/* * QEMU Floppy disk emulator * * Copyright (c) 2003 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include "vl.h" /********************************************************/ /* debug Floppy devices */ //#define DEBUG_FLOPPY #ifdef DEBUG_FLOPPY #define FLOPPY_DPRINTF(fmt, args...) \ do { printf("FLOPPY: " fmt , ##args); } while (0) #else #define FLOPPY_DPRINTF(fmt, args...) #endif #define FLOPPY_ERROR(fmt, args...) \ do { printf("FLOPPY ERROR: %s: " fmt, __func__ , ##args); } while (0) /********************************************************/ /* Floppy drive emulation */ /* Will always be a fixed parameter for us */ #define FD_SECTOR_LEN 512 #define FD_SECTOR_SC 2 /* Sector size code */ /* Floppy disk drive emulation */ typedef enum fdisk_type_t { FDRIVE_DISK_288 = 0x01, /* 2.88 MB disk */ FDRIVE_DISK_144 = 0x02, /* 1.44 MB disk */ FDRIVE_DISK_720 = 0x03, /* 720 kB disk */ FDRIVE_DISK_NONE = 0x04, /* No disk */ } fdisk_type_t; typedef enum fdrive_type_t { FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */ FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */ FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */ FDRIVE_DRV_NONE = 0x03, /* No drive connected */ } fdrive_type_t; typedef struct fdrive_t { BlockDriverState *bs; /* Drive status */ fdrive_type_t drive; uint8_t motor; /* on/off */ uint8_t perpendicular; /* 2.88 MB access mode */ uint8_t rv; /* Revalidated */ /* Position */ uint8_t head; uint8_t track; uint8_t sect; /* Last operation status */ uint8_t dir; /* Direction */ uint8_t rw; /* Read/write */ /* Media */ fdisk_type_t disk; /* Disk type */ uint8_t last_sect; /* Nb sector per track */ uint8_t max_track; /* Nb of tracks */ uint8_t ro; /* Is read-only */ } fdrive_t; static void fd_init (fdrive_t *drv) { /* Drive */ drv->bs = NULL; // drv->drive = FDRIVE_DRV_288; drv->drive = FDRIVE_DRV_144; drv->motor = 0; drv->perpendicular = 0; drv->rv = 0; /* Disk */ drv->disk = FDRIVE_DISK_NONE; drv->last_sect = 1; drv->max_track = 0; } static int _fd_sector (uint8_t head, uint8_t track, uint8_t sect, uint8_t last_sect) { return (((track * 2) + head) * last_sect) + sect - 1; } /* Returns current position, in sectors, for given drive */ static int fd_sector (fdrive_t *drv) { return _fd_sector(drv->head, drv->track, drv->sect, drv->last_sect); } static int fd_seek (fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect, int enable_seek) { uint32_t sector; if (track > drv->max_track) { FLOPPY_ERROR("try to read %d %02x %02x (max=%d %02x %02x)\n", head, track, sect, 1, drv->max_track, drv->last_sect); return 2; } if (sect > drv->last_sect) { FLOPPY_ERROR("try to read %d %02x %02x (max=%d %02x %02x)\n", head, track, sect, 1, drv->max_track, drv->last_sect); return 3; } sector = _fd_sector(head, track, sect, drv->last_sect); if (sector != fd_sector(drv)) { #if 0 if (!enable_seek) { FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n", head, track, sect, 1, drv->max_track, drv->last_sect); return 4; } #endif drv->head = head; drv->track = track; drv->sect = sect; return 1; } return 0; } /* Set drive back to track 0 */ static void fd_recalibrate (fdrive_t *drv) { FLOPPY_DPRINTF("recalibrate\n"); drv->head = 0; drv->track = 0; drv->sect = 1; drv->dir = 1; drv->rw = 0; } /* Revalidate a disk drive after a disk change */ static void fd_revalidate (fdrive_t *drv, int ro) { int64_t nb_sectors; FLOPPY_DPRINTF("revalidate\n"); drv->rv = 0; if (drv->bs != NULL) { bdrv_get_geometry(drv->bs, &nb_sectors); #if 1 if (nb_sectors > 2880) #endif { /* Pretend we have a 2.88 MB disk */ drv->disk = FDRIVE_DISK_288; drv->last_sect = 36; drv->max_track = 80; #if 1 } else if (nb_sectors > 1440) { /* Pretend we have a 1.44 MB disk */ drv->disk = FDRIVE_DISK_144; drv->last_sect = 18; drv->max_track = 80; } else { /* Pretend we have a 720 kB disk */ drv->disk = FDRIVE_DISK_720; drv->last_sect = 9; drv->max_track = 80; #endif } } else { drv->disk = FDRIVE_DISK_NONE; drv->last_sect = 1; /* Avoid eventual divide by 0 bugs */ } drv->ro = ro; drv->rv = 1; } /* Motor control */ static void fd_start (fdrive_t *drv) { drv->motor = 1; } static void fd_stop (fdrive_t *drv) { drv->motor = 0; } /* Re-initialise a drives (motor off, repositioned) */ static void fd_reset (fdrive_t *drv) { fd_stop(drv); fd_recalibrate(drv); } /********************************************************/ /* Intel 82078 floppy disk controler emulation */ static void fdctrl_reset (int do_irq); static void fdctrl_reset_fifo (void); static int fdctrl_transfer_handler (void *opaque, target_ulong addr, int size); static void fdctrl_raise_irq (uint8_t status); static uint32_t fdctrl_read_statusB (CPUState *env, uint32_t reg); static uint32_t fdctrl_read_dor (CPUState *env, uint32_t reg); static void fdctrl_write_dor (CPUState *env, uint32_t reg, uint32_t value); static uint32_t fdctrl_read_tape (CPUState *env, uint32_t reg); static void fdctrl_write_tape (CPUState *env, uint32_t reg, uint32_t value); static uint32_t fdctrl_read_main_status (CPUState *env, uint32_t reg); static void fdctrl_write_rate (CPUState *env, uint32_t reg, uint32_t value); static uint32_t fdctrl_read_data (CPUState *env, uint32_t reg); static void fdctrl_write_data (CPUState *env, uint32_t reg, uint32_t value); static uint32_t fdctrl_read_dir (CPUState *env, uint32_t reg); enum { FD_CTRL_ACTIVE = 0x01, FD_CTRL_RESET = 0x02, FD_CTRL_SLEEP = 0x04, FD_CTRL_BUSY = 0x08, FD_CTRL_INTR = 0x10, }; enum { FD_DIR_WRITE = 0, FD_DIR_READ = 1, FD_DIR_SCANE = 2, FD_DIR_SCANL = 3, FD_DIR_SCANH = 4, }; enum { FD_STATE_CMD = 0x00, FD_STATE_STATUS = 0x01, FD_STATE_DATA = 0x02, FD_STATE_STATE = 0x03, FD_STATE_MULTI = 0x10, FD_STATE_SEEK = 0x20, }; #define FD_STATE(state) ((state) & FD_STATE_STATE) #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) #define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK) typedef struct fdctrl_t { /* Controler's identification */ uint8_t version; /* HW */ int irq_lvl; int dma_chann; /* Controler state */ uint8_t state; uint8_t dma_en; uint8_t cur_drv; uint8_t bootsel; /* Command FIFO */ uint8_t fifo[FD_SECTOR_LEN]; uint32_t data_pos; uint32_t data_len; uint8_t data_state; uint8_t data_dir; uint8_t int_status; /* States kept only to be returned back */ /* Timers state */ uint8_t timer0; uint8_t timer1; /* precompensation */ uint8_t precomp_trk; uint8_t config; uint8_t lock; /* Power down config (also with status regB access mode */ uint8_t pwrd; /* Floppy drives */ fdrive_t drives[2]; } fdctrl_t; static fdctrl_t fdctrl; void fdctrl_init (int irq_lvl, int dma_chann, int mem_mapped, uint32_t base, char boot_device) { // int io_mem; int i; FLOPPY_DPRINTF("init controler\n"); memset(&fdctrl, 0, sizeof(fdctrl)); fdctrl.version = 0x90; /* Intel 82078 controler */ fdctrl.irq_lvl = irq_lvl; fdctrl.dma_chann = dma_chann; fdctrl.config = 0x40; /* Implicit seek, polling & FIFO enabled */ if (fdctrl.dma_chann != -1) { fdctrl.dma_en = 1; DMA_register_channel(dma_chann, fdctrl_transfer_handler, &fdctrl); } else { fdctrl.dma_en = 0; } for (i = 0; i < MAX_FD; i++) fd_init(&fdctrl.drives[i]); fdctrl_reset(0); fdctrl.state = FD_CTRL_ACTIVE; if (mem_mapped) { FLOPPY_ERROR("memory mapped floppy not supported by now !\n"); #if 0 io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write); cpu_register_physical_memory(base, 0x08, io_mem); #endif } else { register_ioport_read(base + 0x01, 1, fdctrl_read_statusB, 1); register_ioport_read(base + 0x02, 1, fdctrl_read_dor, 1); register_ioport_write(base + 0x02, 1, fdctrl_write_dor, 1); register_ioport_read(base + 0x03, 1, fdctrl_read_tape, 1); register_ioport_write(base + 0x03, 1, fdctrl_write_tape, 1); register_ioport_read(base + 0x04, 1, fdctrl_read_main_status, 1); register_ioport_write(base + 0x04, 1, fdctrl_write_rate, 1); register_ioport_read(base + 0x05, 1, fdctrl_read_data, 1); register_ioport_write(base + 0x05, 1, fdctrl_write_data, 1); register_ioport_read(base + 0x07, 1, fdctrl_read_dir, 1); } if (boot_device == 'b') fdctrl.bootsel = 1; else fdctrl.bootsel = 0; #if defined (TARGET_I386) cmos_register_fd(fdctrl.drives[0].drive, fdctrl.drives[1].drive); #endif } int fdctrl_disk_change (int idx, const unsigned char *filename, int ro) { fdrive_t *drv; if (idx < 0 || idx > 1) return -1; FLOPPY_DPRINTF("disk %d change: %s (%s)\n", idx, filename, ro == 0 ? "rw" : "ro"); drv = &fdctrl.drives[idx]; if (fd_table[idx] != NULL) { bdrv_close(fd_table[idx]); fd_table[idx] = NULL; } fd_table[idx] = bdrv_open(filename, ro); drv->bs = fd_table[idx]; if (fd_table[idx] == NULL) return -1; fd_revalidate(drv, ro); #if 0 fd_recalibrate(drv); fdctrl_reset_fifo(); fdctrl_raise_irq(0x20); #endif return 0; } /* Change IRQ state */ static void fdctrl_reset_irq (void) { if (fdctrl.state & FD_CTRL_INTR) { pic_set_irq(fdctrl.irq_lvl, 0); fdctrl.state &= ~(FD_CTRL_INTR | FD_CTRL_SLEEP | FD_CTRL_BUSY); } } static void fdctrl_raise_irq (uint8_t status) { if (~(fdctrl.state & FD_CTRL_INTR)) { pic_set_irq(fdctrl.irq_lvl, 1); fdctrl.state |= FD_CTRL_INTR; } FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", status); fdctrl.int_status = status; } /* Reset controler */ static void fdctrl_reset (int do_irq) { int i; FLOPPY_DPRINTF("reset controler\n"); fdctrl_reset_irq(); /* Initialise controler */ fdctrl.cur_drv = 0; /* FIFO state */ fdctrl.data_pos = 0; fdctrl.data_len = 0; fdctrl.data_state = FD_STATE_CMD; fdctrl.data_dir = FD_DIR_WRITE; for (i = 0; i < MAX_FD; i++) fd_reset(&fdctrl.drives[i]); fdctrl_reset_fifo(); if (do_irq) fdctrl_raise_irq(0x20); } /* Status B register : 0x01 (read-only) */ static uint32_t fdctrl_read_statusB (CPUState *env, uint32_t reg) { fdctrl_reset_irq(); FLOPPY_DPRINTF("status register: 0x00\n"); return 0; } /* Digital output register : 0x02 */ static uint32_t fdctrl_read_dor (CPUState *env, uint32_t reg) { fdrive_t *cur_drv, *drv0, *drv1; uint32_t retval = 0; drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; /* Drive motors state indicators */ retval |= drv1->motor << 5; retval |= drv0->motor << 4; /* DMA enable */ retval |= fdctrl.dma_en << 3; /* Reset indicator */ retval |= (fdctrl.state & FD_CTRL_RESET) == 0 ? 0x04 : 0; /* Selected drive */ retval |= fdctrl.cur_drv; FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); return retval; } static void fdctrl_write_dor (CPUState *env, uint32_t reg, uint32_t value) { fdrive_t *drv0, *drv1; fdctrl_reset_irq(); drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; /* Reset mode */ if (fdctrl.state & FD_CTRL_RESET) { if (!(value & 0x04)) { FLOPPY_DPRINTF("Floppy controler in RESET state !\n"); return; } } FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); /* Drive motors state indicators */ if (value & 0x20) fd_start(drv1); else fd_stop(drv1); if (value & 0x10) fd_start(drv0); else fd_stop(drv0); /* DMA enable */ #if 0 if (fdctrl.dma_chann != -1) fdctrl.dma_en = 1 - ((value >> 3) & 1); #endif /* Reset */ if (!(value & 0x04)) { if (!(fdctrl.state & FD_CTRL_RESET)) { FLOPPY_DPRINTF("controler enter RESET state\n"); fdctrl.state |= FD_CTRL_RESET; fdctrl_reset(1); } } else { if (fdctrl.state & FD_CTRL_RESET) { FLOPPY_DPRINTF("controler out of RESET state\n"); fdctrl.state &= ~(FD_CTRL_RESET | FD_CTRL_SLEEP); } } /* Selected drive */ fdctrl.cur_drv = value & 1; } /* Tape drive register : 0x03 */ static uint32_t fdctrl_read_tape (CPUState *env, uint32_t reg) { uint32_t retval = 0; fdctrl_reset_irq(); /* Disk boot selection indicator */ retval |= fdctrl.bootsel << 2; /* Tape indicators: never allowed */ FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); return retval; } static void fdctrl_write_tape (CPUState *env, uint32_t reg, uint32_t value) { fdctrl_reset_irq(); /* Reset mode */ if (fdctrl.state & FD_CTRL_RESET) { FLOPPY_DPRINTF("Floppy controler in RESET state !\n"); return; } FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); /* Disk boot selection indicator */ fdctrl.bootsel = (value >> 2) & 1; /* Tape indicators: never allow */ } /* Main status register : 0x04 (read) */ static uint32_t fdctrl_read_main_status (CPUState *env, uint32_t reg) { uint32_t retval = 0; fdctrl_reset_irq(); fdctrl.state &= ~(FD_CTRL_SLEEP | FD_CTRL_RESET); if (!