t hi, uint64_t lo) { uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); if (fsts_reg & VTD_FSTS_PFO) { error_report_once("New fault is not recorded due to " "Primary Fault Overflow"); return; } if (vtd_try_collapse_fault(s, source_id)) { error_report_once("New fault is not recorded due to " "compression of faults"); return; } if (vtd_is_frcd_set(s, s->next_frcd_reg)) { error_report_once("Next Fault Recording Reg is used, " "new fault is not recorded, set PFO field"); vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); return; } vtd_record_frcd(s, s->next_frcd_reg, hi, lo); if (fsts_reg & VTD_FSTS_PPF) { error_report_once("There are pending faults already, " "fault event is not generated"); vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); s->next_frcd_reg++; if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { s->next_frcd_reg = 0; } } else { vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, VTD_FSTS_FRI(s->next_frcd_reg)); vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ s->next_frcd_reg++; if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { s->next_frcd_reg = 0; } /* This case actually cause the PPF to be Set. * So generate fault event (interrupt). */ vtd_generate_fault_event(s, fsts_reg); } } /* Log and report an DMAR (address translation) fault to software */ static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, hwaddr addr, VTDFaultReason fault, bool is_write, bool is_pasid, uint32_t pasid) { uint64_t hi, lo; assert(fault < VTD_FR_MAX); trace_vtd_dmar_fault(source_id, fault, addr, is_write); lo = VTD_FRCD_FI(addr); hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) | VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid); if (!is_write) { hi |= VTD_FRCD_T; } vtd_report_frcd_fault(s, source_id, hi, lo); } static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id, VTDFaultReason fault, uint16_t index) { uint64_t hi, lo; lo = VTD_FRCD_IR_IDX(index); hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); vtd_report_frcd_fault(s, source_id, hi, lo); } /* Handle Invalidation Queue Errors of queued invalidation interface error * conditions. */ static void vtd_handle_inv_queue_error(IntelIOMMUState *s) { uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); vtd_generate_fault_event(s, fsts_reg); } /* Set the IWC field and try to generate an invalidation completion interrupt */ static void vtd_generate_completion_event(IntelIOMMUState *s) { if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { trace_vtd_inv_desc_wait_irq("One pending, skip current"); return; } vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " "new event not generated"); return; } else { /* Generate the interrupt event */ trace_vtd_inv_desc_wait_irq("Generating complete event"); vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); } } static inline bool vtd_root_entry_present(IntelIOMMUState *s, VTDRootEntry *re, uint8_t devfn) { if (s->root_scalable && devfn > UINT8_MAX / 2) { return re->hi & VTD_ROOT_ENTRY_P; } return re->lo & VTD_ROOT_ENTRY_P; } static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, VTDRootEntry *re) { dma_addr_t addr; addr = s->root + index * sizeof(*re); if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) { re->lo = 0; return -VTD_FR_ROOT_TABLE_INV; } re->lo = le64_to_cpu(re->lo); re->hi = le64_to_cpu(re->hi); return 0; } static inline bool vtd_ce_present(VTDContextEntry *context) { return context->lo & VTD_CONTEXT_ENTRY_P; } static int vtd_get_context_entry_from_root(IntelIOMMUState *s, VTDRootEntry *re, uint8_t index, VTDContextEntry *ce) { dma_addr_t addr, ce_size; /* we have checked that root entry is present */ ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : VTD_CTX_ENTRY_LEGACY_SIZE; if (s->root_scalable && index > UINT8_MAX / 2) { index = index & (~VTD_DEVFN_CHECK_MASK); addr = re->hi & VTD_ROOT_ENTRY_CTP; } else { addr = re->lo & VTD_ROOT_ENTRY_CTP; } addr = addr + index * ce_size; if (dma_memory_read(&address_space_memory, addr, ce, ce_size, MEMTXATTRS_UNSPECIFIED)) { return -VTD_FR_CONTEXT_TABLE_INV; } ce->lo = le64_to_cpu(ce->lo); ce->hi = le64_to_cpu(ce->hi); if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { ce->val[2] = le64_to_cpu(ce->val[2]); ce->val[3] = le64_to_cpu(ce->val[3]); } return 0; } static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) { return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; } static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) { return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); } /* Whether the pte indicates the address of the page frame */ static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) { return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); } /* Get the content of a spte located in @base_addr[@index] */ static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) { uint64_t slpte; assert(index < VTD_SL_PT_ENTRY_NR); if (dma_memory_read(&address_space_memory, base_addr + index * sizeof(slpte), &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) { slpte = (uint64_t)-1; return slpte; } slpte = le64_to_cpu(slpte); return slpte; } /* Given an iova and the level of paging structure, return the offset * of current level. */ static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) { return (iova >> vtd_slpt_level_shift(level)) & ((1ULL << VTD_SL_LEVEL_BITS) - 1); } /* Check Capability Register to see if the @level of page-table is supported */ static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) { return VTD_CAP_SAGAW_MASK & s->cap & (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); } /* Return true if check passed, otherwise false */ static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu, VTDPASIDEntry *pe) { switch (VTD_PE_GET_TYPE(pe)) { case VTD_SM_PASID_ENTRY_FLT: case VTD_SM_PASID_ENTRY_SLT: case VTD_SM_PASID_ENTRY_NESTED: break; case VTD_SM_PASID_ENTRY_PT: if (!x86_iommu->pt_supported) { return false; } break; default: /* Unknown type */ return false; } return true; } static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire) { return pdire->val & 1; } /** * Caller of this function should check present bit if wants * to use pdir entry for further usage except for fpd bit check. */ static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base, uint32_t pasid, VTDPASIDDirEntry *pdire) { uint32_t index; dma_addr_t addr, entry_size; index = VTD_PASID_DIR_INDEX(pasid); entry_size = VTD_PASID_DIR_ENTRY_SIZE; addr = pasid_dir_base + index * entry_size; if (dma_memory_read(&address_space_memory, addr, pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) { return -VTD_FR_PASID_TABLE_INV; } pdire->val = le64_to_cpu(pdire->val); return 0; } static inline bool vtd_pe_present(VTDPASIDEntry *pe) { return pe->val[0] & VTD_PASID_ENTRY_P; } static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s, uint32_t pasid, dma_addr_t addr, VTDPASIDEntry *pe) { uint32_t index; dma_addr_t entry_size; X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); index = VTD_PASID_TABLE_INDEX(pasid); entry_size = VTD_PASID_ENTRY_SIZE; addr = addr + index * entry_size; if (dma_memory_read(&address_space_memory, addr, pe, entry_size, MEMTXATTRS_UNSPECIFIED)) { return -VTD_FR_PASID_TABLE_INV; } for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) { pe->val[i] = le64_to_cpu(pe->val[i]); } /* Do translation type check */ if (!vtd_pe_type_check(x86_iommu, pe)) { return -VTD_FR_PASID_TABLE_INV; } if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) { return -VTD_FR_PASID_TABLE_INV; } return 0; } /** * Caller of this function should check present bit if wants * to use pasid entry for further usage except for fpd bit check. */ static int vtd_get_pe_from_pdire(IntelIOMMUState *s, uint32_t pasid, VTDPASIDDirEntry *pdire, VTDPASIDEntry *pe) { dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe); } /** * This function gets a pasid entry from a specified pasid * table (includes dir and leaf table) with a specified pasid. * Sanity check should be done to ensure return a present * pasid entry to caller. */ static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s, dma_addr_t pasid_dir_base, uint32_t pasid, VTDPASIDEntry *pe) { int ret; VTDPASIDDirEntry pdire; ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire); if (ret) { return ret; } if (!vtd_pdire_present(&pdire)) { return -VTD_FR_PASID_TABLE_INV; } ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe); if (ret) { return ret; } if (!vtd_pe_present(pe)) { return -VTD_FR_PASID_TABLE_INV; } return 0; } static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, VTDContextEntry *ce, VTDPASIDEntry *pe, uint32_t pasid) { dma_addr_t pasid_dir_base; int ret = 0; if (pasid == PCI_NO_PASID) { pasid = VTD_CE_GET_RID2PASID(ce); } pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe); return ret; } static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, VTDContextEntry *ce, bool *pe_fpd_set, uint32_t pasid) { int ret; dma_addr_t pasid_dir_base; VTDPASIDDirEntry pdire; VTDPASIDEntry pe; if (pasid == PCI_NO_PASID) { pasid = VTD_CE_GET_RID2PASID(ce); } pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); /* * No present bit check since fpd is meaningful even * if the present bit is clear. */ ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire); if (ret) { return ret; } if (pdire.val & VTD_PASID_DIR_FPD) { *pe_fpd_set = true; return 0; } if (!vtd_pdire_present(&pdire)) { return -VTD_FR_PASID_TABLE_INV; } /* * No present bit check since fpd is meaningful even * if the present bit is clear. */ ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe); if (ret) { return ret; } if (pe.val[0] & VTD_PASID_ENTRY_FPD) { *pe_fpd_set = true; } return 0; } /* Get the page-table level that hardware should use for the second-level * page-table walk from the Address Width field of context-entry. */ static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) { return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); } static uint32_t vtd_get_iova_level(IntelIOMMUState *s, VTDContextEntry *ce, uint32_t pasid) { VTDPASIDEntry pe; if (s->root_scalable) { vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); return VTD_PE_GET_LEVEL(&pe); } return vtd_ce_get_level(ce); } static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) { return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; } static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, VTDContextEntry *ce, uint32_t pasid) { VTDPASIDEntry pe; if (s->root_scalable) { vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; } return vtd_ce_get_agaw(ce); } static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) { return ce->lo & VTD_CONTEXT_ENTRY_TT; } /* Only for Legacy Mode. Return true if check passed, otherwise false */ static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, VTDContextEntry *ce) { switch (vtd_ce_get_type(ce)) { case VTD_CONTEXT_TT_MULTI_LEVEL: /* Always supported */ break; case VTD_CONTEXT_TT_DEV_IOTLB: if (!x86_iommu->dt_supported) { error_report_once("%s: DT specified but not supported", __func__); return false; } break; case VTD_CONTEXT_TT_PASS_THROUGH: if (!x86_iommu->pt_supported) { error_report_once("%s: PT specified but not supported", __func__); return false; } break; default: /* Unknown type */ error_report_once("%s: unknown ce type: %"PRIu32, __func__, vtd_ce_get_type(ce)); return false; } return true; } static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, VTDContextEntry *ce, uint8_t aw, uint32_t pasid) { uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid); return 1ULL << MIN(ce_agaw, aw); } /* Return true if IOVA passes range check, otherwise false. */ static inline bool vtd_iova_range_check(IntelIOMMUState *s, uint64_t iova, VTDContextEntry *ce, uint8_t aw, uint32_t pasid) { /* * Check if @iova is above 2^X-1, where X is the minimum of MGAW * in CAP_REG and AW in context-entry. */ return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1)); } static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, VTDContextEntry *ce, uint32_t pasid) { VTDPASIDEntry pe; if (s->root_scalable) { vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; } return vtd_ce_get_slpt_base(ce); } /* * Rsvd field masks for spte: * vtd_spte_rsvd 4k pages * vtd_spte_rsvd_large large pages * * We support only 3-level and 4-level page tables (see vtd_init() which * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap). */ #define VTD_SPTE_RSVD_LEN 5 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN]; static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN]; static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) { uint64_t rsvd_mask; /* * We should have caught a guest-mis-programmed level earlier, * via vtd_is_level_supported. */ assert(level < VTD_SPTE_RSVD_LEN); /* * Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and * checked by vtd_is_last_slpte(). */ assert(level); if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) && (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) { /* large page */ rsvd_mask = vtd_spte_rsvd_large[level]; } else { rsvd_mask = vtd_spte_rsvd[level]; } return slpte & rsvd_mask; } /* Given the @iova, get relevant @slptep. @slpte_level will be the last level * of the translation, can be used for deciding the size of large page. */ static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, uint64_t iova, bool is_write, uint64_t *slptep, uint32_t *slpte_level, bool *reads, bool *writes, uint8_t aw_bits, uint32_t pasid) { dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); uint32_t level = vtd_get_iova_level(s, ce, pasid); uint32_t offset; uint64_t slpte; uint64_t access_right_check; uint64_t xlat, size; if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) { error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 "," "pasid=0x%" PRIx32 ")", __func__, iova, pasid); return -VTD_FR_ADDR_BEYOND_MGAW; } /* FIXME: what is the Atomics request here? */ access_right_check = is_write ? VTD_SL_W : VTD_SL_R; while (true) { offset = vtd_iova_level_offset(iova, level); slpte = vtd_get_slpte(addr, offset); if (slpte == (uint64_t)-1) { error_report_once("%s: detected read error on DMAR slpte " "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")", __func__, iova, pasid); if (level == vtd_get_iova_level(s, ce, pasid)) { /* Invalid programming of context-entry */ return -VTD_FR_CONTEXT_ENTRY_INV; } else { return -VTD_FR_PAGING_ENTRY_INV; } } *reads = (*reads) && (slpte & VTD_SL_R); *writes = (*writes) && (slpte & VTD_SL_W); if (!(slpte & access_right_check)) { error_report_once("%s: detected slpte permission error " "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " "slpte=0x%" PRIx64 ", write=%d, pasid=0x%" PRIx32 ")", __func__, iova, level, slpte, is_write, pasid); return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; } if (vtd_slpte_nonzero_rsvd(slpte, level)) { error_report_once("%s: detected splte reserve non-zero " "iova=0x%" PRIx64 ", level=0x%" PRIx32 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")", __func__, iova, level, slpte, pasid); return -VTD_FR_PAGING_ENTRY_RSVD; } if (vtd_is_last_slpte(slpte, level)) { *slptep = slpte; *slpte_level = level; break; } addr = vtd_get_slpte_addr(slpte, aw_bits); level--; } xlat = vtd_get_slpte_addr(*slptep, aw_bits); size = ~vtd_slpt_level_page_mask(level) + 1; /* * From VT-d spec 3.14: Untranslated requests and translation * requests that result in an address in the interrupt range will be * blocked with condition code LGN.4 or SGN.8. */ if ((xlat > VTD_INTERRUPT_ADDR_LAST || xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) { return 0; } else { error_report_once("%s: xlat address is in interrupt range " "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " "slpte=0x%" PRIx64 ", write=%d, " "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", " "pasid=0x%" PRIx32 ")", __func__, iova, level, slpte, is_write, xlat, size, pasid); return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR : -VTD_FR_INTERRUPT_ADDR; } } typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private); /** * Constant information used during page walking * * @hook_fn: hook func to be called when detected page * @private: private data to be passed into hook func * @notify_unmap: whether we should notify invalid entries * @as: VT-d address space of the device * @aw: maximum address width * @domain: domain ID of the page walk */ typedef struct { VTDAddressSpace *as; vtd_page_walk_hook hook_fn; void *private; bool notify_unmap; uint8_t aw; uint16_t domain_id; } vtd_page_walk_info; static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info) { VTDAddressSpace *as = info->as; vtd_page_walk_hook hook_fn = info->hook_fn; void *private = info->private; IOMMUTLBEntry *entry = &event->entry; DMAMap target = { .iova = entry->iova, .size = entry->addr_mask, .translated_addr = entry->translated_addr, .perm = entry->perm, }; const DMAMap *mapped = iova_tree_find(as->iova_tree, &target); if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) { trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); return 0; } assert(hook_fn); /* Update local IOVA mapped ranges */ if (event->type == IOMMU_NOTIFIER_MAP) { if (mapped) { /* If it's exactly the same translation, skip */ if (!memcmp(mapped, &target, sizeof(target))) { trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, entry->translated_addr); return 0; } else { /* * Translation changed. Normally this should not * happen, but it can happen when with buggy guest * OSes. Note that there will be a small window that * we don't have map at all. But that's the best * effort we can do. The ideal way to emulate this is * atomically modify the PTE to follow what has * changed, but we can't. One example is that vfio * driver only has VFIO_IOMMU_[UN]MAP_DMA but no * interface to modify a mapping (meanwhile it seems * meaningless to even provide one). Anyway, let's * mark this as a TODO in case one day we'll have * a better solution. */ IOMMUAccessFlags cache_perm = entry->perm; int ret; /* Emulate an UNMAP */ event->type = IOMMU_NOTIFIER_UNMAP; entry->perm = IOMMU_NONE; trace_vtd_page_walk_one(info->domain_id, entry->iova, entry->translated_addr, entry->addr_mask, entry->perm); ret = hook_fn(event, private); if (ret) { return ret; } /* Drop any existing mapping */ iova_tree_remove(as->iova_tree, target); /* Recover the correct type */ event->type = IOMMU_NOTIFIER_MAP; entry->perm = cache_perm; } } iova_tree_insert(as->iova_tree, &target); } else { if (!mapped) { /* Skip since we didn't map this range at all */ trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); return 0; } iova_tree_remove(as->iova_tree, target); } trace_vtd_page_walk_one(info->domain_id, entry->iova, entry->translated_addr, entry->addr_mask, entry->perm); return hook_fn(event, private); } /** * vtd_page_walk_level - walk over specific level for IOVA range * * @addr: base GPA addr to start the walk * @start: IOVA range start address * @end: IOVA range end address (start <= addr < end) * @read: whether parent level has read permission * @write: whether parent level has write permission * @info: constant information for the page walk */ static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, uint64_t end, uint32_t level, bool read, bool write, vtd_page_walk_info *info) { bool read_cur, write_cur, entry_valid; uint32_t offset; uint64_t slpte; uint64_t subpage_size, subpage_mask; IOMMUTLBEvent event; uint64_t iova = start; uint64_t iova_next; int ret = 0; trace_vtd_page_walk_level(addr, level, start, end); subpage_size = 1ULL << vtd_slpt_level_shift(level); subpage_mask = vtd_slpt_level_page_mask(level); while (iova < end) { iova_next = (iova & subpage_mask) + subpage_size; offset = vtd_iova_level_offset(iova, level); slpte = vtd_get_slpte(addr, offset); if (slpte == (uint64_t)-1) { trace_vtd_page_walk_skip_read(iova, iova_next); goto next; } if (vtd_slpte_nonzero_rsvd(slpte, level)) { trace_vtd_page_walk_skip_reserve(iova, iova_next); goto next; } /* Permissions are stacked with parents' */ read_cur = read && (slpte & VTD_SL_R); write_cur = write && (slpte & VTD_SL_W); /* * As long as we have either read/write permission, this is a * valid entry. The rule works for both page entries and page * table entries. */ entry_valid = read_cur | write_cur; if (!vtd_is_last_slpte(slpte, level) && entry_valid) { /* * This is a valid PDE (or even bigger than PDE). We need * to walk one further level. */ ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), iova, MIN(iova_next, end), level - 1, read_cur, write_cur, info); } else { /* * This means we are either: * * (1) the real page entry (either 4K page, or huge page) * (2) the whole range is invalid * * In either case, we send an IOTLB notification down. */ event.entry.target_as = &address_space_memory; event.entry.iova = iova & subpage_mask; event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); event.entry.addr_mask = ~subpage_mask; /* NOTE: this is only meaningful if entry_valid == true */ event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP : IOMMU_NOTIFIER_UNMAP; ret = vtd_page_walk_one(&event, info); } if (ret < 0) { return ret; } next: iova = iova_next; } return 0; } /** * vtd_page_walk - walk specific IOVA range, and call the hook * * @s: intel iommu state * @ce: context entry to walk upon * @start: IOVA address to start the walk * @end: IOVA range end address (start <= addr < end) * @info: page walking information struct */ static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, uint64_t start, uint64_t end, vtd_page_walk_info *info, uint32_t pasid) { dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); uint32_t level = vtd_get_iova_level(s, ce, pasid); if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) { return -VTD_FR_ADDR_BEYOND_MGAW; } if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) { /* Fix end so that it reaches the maximum */ end = vtd_iova_limit(s, ce, info->aw, pasid); } return vtd_page_walk_level(addr, start, end, level, true, true, info); } static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, VTDRootEntry *re) { /* Legacy Mode reserved bits check */ if (!s->root_scalable && (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) goto rsvd_err; /* Scalable Mode reserved bits check */ if (s->root_scalable && ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) goto rsvd_err; return 0; rsvd_err: error_report_once("%s: invalid root entry: hi=0x%"PRIx64 ", lo=0x%"PRIx64, __func__, re->hi, re->lo); return -VTD_FR_ROOT_ENTRY_RSVD; } static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, VTDContextEntry *ce) { if (!s->root_scalable && (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { error_report_once("%s: invalid context entry: hi=%"PRIx64 ", lo=%"PRIx64" (reserved nonzero)", __func__, ce->hi, ce->lo); return -VTD_FR_CONTEXT_ENTRY_RSVD; } if (s->root_scalable && (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || ce->val[2] || ce->val[3])) { error_report_once("%s: invalid context entry: val[3]=%"PRIx64 ", val[2]=%"PRIx64 ", val[1]=%"PRIx64 ", val[0]=%"PRIx64" (reserved nonzero)", __func__, ce->val[3], ce->val[2], ce->val[1], ce->val[0]); return -VTD_FR_CONTEXT_ENTRY_RSVD; } return 0; } static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, VTDContextEntry *ce) { VTDPASIDEntry pe; /* * Make sure in Scalable Mode, a present context entry * has valid rid2pasid setting, which includes valid * rid2pasid field and