(fdctrl.state & FD_CTRL_BUSY)) { /* Data transfer allowed */ retval |= 0x80; /* Data transfer direction indicator */ if (fdctrl.data_dir == FD_DIR_READ) retval |= 0x40; } /* Should handle 0x20 for SPECIFY command */ /* Command busy indicator */ if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA || FD_STATE(fdctrl.data_state) == FD_STATE_STATUS) retval |= 0x10; FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); return retval; } /* Data select rate register : 0x04 (write) */ static void fdctrl_write_rate (CPUState *env, uint32_t reg, uint32_t value) { fdctrl_reset_irq(); /* Reset mode */ if (fdctrl.state & FD_CTRL_RESET) { if (reg != 0x2 || !(value & 0x04)) { FLOPPY_DPRINTF("Floppy controler in RESET state !\n"); return; } } FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); /* Reset: autoclear */ if (value & 0x80) { fdctrl.state |= FD_CTRL_RESET; fdctrl_reset(1); fdctrl.state &= ~FD_CTRL_RESET; } if (value & 0x40) { fdctrl.state |= FD_CTRL_SLEEP; fdctrl_reset(1); } // fdctrl.precomp = (value >> 2) & 0x07; } /* Digital input register : 0x07 (read-only) */ static uint32_t fdctrl_read_dir (CPUState *env, uint32_t reg) { fdrive_t *drv0, *drv1; uint32_t retval = 0; fdctrl_reset_irq(); drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; if (drv0->rv || drv1->rv) retval |= 0x80; if (retval != 0) FLOPPY_ERROR("Floppy digital input register: 0x%02x\n", retval); drv0->rv = 0; drv1->rv = 0; return retval; } /* FIFO state control */ static void fdctrl_reset_fifo (void) { fdctrl.data_dir = FD_DIR_WRITE; fdctrl.data_pos = 0; fdctrl.data_state = FD_STATE_CMD; } /* Set FIFO status for the host to read */ static void fdctrl_set_fifo (int fifo_len, int do_irq) { fdctrl.data_dir = FD_DIR_READ; fdctrl.data_len = fifo_len; fdctrl.data_pos = 0; fdctrl.data_state = FD_STATE_STATUS; if (do_irq) fdctrl_raise_irq(0x00); } /* Set an error: unimplemented/unknown command */ static void fdctrl_unimplemented (void) { #if 0 fdrive_t *cur_drv, *drv0, *drv1; drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; fdctrl.fifo[0] = 0x60 | (cur_drv->head << 1) | fdctrl.cur_drv; fdctrl.fifo[1] = 0x00; fdctrl.fifo[2] = 0x00; fdctrl_set_fifo(3, 1); #else fdctrl_reset_fifo(); #endif } /* Callback for transfer end (stop or abort) */ static void fdctrl_stop_transfer (uint8_t status0, uint8_t status1, uint8_t status2) { fdrive_t *cur_drv, *drv0, *drv1; drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", status0, status1, status2, status0 | (cur_drv->head << 1) | fdctrl.cur_drv); fdctrl.fifo[0] = status0 | (cur_drv->head << 1) | fdctrl.cur_drv; fdctrl.fifo[1] = status1; fdctrl.fifo[2] = status2; fdctrl.fifo[3] = cur_drv->track; fdctrl.fifo[4] = cur_drv->head; fdctrl.fifo[5] = cur_drv->sect; fdctrl.fifo[6] = FD_SECTOR_SC; fdctrl.data_dir = FD_DIR_READ; if (fdctrl.state & FD_CTRL_BUSY) DMA_release_DREQ(fdctrl.dma_chann); fdctrl_set_fifo(7, 1); } /* Prepare a data transfer (either DMA or FIFO) */ static void fdctrl_start_transfer (int direction) { fdrive_t *cur_drv, *drv0, *drv1; uint8_t kh, kt, ks; int did_seek; drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; fdctrl.cur_drv = fdctrl.fifo[1] & 1; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; kt = fdctrl.fifo[2]; kh = fdctrl.fifo[3]; ks = fdctrl.fifo[4]; FLOPPY_DPRINTF("Start tranfert at %d %d %02x %02x (%d)\n", fdctrl.cur_drv, kh, kt, ks, _fd_sector(kh, kt, ks, cur_drv->last_sect)); did_seek = 0; switch (fd_seek(cur_drv, kh, kt, ks, fdctrl.config & 0x40)) { case 2: /* sect too big */ fdctrl_stop_transfer(0x40, 0x00, 0x00); fdctrl.fifo[3] = kt; fdctrl.fifo[4] = kh; fdctrl.fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(0x40, 0x80, 0x00); fdctrl.fifo[3] = kt; fdctrl.fifo[4] = kh; fdctrl.fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(0x40, 0x00, 0x00); fdctrl.fifo[3] = kt; fdctrl.fifo[4] = kh; fdctrl.fifo[5] = ks; return; case 1: did_seek = 1; break; default: break; } /* Set the FIFO state */ fdctrl.data_dir = direction; fdctrl.data_pos = 0; fdctrl.data_state = FD_STATE_DATA; /* FIFO ready for data */ if (fdctrl.fifo[0] & 0x80) fdctrl.data_state |= FD_STATE_MULTI; if (did_seek) fdctrl.data_state |= FD_STATE_SEEK; if (fdctrl.dma_en) { int