corresponding pasid entry setting */ return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID); } /* Map a device to its corresponding domain (context-entry) */ static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, uint8_t devfn, VTDContextEntry *ce) { VTDRootEntry re; int ret_fr; X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); ret_fr = vtd_get_root_entry(s, bus_num, &re); if (ret_fr) { return ret_fr; } if (!vtd_root_entry_present(s, &re, devfn)) { /* Not error - it's okay we don't have root entry. */ trace_vtd_re_not_present(bus_num); return -VTD_FR_ROOT_ENTRY_P; } ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); if (ret_fr) { return ret_fr; } ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); if (ret_fr) { return ret_fr; } if (!vtd_ce_present(ce)) { /* Not error - it's okay we don't have context entry. */ trace_vtd_ce_not_present(bus_num, devfn); return -VTD_FR_CONTEXT_ENTRY_P; } ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); if (ret_fr) { return ret_fr; } /* Check if the programming of context-entry is valid */ if (!s->root_scalable && !vtd_is_level_supported(s, vtd_ce_get_level(ce))) { error_report_once("%s: invalid context entry: hi=%"PRIx64 ", lo=%"PRIx64" (level %d not supported)", __func__, ce->hi, ce->lo, vtd_ce_get_level(ce)); return -VTD_FR_CONTEXT_ENTRY_INV; } if (!s->root_scalable) { /* Do translation type check */ if (!vtd_ce_type_check(x86_iommu, ce)) { /* Errors dumped in vtd_ce_type_check() */ return -VTD_FR_CONTEXT_ENTRY_INV; } } else { /* * Check if the programming of context-entry.rid2pasid * and corresponding pasid setting is valid, and thus * avoids to check pasid entry fetching result in future * helper function calling. */ ret_fr = vtd_ce_rid2pasid_check(s, ce); if (ret_fr) { return ret_fr; } } return 0; } static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event, void *private) { memory_region_notify_iommu(private, 0, *event); return 0; } static uint16_t vtd_get_domain_id(IntelIOMMUState *s, VTDContextEntry *ce, uint32_t pasid) { VTDPASIDEntry pe; if (s->root_scalable) { vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); return VTD_SM_PASID_ENTRY_DID(pe.val[1]); } return VTD_CONTEXT_ENTRY_DID(ce->hi); } static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, VTDContextEntry *ce, hwaddr addr, hwaddr size) { IntelIOMMUState *s = vtd_as->iommu_state; vtd_page_walk_info info = { .hook_fn = vtd_sync_shadow_page_hook, .private = (void *)&vtd_as->iommu, .notify_unmap = true, .aw = s->aw_bits, .as = vtd_as, .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid), }; return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid); } static int vtd_address_space_sync(VTDAddressSpace *vtd_as) { int ret; VTDContextEntry ce; IOMMUNotifier *n; /* If no MAP notifier registered, we simply invalidate all the cache */ if (!vtd_as_has_map_notifier(vtd_as)) { IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { memory_region_unmap_iommu_notifier_range(n); } return 0; } ret = vtd_dev_to_context_entry(vtd_as->iommu_state, pci_bus_num(vtd_as->bus), vtd_as->devfn, &ce); if (ret) { if (ret == -VTD_FR_CONTEXT_ENTRY_P) { /* * It's a valid scenario to have a context entry that is * not present. For example, when a device is removed * from an existing domain then the context entry will be * zeroed by the guest before it was put into another * domain. When this happens, instead of synchronizing * the shadow pages we should invalidate all existing * mappings and notify the backends. */ IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { vtd_address_space_unmap(vtd_as, n); } ret = 0; } return ret; } return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); } /* * Check if specific device is configured to bypass address * translation for DMA requests. In Scalable Mode, bypass * 1st-level translation or 2nd-level translation, it depends * on PGTT setting. */ static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce, uint32_t pasid) { VTDPASIDEntry pe; int ret; if (s->root_scalable) { ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); if (ret) { /* * This error is guest triggerable. We should assumt PT * not enabled for safety. */ return false; } return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); } return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH); } static bool vtd_as_pt_enabled(VTDAddressSpace *as) { IntelIOMMUState *s; VTDContextEntry ce; assert(as); s = as->iommu_state; if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn, &ce)) { /* * Possibly failed to parse the context entry for some reason * (e.g., during init, or any guest configuration errors on * context entries). We should assume PT not enabled for * safety. */ return false; } return vtd_dev_pt_enabled(s, &ce, as->pasid); } /* Return whether the device is using IOMMU translation. */ static bool vtd_switch_address_space(VTDAddressSpace *as) { bool use_iommu, pt; /* Whether we need to take the BQL on our own */ bool take_bql = !bql_locked(); assert(as); use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as); pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as); trace_vtd_switch_address_space(pci_bus_num(as->bus), VTD_PCI_SLOT(as->devfn), VTD_PCI_FUNC(as->devfn), use_iommu); /* * It's possible that we reach here without BQL, e.g., when called * from vtd_pt_enable_fast_path(). However the memory APIs need * it. We'd better make sure we have had it already, or, take it. */ if (take_bql) { bql_lock(); } /* Turn off first then on the other */ if (use_iommu) { memory_region_set_enabled(&as->nodmar, false); memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); /* * vt-d spec v3.4 3.14: * * """ * Requests-with-PASID with input address in range 0xFEEx_xxxx * are translated normally like any other request-with-PASID * through DMA-remapping hardware. * """ * * Need to disable ir for as with PASID. */ if (as->pasid != PCI_NO_PASID) { memory_region_set_enabled(&as->iommu_ir, false); } else { memory_region_set_enabled(&as->iommu_ir, true); } } else { memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); memory_region_set_enabled(&as->nodmar, true); } /* * vtd-spec v3.4 3.14: * * """ * Requests-with-PASID with input address in range 0xFEEx_xxxx are * translated normally like any other request-with-PASID through * DMA-remapping hardware. However, if such a request is processed * using pass-through translation, it will be blocked as described * in the paragraph below. * * Software must not program paging-structure entries to remap any * address to the interrupt address range. Untranslated requests * and translation requests that result in an address in the * interrupt range will be blocked with condition code LGN.4 or * SGN.8. * """ * * We enable per as memory region (iommu_ir_fault) for catching * the translation for interrupt range through PASID + PT. */ if (pt && as->pasid != PCI_NO_PASID) { memory_region_set_enabled(&as->iommu_ir_fault, true); } else { memory_region_set_enabled(&as->iommu_ir_fault, false); } if (take_bql) { bql_unlock(); } return use_iommu; } static void vtd_switch_address_space_all(IntelIOMMUState *s) { VTDAddressSpace *vtd_as; GHashTableIter iter; g_hash_table_iter_init(&iter, s->vtd_address_spaces); while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) { vtd_switch_address_space(vtd_as); } } static const bool vtd_qualified_faults[] = { [VTD_FR_RESERVED] = false, [VTD_FR_ROOT_ENTRY_P] = false, [VTD_FR_CONTEXT_ENTRY_P] = true, [VTD_FR_CONTEXT_ENTRY_INV] = true, [VTD_FR_ADDR_BEYOND_MGAW] = true, [VTD_FR_WRITE] = true, [VTD_FR_READ] = true, [VTD_FR_PAGING_ENTRY_INV] = true, [VTD_FR_ROOT_TABLE_INV] = false, [VTD_FR_CONTEXT_TABLE_INV] = false, [VTD_FR_INTERRUPT_ADDR] = true, [VTD_FR_ROOT_ENTRY_RSVD] = false, [VTD_FR_PAGING_ENTRY_RSVD] = true, [VTD_FR_CONTEXT_ENTRY_TT] = true, [VTD_FR_PASID_TABLE_INV] = false, [VTD_FR_SM_INTERRUPT_ADDR] = true, [VTD_FR_MAX] = false, }; /* To see if a fault condition is "qualified", which is reported to software * only if the FPD field in the context-entry used to process the faulting * request is 0. */ static inline bool vtd_is_qualified_fault(VTDFaultReason fault) { return vtd_qualified_faults[fault]; } static inline bool vtd_is_interrupt_addr(hwaddr addr) { return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; } static gboolean vtd_find_as_by_sid(gpointer key, gpointer value, gpointer user_data) { struct vtd_as_key *as_key = (struct vtd_as_key *)key; uint16_t target_sid = *(uint16_t *)user_data; uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn); return sid == target_sid; } static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid) { uint8_t bus_num = PCI_BUS_NUM(sid); VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num]; if (vtd_as && (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) { return vtd_as; } vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid); s->vtd_as_cache[bus_num] = vtd_as; return vtd_as; } static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) { VTDAddressSpace *vtd_as; bool success = false; vtd_as = vtd_get_as_by_sid(s, source_id); if (!vtd_as) { goto out; } if (vtd_switch_address_space(vtd_as) == false) { /* We switched off IOMMU region successfully. */ success = true; } out: trace_vtd_pt_enable_fast_path(source_id, success); } static void vtd_report_fault(IntelIOMMUState *s, int err, bool is_fpd_set, uint16_t source_id, hwaddr addr, bool is_write, bool is_pasid, uint32_t pasid) { if (is_fpd_set && vtd_is_qualified_fault(err)) { trace_vtd_fault_disabled(); } else { vtd_report_dmar_fault(s, source_id, addr, err, is_write, is_pasid, pasid); } } /* Map dev to context-entry then do a paging-structures walk to do a iommu * translation. * * Called from RCU critical section. * * @bus_num: The bus number * @devfn: The devfn, which is the combined of device and function number * @is_write: The access is a write operation * @entry: IOMMUTLBEntry that contain the addr to be translated and result * * Returns true if translation is successful, otherwise false. */ static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, uint8_t devfn, hwaddr addr, bool is_write, IOMMUTLBEntry *entry) { IntelIOMMUState *s = vtd_as->iommu_state; VTDContextEntry ce; uint8_t bus_num = pci_bus_num(bus); VTDContextCacheEntry *cc_entry; uint64_t slpte, page_mask; uint32_t level, pasid = vtd_as->pasid; uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn); int ret_fr; bool is_fpd_set = false; bool reads = true; bool writes = true; uint8_t access_flags; bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable; VTDIOTLBEntry *iotlb_entry; /* * We have standalone memory region for interrupt addresses, we * should never receive translation requests in this region. */ assert(!vtd_is_interrupt_addr(addr)); vtd_iommu_lock(s); cc_entry = &vtd_as->context_cache_entry; /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */ if (!rid2pasid) { iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); if (iotlb_entry) { trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, iotlb_entry->domain_id); slpte = iotlb_entry->slpte; access_flags = iotlb_entry->access_flags; page_mask = iotlb_entry->mask; goto out; } } /* Try to fetch context-entry from cache first */ if (cc_entry->context_cache_gen == s->context_cache_gen) { trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, cc_entry->context_entry.lo, cc_entry->context_cache_gen); ce = cc_entry->context_entry; is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; if (!is_fpd_set && s->root_scalable) { ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); if (ret_fr) { vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, addr, is_write, false, 0); goto error; } } } else { ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; if (!ret_fr && !is_fpd_set && s->root_scalable) { ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); } if (ret_fr) { vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, addr, is_write, false, 0); goto error; } /* Update context-cache */ trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, cc_entry->context_cache_gen, s->context_cache_gen); cc_entry->context_entry = ce; cc_entry->context_cache_gen = s->context_cache_gen; } if (rid2pasid) { pasid = VTD_CE_GET_RID2PASID(&ce); } /* * We don't need to translate for pass-through context entries. * Also, let's ignore IOTLB caching as well for PT devices. */ if (vtd_dev_pt_enabled(s, &ce, pasid)) { entry->iova = addr & VTD_PAGE_MASK_4K; entry->translated_addr = entry->iova; entry->addr_mask = ~VTD_PAGE_MASK_4K; entry->perm = IOMMU_RW; trace_vtd_translate_pt(source_id, entry->iova); /* * When this happens, it means firstly caching-mode is not * enabled, and this is the first passthrough translation for * the device. Let's enable the fast path for passthrough. * * When passthrough is disabled again for the device, we can * capture it via the context entry invalidation, then the * IOMMU region can be swapped back. */ vtd_pt_enable_fast_path(s, source_id); vtd_iommu_unlock(s); return true; } /* Try to fetch slpte form IOTLB for RID2PASID slow path */ if (rid2pasid) { iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); if (iotlb_entry) { trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, iotlb_entry->domain_id); slpte = iotlb_entry->slpte; access_flags = iotlb_entry->access_flags; page_mask = iotlb_entry->mask; goto out; } } ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level, &reads, &writes, s->aw_bits, pasid); if (ret_fr) { vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, addr, is_write, pasid != PCI_NO_PASID, pasid); goto error; } page_mask = vtd_slpt_level_page_mask(level); access_flags = IOMMU_ACCESS_FLAG(reads, writes); vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid), addr, slpte, access_flags, level, pasid); out: vtd_iommu_unlock(s); entry->iova = addr & page_mask; entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; entry->addr_mask = ~page_mask; entry->perm = access_flags; return true; error: vtd_iommu_unlock(s); entry->iova = 0; entry->translated_addr = 0; entry->addr_mask = 0; entry->perm = IOMMU_NONE; return false; } static void vtd_root_table_setup(IntelIOMMUState *s) { s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); vtd_update_scalable_state(s); trace_vtd_reg_dmar_root(s->root, s->root_scalable); } static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, uint32_t index, uint32_t mask) { x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); } static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) { uint64_t value = 0; value = vtd_get_quad_raw(s, DMAR_IRTA_REG); s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); s->intr_eime = value & VTD_IRTA_EIME; /* Notify global invalidation */ vtd_iec_notify_all(s, true, 0, 0); trace_vtd_reg_ir_root(s->intr_root, s->intr_size); } static void vtd_iommu_replay_all(IntelIOMMUState *s) { VTDAddressSpace *vtd_as; QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { vtd_address_space_sync(vtd_as); } } static void vtd_context_global_invalidate(IntelIOMMUState *s) { trace_vtd_inv_desc_cc_global(); /* Protects context cache */ vtd_iommu_lock(s); s->context_cache_gen++; if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { vtd_reset_context_cache_locked(s); } vtd_iommu_unlock(s); vtd_address_space_refresh_all(s); /* * From VT-d spec 6.5.2.1, a global context entry invalidation * should be followed by a IOTLB global invalidation, so we should * be safe even without this. Hoewever, let's replay the region as * well to be safer, and go back here when we need finer tunes for * VT-d emulation codes. */ vtd_iommu_replay_all(s); } /* Do a context-cache device-selective invalidation. * @func_mask: FM field after shifting */ static void vtd_context_device_invalidate(IntelIOMMUState *s, uint16_t source_id, uint16_t func_mask) { GHashTableIter as_it; uint16_t mask; VTDAddressSpace *vtd_as; uint8_t bus_n, devfn; trace_vtd_inv_desc_cc_devices(source_id, func_mask); switch (func_mask & 3) { case 0: mask = 0; /* No bits in the SID field masked */ break; case 1: mask = 4; /* Mask bit 2 in the SID field */ break; case 2: mask = 6; /* Mask bit 2:1 in the SID field */ break; case 3: mask = 7; /* Mask bit 2:0 in the SID field */ break; default: g_assert_not_reached(); } mask = ~mask; bus_n = VTD_SID_TO_BUS(source_id); devfn = VTD_SID_TO_DEVFN(source_id); g_hash_table_iter_init(&as_it, s->vtd_address_spaces); while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { if ((pci_bus_num(vtd_as->bus) == bus_n) && (vtd_as->devfn & mask) == (devfn & mask)) { trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn)); vtd_iommu_lock(s); vtd_as->context_cache_entry.context_cache_gen = 0; vtd_iommu_unlock(s); /* * Do switch address space when needed, in case if the * device passthrough bit is switched. */ vtd_switch_address_space(vtd_as); /* * So a device is moving out of (or moving into) a * domain, resync the shadow page table. * This won't bring bad even if we have no such * notifier registered - the IOMMU notification * framework will skip MAP notifications if that * happened. */ vtd_address_space_sync(vtd_as); } } } /* Context-cache invalidation * Returns the Context Actual Invalidation Granularity. * @val: the content of the CCMD_REG */ static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) { uint64_t caig; uint64_t type = val & VTD_CCMD_CIRG_MASK; switch (type) { case VTD_CCMD_DOMAIN_INVL: /* Fall through */ case VTD_CCMD_GLOBAL_INVL: caig = VTD_CCMD_GLOBAL_INVL_A; vtd_context_global_invalidate(s); break; case VTD_CCMD_DEVICE_INVL: caig = VTD_CCMD_DEVICE_INVL_A; vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); break; default: error_report_once("%s: invalid context: 0x%" PRIx64, __func__, val); caig = 0; } return caig; } static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) { trace_vtd_inv_desc_iotlb_global(); vtd_reset_iotlb(s); vtd_iommu_replay_all(s); } static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) { VTDContextEntry ce; VTDAddressSpace *vtd_as; trace_vtd_inv_desc_iotlb_domain(domain_id); vtd_iommu_lock(s); g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, &domain_id); vtd_iommu_unlock(s); QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), vtd_as->devfn, &ce) && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { vtd_address_space_sync(vtd_as); } } } static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, uint16_t domain_id, hwaddr addr, uint8_t am, uint32_t pasid) { VTDAddressSpace *vtd_as; VTDContextEntry ce; int ret; hwaddr size = (1 << am) * VTD_PAGE_SIZE; QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) { continue; } ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), vtd_as->devfn, &ce); if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { if (vtd_as_has_map_notifier(vtd_as)) { /* * As long as we have MAP notifications registered in * any of our IOMMU notifiers, we need to sync the * shadow page table. */ vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); } else { /* * For UNMAP-only notifiers, we don't need to walk the * page tables. We just deliver the PSI down to * invalidate caches. */ const IOMMUTLBEvent event = { .type = IOMMU_NOTIFIER_UNMAP, .entry = { .target_as = &address_space_memory, .iova = addr, .translated_addr = 0, .addr_mask = size - 1, .perm = IOMMU_NONE, }, }; memory_region_notify_iommu(&vtd_as->iommu, 0, event); } } } } static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, hwaddr addr, uint8_t am) { VTDIOTLBPageInvInfo info; trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); assert(am <= VTD_MAMV); info.domain_id = domain_id; info.addr = addr; info.mask = ~((1 << am) - 1); vtd_iommu_lock(s); g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); vtd_iommu_unlock(s); vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID); } /* Flush IOTLB * Returns the IOTLB Actual Invalidation Granularity. * @val: the content of the IOTLB_REG */ static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) { uint64_t iaig; uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; uint16_t domain_id; hwaddr addr; uint8_t am; switch (type) { case VTD_TLB_GLOBAL_FLUSH: iaig = VTD_TLB_GLOBAL_FLUSH_A; vtd_iotlb_global_invalidate(s); break; case VTD_TLB_DSI_FLUSH: domain_id = VTD_TLB_DID(val); iaig = VTD_TLB_DSI_FLUSH_A; vtd_iotlb_domain_invalidate(s, domain_id); break; case VTD_TLB_PSI_FLUSH: domain_id = VTD_TLB_DID(val); addr = vtd_get_quad_raw(s, DMAR_IVA_REG); am = VTD_IVA_AM(addr); addr = VTD_IVA_ADDR(addr); if (am > VTD_MAMV) { error_report_once("%s: address mask overflow: 0x%" PRIx64, __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); iaig = 0; break; } iaig = VTD_TLB_PSI_FLUSH_A; vtd_iotlb_page_invalidate(s, domain_id, addr, am); break; default: error_report_once("%s: invalid granularity: 0x%" PRIx64, __func__, val); iaig = 0; } return iaig; } static void vtd_fetch_inv_desc(IntelIOMMUState *s); static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) { return s->qi_enabled && (s->iq_tail == s->iq_head) && (s->iq_last_desc_type == VTD_INV_DESC_WAIT); } static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) { uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); trace_vtd_inv_qi_enable(en); if (en) { s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); /* 2^(x+8) entries */ s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); s->qi_enabled = true; trace_vtd_inv_qi_setup(s->iq, s->iq_size); /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); if (s->iq_tail != 0) { /* * This is a spec violation but Windows guests are known to set up * Queued Invalidation this way so we allow the write and process * Invalidation Descriptors right away. */ trace_vtd_warn_invalid_qi_tail(s->iq_tail); if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { vtd_fetch_inv_desc(s); } } } else { if (vtd_queued_inv_disable_check(s)) { /* disable Queued Invalidation */ vtd_set_quad_raw(s, DMAR_IQH_REG, 0); s->iq_head = 0; s->qi_enabled = false; /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); } else { error_report_once("%s: detected improper state when disable QI " "(head=0x%x, tail=0x%x, last_type=%d)", __func__, s->iq_head, s->iq_tail, s->iq_last_desc_type); } } } /* Set Root Table Pointer */ static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) { vtd_root_table_setup(s); /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); vtd_reset_caches(s); vtd_address_space_refresh_all(s); } /* Set Interrupt Remap Table Pointer */ static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) { vtd_interrupt_remap_table_setup(s); /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); } /* Handle Translation Enable/Disable */ static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) { if (s->dmar_enabled == en) { return; } trace_vtd_dmar_enable(en); if (en) { s->dmar_enabled = true; /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); } else { s->dmar_enabled = false; /* Clear the index of Fault Recording Register */ s->next_frcd_reg = 0; /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); } vtd_reset_caches(s); vtd_address_space_refresh_all(s); } /* Handle Interrupt Remap Enable/Disable */ static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) { trace_vtd_ir_enable(en); if (en) { s->intr_enabled = true; /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); } else { s->intr_enabled = false; /* Ok - report back to driver */ vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); } } /* Handle