dma_mode; /* DMA transfer are enabled. Check if DMA channel is well programmed */ dma_mode = DMA_get_channel_mode(fdctrl.dma_chann); dma_mode = (dma_mode >> 2) & 3; FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d)\n", dma_mode, direction, (128 << fdctrl.fifo[5]) * (cur_drv->last_sect - ks + 1)); if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL || direction == FD_DIR_SCANH) && dma_mode == 0) || (direction == FD_DIR_WRITE && dma_mode == 2) || (direction == FD_DIR_READ && dma_mode == 1)) { /* No access is allowed until DMA transfer has completed */ fdctrl.state |= FD_CTRL_BUSY; /* Now, we just have to wait for the DMA controler to * recall us... */ DMA_hold_DREQ(fdctrl.dma_chann); DMA_schedule(fdctrl.dma_chann); return; } } FLOPPY_DPRINTF("start non-DMA transfer\n"); /* IO based transfer: calculate len */ if (fdctrl.fifo[5] == 00) { fdctrl.data_len = fdctrl.fifo[8]; } else { fdctrl.data_len = 128 << fdctrl.fifo[5]; fdctrl.data_len *= (cur_drv->last_sect - ks + 1); if (fdctrl.fifo[0] & 0x80) fdctrl.data_len *= 2; } fdctrl_raise_irq(0x00); return; } /* Prepare a transfer of deleted data */ static void fdctrl_start_transfer_del (int direction) { /* We don't handle deleted data, * so we don't return *ANYTHING* */ fdctrl_stop_transfer(0x60, 0x00, 0x00); } /* handlers for DMA transfers */ /* XXX: the partial transfer logic seems to be broken */ static int fdctrl_transfer_handler (void *opaque, target_ulong addr, int size) { fdrive_t *cur_drv, *drv0, *drv1; int len; uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; uint8_t tmpbuf[FD_SECTOR_LEN]; fdctrl_reset_irq(); if (!(fdctrl.state & FD_CTRL_BUSY)) { FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); return 0; } drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; if (fdctrl.data_dir == FD_DIR_SCANE || fdctrl.data_dir == FD_DIR_SCANL || fdctrl.data_dir == FD_DIR_SCANH) status2 = 0x04; for (fdctrl.data_len = size; fdctrl.data_pos < fdctrl.data_len; fdctrl.data_pos += len) { len = size - fdctrl.data_pos; if (len > FD_SECTOR_LEN) len = FD_SECTOR_LEN; FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x %02x " "(%d-0x%08x)\n", len, size, fdctrl.data_pos, fdctrl.data_len, fdctrl.cur_drv, cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv), fd_sector(cur_drv) * 512); if (fdctrl.data_dir != FD_DIR_WRITE) { /* READ & SCAN commands */ if (cur_drv->bs == NULL) { fdctrl_stop_transfer(0x40, 0x00, 0x00); goto transfer_error; } if (bdrv_read(cur_drv->bs, fd_sector(cur_drv), tmpbuf, 1) < 0) { FLOPPY_DPRINTF("Floppy: error getting sector %d\n", fd_sector(cur_drv)); /* Sure, image size is too small... */ memset(tmpbuf, 0, FD_SECTOR_LEN); } if (fdctrl.data_dir == FD_DIR_READ) { cpu_physical_memory_write(addr + fdctrl.data_pos, tmpbuf, len); if (len < FD_SECTOR_LEN) { memcpy(&fdctrl.fifo[0], tmpbuf + len, FD_SECTOR_LEN - len); memset(&fdctrl.fifo[FD_SECTOR_LEN - len], 0, len); } } else { int ret; /* XXX: what to do if not enough data ? */ cpu_physical_memory_read(addr + fdctrl.data_pos, fdctrl.fifo, len); if (len < FD_SECTOR_LEN) { memset(&fdctrl.fifo[len], 0, FD_SECTOR_LEN - len); } ret = memcmp(tmpbuf, fdctrl.fifo, FD_SECTOR_LEN); if (ret == 0) { status2 = 0x08; goto end_transfer; } if ((ret < 0 && fdctrl.data_dir == FD_DIR_SCANL) || (ret > 0 && fdctrl.data_dir == FD_DIR_SCANH)) { status2 = 0x00; goto end_transfer; } } } else { /* WRITE commands */ cpu_physical_memory_read(addr + fdctrl.data_pos, tmpbuf, len); if (len < FD_SECTOR_LEN) { memset(tmpbuf + len, 0, FD_SECTOR_LEN - len); } if (cur_drv->bs == NULL || bdrv_write(cur_drv->bs, fd_sector(cur_drv), tmpbuf, 1) < 0) { FLOPPY_ERROR("writting sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(0x60, 0x00, 0x00); goto transfer_error; } } if (len == FD_SECTOR_LEN) { /* Seek to next sector */ if (cur_drv->sect == cur_drv->last_sect) { if (cur_drv->head == 0) { cur_drv->head = 1; } else { cur_drv->track++; cur_drv->head = 0; } cur_drv->sect = 1; FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv)); if (cur_drv->head == 0) { FLOPPY_DPRINTF("end transfer\n"); goto end_transfer; } if (!FD_MULTI_TRACK(fdctrl.data_state)) { /* Single track read */ FLOPPY_DPRINTF("single track transfert: end transfer\n"); // status1 |= 0x80; goto end_transfer; } } else { cur_drv->sect++; FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv)); } } } end_transfer: if (fdctrl.data_dir == FD_DIR_SCANE || fdctrl.data_dir == FD_DIR_SCANL || fdctrl.data_dir == FD_DIR_SCANH) status2 = 0x08; if (FD_DID_SEEK(fdctrl.data_state)) status0 |= 0x20; fdctrl_stop_transfer(status0, status1, status2); transfer_error: return fdctrl.data_pos; } /* Data register : 0x05 */ static uint32_t fdctrl_read_data (CPUState *env, uint32_t reg) { fdrive_t *cur_drv, *drv0, *drv1; uint32_t retval = 0; int pos, len; fdctrl_reset_irq(); drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; fdctrl.state &= ~FD_CTRL_SLEEP; if (FD_STATE(fdctrl.data_state) == FD_STATE_CMD) { FLOPPY_ERROR("can't read data in CMD state\n"); return 0; } pos = fdctrl.data_pos; if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA) { pos %= FD_SECTOR_LEN; if (pos == 0) { len = fdctrl.data_len - fdctrl.data_pos; if (len > FD_SECTOR_LEN) len = FD_SECTOR_LEN; bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl.fifo, len); } } retval = fdctrl.fifo[pos]; if (++fdctrl.data_pos == fdctrl.data_len) { fdctrl.data_pos = 0; /* Switch from transfert mode to status mode * then from status mode to command mode */ if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA) fdctrl_stop_transfer(0x20, 0x00, 0x00); else fdctrl_reset_fifo(); } FLOPPY_DPRINTF("data register: 0x%02x\n", retval); return retval; } static void fdctrl_write_data (CPUState *env, uint32_t reg, uint32_t value) { fdrive_t *cur_drv, *drv0, *drv1; fdctrl_reset_irq(); drv0 = &fdctrl.drives[fdctrl.bootsel]; drv1 = &fdctrl.drives[1 - fdctrl.bootsel]; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; /* Reset mode */ if (fdctrl.state & FD_CTRL_RESET) { FLOPPY_DPRINTF("Floppy controler in RESET state !\n"); return; } fdctrl.state &= ~FD_CTRL_SLEEP; if ((fdctrl.data_state & FD_STATE_STATE) == FD_STATE_STATUS) { FLOPPY_ERROR("can't write data in status mode\n"); return; } /* Is it write command time ? */ if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA) { /* FIFO data write */ fdctrl.fifo[fdctrl.data_pos++] = value; if (fdctrl.data_pos % FD_SECTOR_LEN == (FD_SECTOR_LEN - 1) || fdctrl.data_pos == fdctrl.data_len) { bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl.fifo, FD_SECTOR_LEN); } /* Switch from transfert mode to status mode * then from status mode to command mode */ if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA) fdctrl_stop_transfer(0x20, 0x00, 0x00); return; } if (fdctrl.data_pos == 0) { /* Command */ switch (value & 0x5F) { case 0x46: /* READ variants */ FLOPPY_DPRINTF("READ command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x4C: /* READ_DELETED variants */ FLOPPY_DPRINTF("READ_DELETED command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x50: /* SCAN_EQUAL variants */ FLOPPY_DPRINTF("SCAN_EQUAL command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x56: /* VERIFY variants */ FLOPPY_DPRINTF("VERIFY command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x59: /* SCAN_LOW_OR_EQUAL variants */ FLOPPY_DPRINTF("SCAN_LOW_OR_EQUAL command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x5D: /* SCAN_HIGH_OR_EQUAL variants */ FLOPPY_DPRINTF("SCAN_HIGH_OR_EQUAL command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; default: break; } switch (value & 0x7F) { case 0x45: /* WRITE variants */ FLOPPY_DPRINTF("WRITE command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x49: /* WRITE_DELETED variants */ FLOPPY_DPRINTF("WRITE_DELETED command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; default: break; } switch (value) { case 0x03: /* SPECIFY */ FLOPPY_DPRINTF("SPECIFY command\n"); /* 1 parameter cmd */ fdctrl.data_len = 3; goto enqueue; case 0x04: /* SENSE_DRIVE_STATUS */ FLOPPY_DPRINTF("SENSE_DRIVE_STATUS command\n"); /* 1 parameter cmd */ fdctrl.data_len = 2; goto enqueue; case 0x07: /* RECALIBRATE */ FLOPPY_DPRINTF("RECALIBRATE command\n"); /* 