write to Global Command Register */ static void vtd_handle_gcmd_write(IntelIOMMUState *s) { X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); uint32_t changed = status ^ val; trace_vtd_reg_write_gcmd(status, val); if ((changed & VTD_GCMD_TE) && s->dma_translation) { /* Translation enable/disable */ vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); } if (val & VTD_GCMD_SRTP) { /* Set/update the root-table pointer */ vtd_handle_gcmd_srtp(s); } if (changed & VTD_GCMD_QIE) { /* Queued Invalidation Enable */ vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); } if (val & VTD_GCMD_SIRTP) { /* Set/update the interrupt remapping root-table pointer */ vtd_handle_gcmd_sirtp(s); } if ((changed & VTD_GCMD_IRE) && x86_iommu_ir_supported(x86_iommu)) { /* Interrupt remap enable/disable */ vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); } } /* Handle write to Context Command Register */ static void vtd_handle_ccmd_write(IntelIOMMUState *s) { uint64_t ret; uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); /* Context-cache invalidation request */ if (val & VTD_CCMD_ICC) { if (s->qi_enabled) { error_report_once("Queued Invalidation enabled, " "should not use register-based invalidation"); return; } ret = vtd_context_cache_invalidate(s, val); /* Invalidation completed. Change something to show */ vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, ret); } } /* Handle write to IOTLB Invalidation Register */ static void vtd_handle_iotlb_write(IntelIOMMUState *s) { uint64_t ret; uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); /* IOTLB invalidation request */ if (val & VTD_TLB_IVT) { if (s->qi_enabled) { error_report_once("Queued Invalidation enabled, " "should not use register-based invalidation"); return; } ret = vtd_iotlb_flush(s, val); /* Invalidation completed. Change something to show */ vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_FLUSH_GRANU_MASK_A, ret); } } /* Fetch an Invalidation Descriptor from the Invalidation Queue */ static bool vtd_get_inv_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) { dma_addr_t base_addr = s->iq; uint32_t offset = s->iq_head; uint32_t dw = s->iq_dw ? 32 : 16; dma_addr_t addr = base_addr + offset * dw; if (dma_memory_read(&address_space_memory, addr, inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) { error_report_once("Read INV DESC failed."); return false; } inv_desc->lo = le64_to_cpu(inv_desc->lo); inv_desc->hi = le64_to_cpu(inv_desc->hi); if (dw == 32) { inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); } return true; } static bool vtd_inv_desc_reserved_check(IntelIOMMUState *s, VTDInvDesc *inv_desc, uint64_t mask[4], bool dw, const char *func_name, const char *desc_type) { if (s->iq_dw) { if (inv_desc->val[0] & mask[0] || inv_desc->val[1] & mask[1] || inv_desc->val[2] & mask[2] || inv_desc->val[3] & mask[3]) { error_report("%s: invalid %s desc val[3]: 0x%"PRIx64 " val[2]: 0x%"PRIx64" val[1]=0x%"PRIx64 " val[0]=0x%"PRIx64" (reserved nonzero)", func_name, desc_type, inv_desc->val[3], inv_desc->val[2], inv_desc->val[1], inv_desc->val[0]); return false; } } else { if (dw) { error_report("%s: 256-bit %s desc in 128-bit invalidation queue", func_name, desc_type); return false; } if (inv_desc->lo & mask[0] || inv_desc->hi & mask[1]) { error_report("%s: invalid %s desc: hi=%"PRIx64", lo=%"PRIx64 " (reserved nonzero)", func_name, desc_type, inv_desc->hi, inv_desc->lo); return false; } } return true; } static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) { uint64_t mask[4] = {VTD_INV_DESC_WAIT_RSVD_LO, VTD_INV_DESC_WAIT_RSVD_HI, VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, __func__, "wait")) { return false; } if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { /* Status Write */ uint32_t status_data = (uint32_t)(inv_desc->lo >> VTD_INV_DESC_WAIT_DATA_SHIFT); assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); /* FIXME: need to be masked with HAW? */ dma_addr_t status_addr = inv_desc->hi; trace_vtd_inv_desc_wait_sw(status_addr, status_data); status_data = cpu_to_le32(status_data); if (dma_memory_write(&address_space_memory, status_addr, &status_data, sizeof(status_data), MEMTXATTRS_UNSPECIFIED)) { trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); return false; } } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { /* Interrupt flag */ vtd_generate_completion_event(s); } else { error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 " (unknown type)", __func__, inv_desc->hi, inv_desc->lo); return false; } return true; } static bool vtd_process_context_cache_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) { uint16_t sid, fmask; uint64_t mask[4] = {VTD_INV_DESC_CC_RSVD, VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, __func__, "cc inv")) { return false; } switch (inv_desc->lo & VTD_INV_DESC_CC_G) { case VTD_INV_DESC_CC_DOMAIN: trace_vtd_inv_desc_cc_domain( (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); /* Fall through */ case VTD_INV_DESC_CC_GLOBAL: vtd_context_global_invalidate(s); break; case VTD_INV_DESC_CC_DEVICE: sid = VTD_INV_DESC_CC_SID(inv_desc->lo); fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); vtd_context_device_invalidate(s, sid, fmask); break; default: error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 " (invalid type)", __func__, inv_desc->hi, inv_desc->lo); return false; } return true; } static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) { uint16_t domain_id; uint8_t am; hwaddr addr; uint64_t mask[4] = {VTD_INV_DESC_IOTLB_RSVD_LO, VTD_INV_DESC_IOTLB_RSVD_HI, VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, __func__, "iotlb inv")) { return false; } switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { case VTD_INV_DESC_IOTLB_GLOBAL: vtd_iotlb_global_invalidate(s); break; case VTD_INV_DESC_IOTLB_DOMAIN: domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); vtd_iotlb_domain_invalidate(s, domain_id); break; case VTD_INV_DESC_IOTLB_PAGE: domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); if (am > VTD_MAMV) { error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)", __func__, inv_desc->hi, inv_desc->lo, am, (unsigned)VTD_MAMV); return false; } vtd_iotlb_page_invalidate(s, domain_id, addr, am); break; default: error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)", __func__, inv_desc->hi, inv_desc->lo, inv_desc->lo & VTD_INV_DESC_IOTLB_G); return false; } return true; } static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) { uint64_t mask[4] = {VTD_INV_DESC_IEC_RSVD, VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, __func__, "iec inv")) { return false; } trace_vtd_inv_desc_iec(inv_desc->iec.granularity, inv_desc->iec.index, inv_desc->iec.index_mask); vtd_iec_notify_all(s, !inv_desc->iec.granularity, inv_desc->iec.index, inv_desc->iec.index_mask); return true; } static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as, bool size, hwaddr addr) { /* * According to ATS spec table 2.4: * S = 0, bits 15:12 = xxxx range size: 4K * S = 1, bits 15:12 = xxx0 range size: 8K * S = 1, bits 15:12 = xx01 range size: 16K * S = 1, bits 15:12 = x011 range size: 32K * S = 1, bits 15:12 = 0111 range size: 64K * ... */ IOMMUTLBEvent event; uint64_t sz; if (size) { sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); addr &= ~(sz - 1); } else { sz = VTD_PAGE_SIZE; } event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP; event.entry.target_as = &vtd_dev_as->as; event.entry.addr_mask = sz - 1; event.entry.iova = addr; event.entry.perm = IOMMU_NONE; event.entry.translated_addr = 0; memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event); } static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) { VTDAddressSpace *vtd_dev_as; hwaddr addr; uint16_t sid; bool size; uint64_t mask[4] = {VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO, VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI, VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, __func__, "dev-iotlb inv")) { return false; } addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); /* * Using sid is OK since the guest should have finished the * initialization of both the bus and device. */ vtd_dev_as = vtd_get_as_by_sid(s, sid); if (!vtd_dev_as) { goto done; } do_invalidate_device_tlb(vtd_dev_as, size, addr); done: return true; } static bool vtd_process_inv_desc(IntelIOMMUState *s) { VTDInvDesc inv_desc; uint8_t desc_type; trace_vtd_inv_qi_head(s->iq_head); if (!vtd_get_inv_desc(s, &inv_desc)) { s->iq_last_desc_type = VTD_INV_DESC_NONE; return false; } desc_type = VTD_INV_DESC_TYPE(inv_desc.lo); /* FIXME: should update at first or at last? */ s->iq_last_desc_type = desc_type; switch (desc_type) { case VTD_INV_DESC_CC: trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); if (!vtd_process_context_cache_desc(s, &inv_desc)) { return false; } break; case VTD_INV_DESC_IOTLB: trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); if (!vtd_process_iotlb_desc(s, &inv_desc)) { return false; } break; case VTD_INV_DESC_WAIT: trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); if (!vtd_process_wait_desc(s, &inv_desc)) { return false; } break; case VTD_INV_DESC_IEC: trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); if (!vtd_process_inv_iec_desc(s, &inv_desc)) { return false; } break; case VTD_INV_DESC_DEVICE: trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { return false; } break; /* * TODO: the entity of below two cases will be implemented in future series. * To make guest (which integrates scalable mode support patch set in * iommu driver) work, just return true is enough so far. */ case VTD_INV_DESC_PC: case VTD_INV_DESC_PIOTLB: if (s->scalable_mode) { break; } /* fallthrough */ default: error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 " (unknown type)", __func__, inv_desc.hi, inv_desc.lo); return false; } s->iq_head++; if (s->iq_head == s->iq_size) { s->iq_head = 0; } return true; } /* Try to fetch and process more Invalidation Descriptors */ static void vtd_fetch_inv_desc(IntelIOMMUState *s) { int qi_shift; /* Refer to 10.4.23 of VT-d spec 3.0 */ qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4; trace_vtd_inv_qi_fetch(); if (s->iq_tail >= s->iq_size) { /* Detects an invalid Tail pointer */ error_report_once("%s: detected invalid QI tail " "(tail=0x%x, size=0x%x)", __func__, s->iq_tail, s->iq_size); vtd_handle_inv_queue_error(s); return; } while (s->iq_head != s->iq_tail) { if (!vtd_process_inv_desc(s)) { /* Invalidation Queue Errors */ vtd_handle_inv_queue_error(s); break; } /* Must update the IQH_REG in time */ vtd_set_quad_raw(s, DMAR_IQH_REG, (((uint64_t)(s->iq_head)) << qi_shift) & VTD_IQH_QH_MASK); } } /* Handle write to Invalidation Queue Tail Register */ static void vtd_handle_iqt_write(IntelIOMMUState *s) { uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { error_report_once("%s: RSV bit is set: val=0x%"PRIx64, __func__, val); vtd_handle_inv_queue_error(s); return; } s->iq_tail = VTD_IQT_QT(s->iq_dw, val); trace_vtd_inv_qi_tail(s->iq_tail); if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { /* Process Invalidation Queue here */ vtd_fetch_inv_desc(s); } } static void vtd_handle_fsts_write(IntelIOMMUState *s) { uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); trace_vtd_fsts_clear_ip(); } /* FIXME: when IQE is Clear, should we try to fetch some Invalidation * Descriptors if there are any when Queued Invalidation is enabled? */ } static void vtd_handle_fectl_write(IntelIOMMUState *s) { uint32_t fectl_reg; /* FIXME: when software clears the IM field, check the IP field. But do we * need to compare the old value and the new value to conclude that * software clears the IM field? Or just check if the IM field is zero? */ fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); trace_vtd_reg_write_fectl(fectl_reg); if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); } } static void vtd_handle_ics_write(IntelIOMMUState *s) { uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { trace_vtd_reg_ics_clear_ip(); vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); } } static void vtd_handle_iectl_write(IntelIOMMUState *s) { uint32_t iectl_reg; /* FIXME: when software clears the IM field, check the IP field. But do we * need to compare the old value and the new value to conclude that * software clears the IM field? Or just check if the IM field is zero? */ iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); trace_vtd_reg_write_iectl(iectl_reg); if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); } } static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) { IntelIOMMUState *s = opaque; uint64_t val; trace_vtd_reg_read(addr, size); if (addr + size > DMAR_REG_SIZE) { error_report_once("%s: MMIO over range: addr=0x%" PRIx64 " size=0x%x", __func__, addr, size); return (uint64_t)-1; } switch (addr) { /* Root Table Address Register, 64-bit */ case DMAR_RTADDR_REG: val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); if (size == 4) { val = val & ((1ULL << 32) - 1); } break; case DMAR_RTADDR_REG_HI: assert(size == 4); val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32; break; /* Invalidation Queue Address Register, 64-bit */ case DMAR_IQA_REG: val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & (VTD_IQA_QS | VTD_IQA_DW_MASK)); if (size == 4) { val = val & ((1ULL << 32) - 1); } break; case DMAR_IQA_REG_HI: assert(size == 4); val = s->iq >> 32; break; default: if (size == 4) { val = vtd_get_long(s, addr); } else { val = vtd_get_quad(s, addr); } } return val; } static void vtd_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { IntelIOMMUState *s = opaque; trace_vtd_reg_write(addr, size, val); if (addr + size > DMAR_REG_SIZE) { error_report_once("%s: MMIO over range: addr=0x%" PRIx64 " size=0x%x", __func__, addr, size); return; } switch (addr) { /* Global Command Register, 32-bit */ case DMAR_GCMD_REG: vtd_set_long(s, addr, val); vtd_handle_gcmd_write(s); break; /* Context Command Register, 64-bit */ case DMAR_CCMD_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); vtd_handle_ccmd_write(s); } break; case DMAR_CCMD_REG_HI: assert(size == 4); vtd_set_long(s, addr, val); vtd_handle_ccmd_write(s); break; /* IOTLB Invalidation Register, 64-bit */ case DMAR_IOTLB_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); vtd_handle_iotlb_write(s); } break; case DMAR_IOTLB_REG_HI: assert(size == 4); vtd_set_long(s, addr, val); vtd_handle_iotlb_write(s); break; /* Invalidate Address Register, 64-bit */ case DMAR_IVA_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); } break; case DMAR_IVA_REG_HI: assert(size == 4); vtd_set_long(s, addr, val); break; /* Fault Status Register, 32-bit */ case DMAR_FSTS_REG: assert(size == 4); vtd_set_long(s, addr, val); vtd_handle_fsts_write(s); break; /* Fault Event Control Register, 32-bit */ case DMAR_FECTL_REG: assert(size == 4); vtd_set_long(s, addr, val); vtd_handle_fectl_write(s); break; /* Fault Event Data Register, 32-bit */ case DMAR_FEDATA_REG: assert(size == 4); vtd_set_long(s, addr, val); break; /* Fault Event Address Register, 32-bit */ case DMAR_FEADDR_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { /* * While the register is 32-bit only, some guests (Xen...) write to * it with 64-bit. */ vtd_set_quad(s, addr, val); } break; /* Fault Event Upper Address Register, 32-bit */ case DMAR_FEUADDR_REG: assert(size == 4); vtd_set_long(s, addr, val); break; /* Protected Memory Enable Register, 32-bit */ case DMAR_PMEN_REG: assert(size == 4); vtd_set_long(s, addr, val); break; /* Root Table Address Register, 64-bit */ case DMAR_RTADDR_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); } break; case DMAR_RTADDR_REG_HI: assert(size == 4); vtd_set_long(s, addr, val); break; /* Invalidation Queue Tail Register, 64-bit */ case DMAR_IQT_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); } vtd_handle_iqt_write(s); break; case DMAR_IQT_REG_HI: assert(size == 4); vtd_set_long(s, addr, val); /* 19:63 of IQT_REG is RsvdZ, do nothing here */ break; /* Invalidation Queue Address Register, 64-bit */ case DMAR_IQA_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); } vtd_update_iq_dw(s); break; case DMAR_IQA_REG_HI: assert(size == 4); vtd_set_long(s, addr, val); break; /* Invalidation Completion Status Register, 32-bit */ case DMAR_ICS_REG: assert(size == 4); vtd_set_long(s, addr, val); vtd_handle_ics_write(s); break; /* Invalidation Event Control Register, 32-bit */ case DMAR_IECTL_REG: assert(size == 4); vtd_set_long(s, addr, val); vtd_handle_iectl_write(s); break; /* Invalidation Event Data Register, 32-bit */ case DMAR_IEDATA_REG: assert(size == 4); vtd_set_long(s, addr, val); break; /* Invalidation Event Address Register, 32-bit */ case DMAR_IEADDR_REG: assert(size == 4); vtd_set_long(s, addr, val); break; /* Invalidation Event Upper Address Register, 32-bit */ case DMAR_IEUADDR_REG: assert(size == 4); vtd_set_long(s, addr, val); break; /* Fault Recording Registers, 128-bit */ case DMAR_FRCD_REG_0_0: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); } break; case DMAR_FRCD_REG_0_1: assert(size == 4); vtd_set_long(s, addr, val); break; case DMAR_FRCD_REG_0_2: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); /* May clear bit 127 (Fault), update PPF */ vtd_update_fsts_ppf(s); } break; case DMAR_FRCD_REG_0_3: assert(size == 4); vtd_set_long(s, addr, val); /* May clear bit 127 (Fault), update PPF */ vtd_update_fsts_ppf(s); break; case DMAR_IRTA_REG: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); } break; case DMAR_IRTA_REG_HI: assert(size == 4); vtd_set_long(s, addr, val); break; default: if (size == 4) { vtd_set_long(s, addr, val); } else { vtd_set_quad(s, addr, val); } } } static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, IOMMUAccessFlags flag, int iommu_idx) { VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); IntelIOMMUState *s = vtd_as->iommu_state; IOMMUTLBEntry iotlb = { /* We'll fill in the rest later. */ .target_as = &address_space_memory, }; bool success; if (likely(s->dmar_enabled)) { success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr, flag & IOMMU_WO, &iotlb); } else { /* DMAR disabled, passthrough, use 4k-page*/ iotlb.iova = addr & VTD_PAGE_MASK_4K; iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; iotlb.addr_mask = ~VTD_PAGE_MASK_4K; iotlb.perm = IOMMU_RW; success = true; } if (likely(success)) { trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn), iotlb.iova, iotlb.translated_addr, iotlb.addr_mask); } else { error_report_once("%s: detected translation failure " "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", __func__, pci_bus_num(vtd_as->bus), VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn), addr); } return iotlb; } static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, IOMMUNotifierFlag old, IOMMUNotifierFlag new, Error **errp) { VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); IntelIOMMUState *s = vtd_as->iommu_state; X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); /* TODO: add support for VFIO and vhost users */ if (s->snoop_control) { error_setg_errno(errp, ENOTSUP, "Snoop Control with vhost or VFIO is not supported"); return -ENOTSUP; } if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) { error_setg_errno(errp, ENOTSUP, "device %02x.%02x.%x requires caching mode", pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), PCI_FUNC(vtd_as->devfn)); return -ENOTSUP; } if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) { error_setg_errno(errp, ENOTSUP, "device %02x.%02x.%x requires device IOTLB mode", pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), PCI_FUNC(vtd_as->devfn)); return -ENOTSUP; } /* Update per-address-space notifier flags */ vtd_as->notifier_flags = new; if (old == IOMMU_NOTIFIER_NONE) { QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); } else if (new == IOMMU_NOTIFIER_NONE) { QLIST_REMOVE(vtd_as, next); } return 0; } static int vtd_post_load(void *opaque, int version_id) { IntelIOMMUState *iommu = opaque; /* * We don't need to migrate the root_scalable because we can * simply do the calculation after the loading is complete. We * can actually do similar things with root, dmar_enabled, etc. * however since we've had them already so we'd better keep them * for compatibility of migration. */ vtd_update_scalable_state(iommu); vtd_update_iq_dw(iommu); /* * Memory regions are dynamically turned on/off depending on * context entry configurations from the guest. After migration, * we need to make sure the memory regions are still correct. */ vtd_switch_address_space_all(iommu); return 0; } static const VMStateDescription vtd_vmstate = { .name = "iommu-intel", .version_id = 1, .minimum_version_id = 1, .priority = MIG_PRI_IOMMU, .post_load = vtd_post_load, .fields = (const VMStateField[]) { VMSTATE_UINT64(root, IntelIOMMUState), VMSTATE_UINT64(intr_root, IntelIOMMUState), VMSTATE_UINT64(iq, IntelIOMMUState), VMSTATE_UINT32(intr_size, IntelIOMMUState), VMSTATE_UINT16(iq_head, IntelIOMMUState), VMSTATE_UINT16(iq_tail, IntelIOMMUState), VMSTATE_UINT16(iq_size, IntelIOMMUState), VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */ VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), VMSTATE_BOOL(qi_enabled, IntelIOMMUState), VMSTATE_BOOL(intr_enabled, IntelIOMMUState), VMSTATE_BOOL(intr_eime, IntelIOMMUState), VMSTATE_END_OF_LIST() } }; static const MemoryRegionOps vtd_mem_ops = { .read = vtd_mem_read, .write = vtd_mem_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 8, }, .valid = { .min_access_size = 4, .max_access_size = 8, }, }; static const Property vtd_properties[] = { DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, ON_OFF_AUTO_AUTO), DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, VTD_HOST_ADDRESS_WIDTH), DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false), DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false), DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true), DEFINE_PROP_BOOL("stale-tm", IntelIOMMUState, stale_tm, false), DEFINE_PROP_END_OF_LIST(), }; /* Read IRTE entry with specific index */ static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, VTD_IR_TableEntry *entry, uint16_t sid, bool do_fault) { static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ {0xffff, 0xfffb, 0xfff9, 0xfff8}; dma_addr_t addr = 0x00; uint16_t mask, source_id; uint8_t bus, bus_max, bus_min; if (index >= iommu->intr_size) { error_report_once("%s: index too large: ind=0x%x", __func__, index); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index); } return false; } addr = iommu->intr_root + index * sizeof(*entry); if (dma_memory_read(&address_space_memory, addr, entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) { error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, __func__, index, addr); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index); } return false; } entry->data[0] = le64_to_cpu(entry->data[0]); entry->data[1] = le64_to_cpu(entry->data[1]); trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]); /* * The remaining potential fault conditions are "qualified" by the * Fault Processing Disable bit in the IRTE. Even "not present". * So just clear the do_fault flag if PFD is set, which will * prevent faults being raised. */ if (entry->irte.fault_disable) { do_fault = false; } if (!entry->irte.present) { error_report_once("%s: detected non-present IRTE " "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", __func__, index, entry->data[1], entry->data[0]); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index); } return false; } if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || entry->irte.__reserved_2) { error_report_once("%s: detected non-zero reserved IRTE " "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", __func__, index, entry->data[1], entry->data[0]); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index); } return false; } if (sid != X86_IOMMU_SID_INVALID) { /* Validate IRTE SID */ source_id = entry->irte.source_id; switch (entry->irte.sid_vtype) { case VTD_SVT_NONE: break; case VTD_SVT_ALL: mask = vtd_svt_mask[entry->irte.sid_q]; if ((source_id & mask) != (sid & mask)) { error_report_once("%s: invalid IRTE SID " "(index=%u, sid=%u, source_id=%u)", __func__, index, sid, source_id); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); } return false; } break; case VTD_SVT_BUS: bus_max = source_id >> 8; bus_min = source_id & 0xff; bus = sid >> 8; if (bus > bus_max || bus < bus_min) { error_report_once("%s: invalid SVT_BUS " "(index=%u, bus=%u, min=%u, max=%u)", __func__, index, bus, bus_min, bus_max); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); } return false; } break; default: error_report_once("%s: detected invalid IRTE SVT " "(index=%u, type=%d)", __func__, index, entry->irte.sid_vtype); /* Take this as verification failure. */ if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); } return false; } } return true; } /* Fetch IRQ information of specific IR index */ static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, X86IOMMUIrq *irq, uint16_t sid, bool do_fault) { VTD_IR_TableEntry irte = {}; if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) { return false; } irq->trigger_mode = irte.irte.trigger_mode; irq->vector = irte.irte.vector; irq->delivery_mode = irte.irte.delivery_mode; irq->dest = irte.irte.dest_id; if (!iommu->intr_eime) { #define VTD_IR_APIC_DEST_MASK (0xff00ULL) #define VTD_IR_APIC_DEST_SHIFT (8) irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> VTD_IR_APIC_DEST_SHIFT; } irq->dest_mode = irte.irte.dest_mode; irq->redir_hint = irte.irte.redir_hint; trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, irq->delivery_mode, irq->dest, irq->dest_mode); return true; } /* Interrupt remapping for MSI/MSI-X entry */ static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, MSIMessage *origin, MSIMessage *translated, uint16_t sid, bool do_fault) { VTD_IR_MSIAddress addr; uint16_t index; X86IOMMUIrq irq = {}; assert(origin && translated); trace_vtd_ir_remap_msi_req(origin->address, origin->data); if (!iommu || !iommu->intr_enabled) { memcpy(translated, origin, sizeof(*origin)); goto out; } if (origin->address & VTD_MSI_ADDR_HI_MASK) { error_report_once("%s: MSI address high 32 bits non-zero detected: " "address=0x%" PRIx64, __func__, origin->address); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); } return -EINVAL; } addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; if (addr.addr.__head != 0xfee) { error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, __func__, addr.data); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); } return -EINVAL; } /* This is compatible mode. */ if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { memcpy(translated, origin, sizeof(*origin)); goto out; } index = addr.addr.index_h << 15 | addr.addr.index_l; #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) if (addr.addr.sub_valid) { /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; } if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) { return -EINVAL; } if (addr.addr.sub_valid) { trace_vtd_ir_remap_type("MSI"); if (origin->data & VTD_IR_MSI_DATA_RESERVED) { error_report_once("%s: invalid IR MSI " "(sid=%u, address=0x%" PRIx64 ", data=0x%" PRIx32 ")", __func__, sid, origin->address, origin->data); if (do_fault) { vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); } return -EINVAL; } } else { uint8_t vector = origin->data & 0xff; uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; trace_vtd_ir_remap_type("IOAPIC"); /* IOAPIC entry vector should be aligned with IRTE vector * (see vt-d spec 5.1.5.1). */ if (vector != irq.vector) { trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); } /* The Trigger Mode field must match the Trigger Mode in the IRTE. * (see vt-d spec 5.1.5.1). */ if (trigger_mode != irq.trigger_mode) { trace_vtd_warn_ir_trigger(sid, index, trigger_mode, irq.trigger_mode); } } /* * We'd better keep the last two bits, assuming that guest OS * might modify it. Keep it does not hurt after all. */ irq.msi_addr_last_bits = addr.addr.__not_care; /* Translate X86IOMMUIrq to MSI message */ x86_iommu_irq_to_msi_message(&irq, translated); out: trace_vtd_ir_remap_msi(origin->address, origin->data, translated->address, translated->data); return 0; } static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, MSIMessage *dst, uint16_t sid) { return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), src, dst, sid, false); } static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { return MEMTX_OK; } static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { int ret = 0; MSIMessage from = {}, to = {}; uint16_t sid = X86_IOMMU_SID_INVALID; from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; from.data = (uint32_t) value; if (!attrs.unspecified) { /* We have explicit Source ID */ sid = attrs.requester_id; } ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true); if (ret) { /* Drop this interrupt */ return MEMTX_ERROR; } apic_get_class(NULL)->send_msi(&to); return MEMTX_OK; } static const MemoryRegionOps vtd_mem_ir_ops = { .read_with_attrs = vtd_mem_ir_read, .write_with_attrs = vtd_mem_ir_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as, hwaddr addr, bool is_write) { IntelIOMMUState *s = vtd_as->iommu_state; uint8_t bus_n = pci_bus_num(vtd_as->bus); uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn); bool is_fpd_set = false; VTDContextEntry ce; assert(vtd_as->pasid != PCI_NO_PASID); /* Try out best to fetch FPD, we can't do anything more */ if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; if (!is_fpd_set && s->root_scalable) { vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid); } } vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR, is_fpd_set, sid, addr, is_write, true, vtd_as->pasid); } static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr, uint64_t *data, unsigned size, MemTxAttrs attrs) { vtd_report_ir_illegal_access(opaque, addr, false); return MEMTX_ERROR; } static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr, uint64_t value, unsigned size, MemTxAttrs attrs) { vtd_report_ir_illegal_access(opaque, addr, true); return MEMTX_ERROR; } static const MemoryRegionOps vtd_mem_ir_fault_ops = { .read_with_attrs = vtd_mem_ir_fault_read, .write_with_attrs = vtd_mem_ir_fault_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 8, }, .valid = { .min_access_size = 1, .max_access_size = 8, }, }; VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn, unsigned int pasid) { /* * We can't simply use sid here since the bus number might not be * initialized by the guest. */ struct vtd_as_key key = { .bus = bus, .devfn = devfn, .pasid = pasid, }; VTDAddressSpace *vtd_dev_as; char name[128]; vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key); if (!vtd_dev_as) { struct vtd_as_key *new_key = g_malloc(sizeof(*new_key)); new_key->bus = bus; new_key->devfn = devfn; new_key->pasid = pasid; if (pasid == PCI_NO_PASID) { snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn), PCI_FUNC(devfn)); } else { snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn), PCI_FUNC(devfn), pasid); } vtd_dev_as = g_new0(VTDAddressSpace, 1); vtd_dev_as->bus = bus; vtd_dev_as->devfn = (uint8_t)devfn; vtd_dev_as->pasid = pasid; vtd_dev_as->iommu_state = s; vtd_dev_as->context_cache_entry.context_cache_gen = 0; vtd_dev_as->iova_tree = iova_tree_new(); memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX); address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root"); /* * Build the DMAR-disabled container with aliases to the * shared MRs. Note that aliasing to a shared memory region * could help the memory API to detect same FlatViews so we * can have devices to share the same FlatView when DMAR is * disabled (either by not providing "intel_iommu=on" or with * "iommu=pt"). It will greatly reduce the total number of * FlatViews of the system hence VM runs faster. */ memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s), "vtd-nodmar", &s->mr_nodmar, 0, memory_region_size(&s->mr_nodmar)); /* * Build the per-device DMAR-enabled container. * * TODO: currently we have per-device IOMMU memory region only * because we have per-device IOMMU notifiers for devices. If * one day we can abstract the IOMMU notifiers out of the * memory regions then we can also share the same memory * region here just like what we've done above with the nodmar * region. */ strcat(name, "-dmar"); memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), name, UINT64_MAX); memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir", &s->mr_ir, 0, memory_region_size(&s->mr_ir)); memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu), VTD_INTERRUPT_ADDR_FIRST, &vtd_dev_as->iommu_ir, 1); /* * This region is used for catching fault to access interrupt * range via passthrough + PASID. See also * vtd_switch_address_space(). We can't use alias since we * need to know the sid which is valid for MSI who uses * bus_master_as (see msi_send_message()). */ memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s), &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir", VTD_INTERRUPT_ADDR_SIZE); /* * Hook to root since when PT is enabled vtd_dev_as->iommu * will be disabled. */ memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root), VTD_INTERRUPT_ADDR_FIRST, &vtd_dev_as->iommu_ir_fault, 2); /* * Hook both the containers under the root container, we * switch between DMAR & noDMAR by enable/disable * corresponding sub-containers */ memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, MEMORY_REGION(&vtd_dev_as->iommu), 0); memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, &vtd_dev_as->nodmar, 0); vtd_switch_address_space(vtd_dev_as); g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as); } return vtd_dev_as; } static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod, Error **errp) { HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod); int ret; if (!hiodc->get_cap) { error_setg(errp, ".get_cap() not implemented"); return false; } /* Common checks */ ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp); if (ret < 0) { return false; } if (s->aw_bits > ret) { error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret); return false; } return true; } static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn, HostIOMMUDevice *hiod, Error **errp) { IntelIOMMUState *s = opaque; struct vtd_as_key key = { .bus = bus, .devfn = devfn, }; struct vtd_as_key *new_key; assert(hiod); vtd_iommu_lock(s); if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) { error_setg(errp, "Host IOMMU device already exist"); vtd_iommu_unlock(s); return false; } if (!vtd_check_hiod(s, hiod, errp)) { vtd_iommu_unlock(s); return false; } new_key = g_malloc(sizeof(*new_key)); new_key->bus = bus; new_key->devfn = devfn; object_ref(hiod); g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod); vtd_iommu_unlock(s); return true; } static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn) { IntelIOMMUState *s = opaque; struct vtd_as_key key = { .bus = bus, .devfn = devfn, }; vtd_iommu_lock(s); if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) { vtd_iommu_unlock(s); return; } g_hash_table_remove(s->vtd_host_iommu_dev, &key); vtd_iommu_unlock(s); } /* Unmap the whole range in the notifier's scope. */ static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) { hwaddr total, remain; hwaddr start = n->start; hwaddr end = n->end; IntelIOMMUState *s = as->iommu_state; DMAMap map; /* * Note: all the codes in this function has a assumption that IOVA * bits are no more than VTD_MGAW bits (which is restricted by * VT-d spec), otherwise we need to consider overflow of 64 bits. */ if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) { /* * Don't need to unmap regions that is bigger than the whole * VT-d supported address space size */ end = VTD_ADDRESS_SIZE(s->aw_bits) - 1; } assert(start <= end); total = remain = end - start + 1; while (remain >= VTD_PAGE_SIZE) { IOMMUTLBEvent event; uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits); uint64_t size = mask + 1; assert(size); event.type = IOMMU_NOTIFIER_UNMAP; event.entry.iova = start; event.entry.addr_mask = mask; event.entry.target_as = &address_space_memory; event.entry.perm = IOMMU_NONE; /* This field is meaningless for unmap */ event.entry.translated_addr = 0; memory_region_notify_iommu_one(n, &event); start += size; remain -= size; } assert(!remain); trace_vtd_as_unmap_whole(pci_bus_num(as->bus), VTD_PCI_SLOT(as->devfn), VTD_PCI_FUNC(as->devfn), n->start, total); map.iova = n->start; map.size = total - 1; /* Inclusive */ iova_tree_remove(as->iova_tree, map); } static void vtd_address_space_unmap_all(IntelIOMMUState *s) { VTDAddressSpace *vtd_as; IOMMUNotifier *n; QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { vtd_address_space_unmap(vtd_as, n); } } } static void vtd_address_space_refresh_all(IntelIOMMUState *s) { vtd_address_space_unmap_all(s); vtd_switch_address_space_all(s); } static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private) { memory_region_notify_iommu_one(private, event); return 0; } static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) { VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); IntelIOMMUState *s = vtd_as->iommu_state; uint8_t bus_n = pci_bus_num(vtd_as->bus); VTDContextEntry ce; DMAMap map = { .iova = 0, .size = HWADDR_MAX }; /* replay is protected by BQL, page walk will re-setup it safely */ iova_tree_remove(vtd_as->iova_tree, map); if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : "legacy mode", bus_n, PCI_SLOT(vtd_as->devfn), PCI_FUNC(vtd_as->devfn), vtd_get_domain_id(s, &ce, vtd_as->pasid), ce.hi, ce.lo); if (n->notifier_flags & IOMMU_NOTIFIER_MAP) { /* This is required only for MAP typed notifiers */ vtd_page_walk_info info = { .hook_fn = vtd_replay_hook, .private = (void *)n, .notify_unmap = false, .aw = s->aw_bits, .as = vtd_as, .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid), }; vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid); } } else { trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), PCI_FUNC(vtd_as->devfn)); } return; } static void vtd_cap_init(IntelIOMMUState *s) { X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | VTD_CAP_MGAW(s->aw_bits); if (s->dma_drain) { s->cap |= VTD_CAP_DRAIN; } if (s->dma_translation) { if (s->aw_bits >= VTD_HOST_AW_39BIT) { s->cap |= VTD_CAP_SAGAW_39bit; } if (s->aw_bits >= VTD_HOST_AW_48BIT) { s->cap |= VTD_CAP_SAGAW_48bit; } } s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; if (x86_iommu_ir_supported(x86_iommu)) { s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; if (s->intr_eim == ON_OFF_AUTO_ON) { s->ecap |= VTD_ECAP_EIM; } assert(s->intr_eim != ON_OFF_AUTO_AUTO); } if (x86_iommu->dt_supported) { s->ecap |= VTD_ECAP_DT; } if (x86_iommu->pt_supported) { s->ecap |= VTD_ECAP_PT; } if (s->caching_mode) { s->cap |= VTD_CAP_CM; } /* TODO: read cap/ecap from host to decide which cap to be exposed. */ if (s->scalable_mode) { s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; } if (s->snoop_control) { s->ecap |= VTD_ECAP_SC; } if (s->pasid) { s->ecap |= VTD_ECAP_PASID; } } /* * Do the initialization. It will also be called when reset, so pay * attention when adding new initialization stuff. */ static void vtd_init(IntelIOMMUState *s) { X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); memset(s->csr, 0, DMAR_REG_SIZE); memset(s->wmask, 0, DMAR_REG_SIZE); memset(s->w1cmask, 0, DMAR_REG_SIZE); memset(s->womask, 0, DMAR_REG_SIZE); s->root = 0; s->root_scalable = false; s->dmar_enabled = false; s->intr_enabled = false; s->iq_head = 0; s->iq_tail = 0; s->iq = 0; s->iq_size = 0; s->qi_enabled = false; s->iq_last_desc_type = VTD_INV_DESC_NONE; s->iq_dw = false; s->next_frcd_reg = 0; vtd_cap_init(s); /* * Rsvd field masks for spte */ vtd_spte_rsvd[0] = ~0ULL; vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits, x86_iommu->dt_supported && s->stale_tm); vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits, x86_iommu->dt_supported && s->stale_tm); vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits, x86_iommu->dt_supported && s->stale_tm); if (s->scalable_mode || s->snoop_control) { vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP; vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP; vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP; } vtd_reset_caches(s); /* Define registers with default values and bit semantics */ vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); /* Advanced Fault Logging not supported */ vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); /* Treated as RsvdZ when EIM in ECAP_REG is not supported * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); */ vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); /* Treated as RO for implementations that PLMR and PHMR fields reported * as Clear in the CAP_REG. * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); */ vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); /* IOTLB registers */ vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); /* Fault Recording Registers, 128-bit */ vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); /* * Interrupt remapping registers. */ vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); } /* Should not reset address_spaces when reset because devices will still use * the address space they got at first (won't ask the bus again). */ static void vtd_reset(DeviceState *dev) { IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); vtd_init(s); vtd_address_space_refresh_all(s); } static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) { IntelIOMMUState *s = opaque; VTDAddressSpace *vtd_as; assert(0 <= devfn && devfn < PCI_DEVFN_MAX); vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID); return &vtd_as->as; } static PCIIOMMUOps vtd_iommu_ops = { .get_address_space = vtd_host_dma_iommu, .set_iommu_device = vtd_dev_set_iommu_device, .unset_iommu_device = vtd_dev_unset_iommu_device, }; static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) { X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { error_setg(errp, "eim=on cannot be selected without intremap=on"); return false; } if (s->intr_eim == ON_OFF_AUTO_AUTO) { s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) && x86_iommu_ir_supported(x86_iommu) ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; } if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) { error_setg(errp, "eim=on requires support on the KVM side" "(X2APIC_API, first shipped in v4.7)"); return false; } } /* Currently only address widths supported are 39 and 48 bits */ if ((s->aw_bits != VTD_HOST_AW_39BIT) && (s->aw_bits != VTD_HOST_AW_48BIT)) { error_setg(errp, "Supported values for aw-bits are: %d, %d", VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); return false; } if (s->scalable_mode && !s->dma_drain) { error_setg(errp, "Need to set dma_drain for scalable mode"); return false; } if (s->pasid && !s->scalable_mode) { error_setg(errp, "Need to set scalable mode for PASID"); return false; } return true; } static int vtd_machine_done_notify_one(Object *child, void *unused) { IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); /* * We hard-coded here because vfio-pci is the only special case * here. Let's be more elegant in the future when we can, but so * far there seems to be no better way. */ if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) { vtd_panic_require_caching_mode(); } return 0; } static void vtd_machine_done_hook(Notifier *notifier, void *unused) { object_child_foreach_recursive(object_get_root(), vtd_machine_done_notify_one, NULL); } static Notifier vtd_machine_done_notify = { .notify = vtd_machine_done_hook, }; static void vtd_realize(DeviceState *dev, Error **errp) { MachineState *ms = MACHINE(qdev_get_machine()); PCMachineState *pcms = PC_MACHINE(ms); X86MachineState *x86ms = X86_MACHINE(ms); PCIBus *bus = pcms->pcibus; IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); if (s->pasid && x86_iommu->dt_supported) { /* * PASID-based-Device-TLB Invalidate Descriptor is not * implemented and it requires support from vhost layer which * needs to be implemented in the future. */ error_setg(errp, "PASID based device IOTLB is not supported"); return; } if (!vtd_decide_config(s, errp)) { return; } QLIST_INIT(&s->vtd_as_with_notifiers); qemu_mutex_init(&s->iommu_lock); memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, "intel_iommu", DMAR_REG_SIZE); memory_region_add_subregion(get_system_memory(), Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem); /* Create the shared memory regions by all devices */ memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar", UINT64_MAX); memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops, s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE); memory_region_init_alias(&s->mr_sys_alias, OBJECT(s), "vtd-sys-alias", get_system_memory(), 0, memory_region_size(get_system_memory())); memory_region_add_subregion_overlap(&s->mr_nodmar, 0, &s->mr_sys_alias, 0); memory_region_add_subregion_overlap(&s->mr_nodmar, VTD_INTERRUPT_ADDR_FIRST, &s->mr_ir, 1); /* No corresponding destroy */ s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal, g_free, g_free); s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal, g_free, g_free); s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal, g_free, vtd_hiod_destroy); vtd_init(s); pci_setup_iommu(bus, &vtd_iommu_ops, dev); /* Pseudo address space under root PCI bus. */ x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); qemu_add_machine_init_done_notifier(&vtd_machine_done_notify); } static void vtd_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass); device_class_set_legacy_reset(dc, vtd_reset); dc->vmsd = &vtd_vmstate; device_class_set_props(dc, vtd_properties); dc->hotpluggable = false; x86_class->realize = vtd_realize; x86_class->int_remap = vtd_int_remap; /* Supported by the pc-q35-* machine types */ dc->user_creatable = true; set_bit(DEVICE_CATEGORY_MISC, dc->categories); dc->desc = "Intel IOMMU (VT-d) DMA Remapping device"; } static const TypeInfo vtd_info = { .name = TYPE_INTEL_IOMMU_DEVICE, .parent = TYPE_X86_IOMMU_DEVICE, .instance_size = sizeof(IntelIOMMUState), .class_init = vtd_class_init, }; static void vtd_iommu_memory_region_class_init(ObjectClass *klass, void *data) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); imrc->translate = vtd_iommu_translate; imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; imrc->replay = vtd_iommu_replay; } static const TypeInfo vtd_iommu_memory_region_info = { .parent = TYPE_IOMMU_MEMORY_REGION, .name = TYPE_INTEL_IOMMU_MEMORY_REGION, .class_init = vtd_iommu_memory_region_class_init, }; static void vtd_register_types(void) { type_register_static(&vtd_info); type_register_static(&vtd_iommu_memory_region_info); } type_init(vtd_register_types)