1 parameter cmd */ fdctrl.data_len = 2; goto enqueue; case 0x08: /* SENSE_INTERRUPT_STATUS */ FLOPPY_DPRINTF("SENSE_INTERRUPT_STATUS command (%02x)\n", fdctrl.int_status); /* No parameters cmd: returns status if no interrupt */ fdctrl.fifo[0] = fdctrl.int_status | (cur_drv->head << 2) | fdctrl.cur_drv; fdctrl.fifo[1] = cur_drv->track; fdctrl_set_fifo(2, 0); return; case 0x0E: /* DUMPREG */ FLOPPY_DPRINTF("DUMPREG command\n"); /* Drives position */ fdctrl.fifo[0] = drv0->track; fdctrl.fifo[1] = drv1->track; fdctrl.fifo[2] = 0; fdctrl.fifo[3] = 0; /* timers */ fdctrl.fifo[4] = fdctrl.timer0; fdctrl.fifo[5] = (fdctrl.timer1 << 1) | fdctrl.dma_en; fdctrl.fifo[6] = cur_drv->last_sect; fdctrl.fifo[7] = (fdctrl.lock << 7) | (cur_drv->perpendicular << 2); fdctrl.fifo[8] = fdctrl.config; fdctrl.fifo[9] = fdctrl.precomp_trk; fdctrl_set_fifo(10, 0); return; case 0x0F: /* SEEK */ FLOPPY_DPRINTF("SEEK command\n"); /* 2 parameters cmd */ fdctrl.data_len = 3; goto enqueue; case 0x10: /* VERSION */ FLOPPY_DPRINTF("VERSION command\n"); /* No parameters cmd */ /* Controler's version */ fdctrl.fifo[0] = fdctrl.version; fdctrl_set_fifo(1, 1); return; case 0x12: /* PERPENDICULAR_MODE */ FLOPPY_DPRINTF("PERPENDICULAR_MODE command\n"); /* 1 parameter cmd */ fdctrl.data_len = 2; goto enqueue; case 0x13: /* CONFIGURE */ FLOPPY_DPRINTF("CONFIGURE command\n"); /* 3 parameters cmd */ fdctrl.data_len = 4; goto enqueue; case 0x14: /* UNLOCK */ FLOPPY_DPRINTF("UNLOCK command\n"); /* No parameters cmd */ fdctrl.lock = 0; fdctrl.fifo[0] = 0; fdctrl_set_fifo(1, 0); return; case 0x17: /* POWERDOWN_MODE */ FLOPPY_DPRINTF("POWERDOWN_MODE command\n"); /* 2 parameters cmd */ fdctrl.data_len = 3; goto enqueue; case 0x18: /* PART_ID */ FLOPPY_DPRINTF("PART_ID command\n"); /* No parameters cmd */ fdctrl.fifo[0] = 0x41; /* Stepping 1 */ fdctrl_set_fifo(1, 0); return; case 0x2C: /* SAVE */ FLOPPY_DPRINTF("SAVE command\n"); /* No parameters cmd */ fdctrl.fifo[0] = 0; fdctrl.fifo[1] = 0; /* Drives position */ fdctrl.fifo[2] = drv0->track; fdctrl.fifo[3] = drv1->track; fdctrl.fifo[4] = 0; fdctrl.fifo[5] = 0; /* timers */ fdctrl.fifo[6] = fdctrl.timer0; fdctrl.fifo[7] = fdctrl.timer1; fdctrl.fifo[8] = cur_drv->last_sect; fdctrl.fifo[9] = (fdctrl.lock << 7) | (cur_drv->perpendicular << 2); fdctrl.fifo[10] = fdctrl.config; fdctrl.fifo[11] = fdctrl.precomp_trk; fdctrl.fifo[12] = fdctrl.pwrd; fdctrl.fifo[13] = 0; fdctrl.fifo[14] = 0; fdctrl_set_fifo(15, 1); return; case 0x33: /* OPTION */ FLOPPY_DPRINTF("OPTION command\n"); /* 1 parameter cmd */ fdctrl.data_len = 2; goto enqueue; case 0x42: /* READ_TRACK */ FLOPPY_DPRINTF("READ_TRACK command\n"); /* 8 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x4A: /* READ_ID */ FLOPPY_DPRINTF("READ_ID command\n"); /* 1 parameter cmd */ fdctrl.data_len = 2; goto enqueue; case 0x4C: /* RESTORE */ FLOPPY_DPRINTF("RESTORE command\n"); /* 17 parameters cmd */ fdctrl.data_len = 18; goto enqueue; case 0x4D: /* FORMAT_TRACK */ FLOPPY_DPRINTF("FORMAT_TRACK command\n"); /* 5 parameters cmd */ fdctrl.data_len = 9; goto enqueue; case 0x8E: /* DRIVE_SPECIFICATION_COMMAND */ FLOPPY_DPRINTF("DRIVE_SPECIFICATION_COMMAND command\n"); /* 5 parameters cmd */ fdctrl.data_len = 6; goto enqueue; case 0x8F: /* RELATIVE_SEEK_OUT */ FLOPPY_DPRINTF("RELATIVE_SEEK_OUT command\n"); /* 2 parameters cmd */ fdctrl.data_len = 3; goto enqueue; case 0x94: /* LOCK */ FLOPPY_DPRINTF("LOCK command\n"); /* No parameters cmd */ fdctrl.lock = 1; fdctrl.fifo[0] = 0x10; fdctrl_set_fifo(1, 1); return; case 0xCD: /* FORMAT_AND_WRITE */ FLOPPY_DPRINTF("FORMAT_AND_WRITE command\n"); /* 10 parameters cmd */ fdctrl.data_len = 11; goto enqueue; case 0xCF: /* RELATIVE_SEEK_IN */ FLOPPY_DPRINTF("RELATIVE_SEEK_IN command\n"); /* 2 parameters cmd */ fdctrl.data_len = 3; goto enqueue; default: /* Unknown command */ FLOPPY_ERROR("unknown command: 0x%02x\n", value); fdctrl_unimplemented(); return; } } enqueue: fdctrl.fifo[fdctrl.data_pos] = value; if (++fdctrl.data_pos == fdctrl.data_len) { /* We now have all parameters * and will be able to treat the command */ switch (fdctrl.fifo[0] & 0x1F) { case 0x06: { /* READ variants */ FLOPPY_DPRINTF("treat READ command\n"); fdctrl_start_transfer(FD_DIR_READ); return; } case 0x0C: /* READ_DELETED variants */ // FLOPPY_DPRINTF("treat READ_DELETED command\n"); FLOPPY_ERROR("treat READ_DELETED command\n"); fdctrl_start_transfer_del(1); return; case 0x16: /* VERIFY variants */ // FLOPPY_DPRINTF("treat VERIFY command\n"); FLOPPY_ERROR("treat VERIFY command\n"); fdctrl_stop_transfer(0x20, 0x00, 0x00); return; case 0x10: /* SCAN_EQUAL variants */ // FLOPPY_DPRINTF("treat SCAN_EQUAL command\n"); FLOPPY_ERROR("treat SCAN_EQUAL command\n"); fdctrl_start_transfer(FD_DIR_SCANE); return; case 0x19: /* SCAN_LOW_OR_EQUAL variants */ // FLOPPY_DPRINTF("treat SCAN_LOW_OR_EQUAL command\n"); FLOPPY_ERROR("treat SCAN_LOW_OR_EQUAL command\n"); fdctrl_start_transfer(FD_DIR_SCANL); return; case 0x1D: /* SCAN_HIGH_OR_EQUAL variants */ // FLOPPY_DPRINTF("treat SCAN_HIGH_OR_EQUAL command\n"); FLOPPY_ERROR("treat SCAN_HIGH_OR_EQUAL command\n"); fdctrl_start_transfer(FD_DIR_SCANH); return; default: break; } switch (fdctrl.fifo[0] & 0x3F) { case 0x05: /* WRITE variants */ FLOPPY_DPRINTF("treat WRITE command (%02x)\n", fdctrl.fifo[0]); fdctrl_start_transfer(FD_DIR_WRITE); return; case 0x09: /* WRITE_DELETED variants */ // FLOPPY_DPRINTF("treat WRITE_DELETED command\n"); FLOPPY_ERROR("treat WRITE_DELETED command\n"); fdctrl_start_transfer_del(FD_DIR_WRITE); return; default: break; } switch (fdctrl.fifo[0]) { case 0x03: /* SPECIFY */ FLOPPY_DPRINTF("treat SPECIFY command\n"); fdctrl.timer0 = (fdctrl.fifo[1] >> 4) & 0xF; fdctrl.timer1 = fdctrl.fifo[1] >> 1; /* No result back */ fdctrl_reset_fifo(); break; case 0x04: /* SENSE_DRIVE_STATUS */ FLOPPY_DPRINTF("treat SENSE_DRIVE_STATUS command\n"); fdctrl.cur_drv = fdctrl.fifo[1] & 1; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; cur_drv->head = (fdctrl.fifo[1] >> 2) & 1; /* 1 Byte status back */ fdctrl.fifo[0] = (cur_drv->ro << 6) | (cur_drv->track == 0 ? 0x10 : 0x00) | fdctrl.cur_drv; fdctrl_set_fifo(1, 0); break; case 0x07: /* RECALIBRATE */ FLOPPY_DPRINTF("treat RECALIBRATE command\n"); fdctrl.cur_drv = fdctrl.fifo[1] & 1; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; fd_recalibrate(cur_drv); fdctrl_reset_fifo(); /* Raise Interrupt */ fdctrl_raise_irq(0x20); break; case 0x0F: /* SEEK */ FLOPPY_DPRINTF("treat SEEK command\n"); fdctrl.cur_drv = fdctrl.fifo[1] & 1; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; if (fdctrl.fifo[2] <= cur_drv->track) cur_drv->dir = 1; else cur_drv->dir = 0; cur_drv->head = (fdctrl.fifo[1] >> 2) & 1; if (fdctrl.fifo[2] > cur_drv->max_track) { fdctrl_raise_irq(0x60); } else { cur_drv->track = fdctrl.fifo[2]; fdctrl_reset_fifo(); /* Raise Interrupt */ fdctrl_raise_irq(0x20); } break; case 0x12: /* PERPENDICULAR_MODE */ FLOPPY_DPRINTF("treat PERPENDICULAR_MODE command\n"); if (fdctrl.fifo[1] & 0x80) cur_drv->perpendicular = fdctrl.fifo[1] & 0x7; /* No result back */ fdctrl_reset_fifo(); break; case 0x13: /* CONFIGURE */ FLOPPY_DPRINTF("treat CONFIGURE command\n"); fdctrl.config = fdctrl.fifo[2]; fdctrl.precomp_trk = fdctrl.fifo[3]; /* No result back */ fdctrl_reset_fifo(); break; case 0x17: /* POWERDOWN_MODE */ FLOPPY_DPRINTF("treat POWERDOWN_MODE command\n"); fdctrl.pwrd = fdctrl.fifo[1]; fdctrl.fifo[0] = fdctrl.fifo[1]; fdctrl_set_fifo(1, 1); break; case 0x33: /* OPTION */ FLOPPY_DPRINTF("treat OPTION command\n"); /* No result back */ fdctrl_reset_fifo(); break; case 0x42: /* READ_TRACK */ // FLOPPY_DPRINTF("treat READ_TRACK command\n"); FLOPPY_ERROR("treat READ_TRACK command\n"); fdctrl_unimplemented(); break; case 0x4A: /* READ_ID */ // FLOPPY_DPRINTF("treat READ_ID command\n"); FLOPPY_ERROR("treat READ_ID command\n"); fdctrl_stop_transfer(0x00, 0x00, 0x00); break; case 0x4C: /* RESTORE */ FLOPPY_DPRINTF("treat RESTORE command\n"); /* Drives position */ drv0->track = fdctrl.fifo[3]; drv1->track = fdctrl.fifo[4]; /* timers */ fdctrl.timer0 = fdctrl.fifo[7]; fdctrl.timer1 = fdctrl.fifo[8]; cur_drv->last_sect = fdctrl.fifo[9]; fdctrl.lock = fdctrl.fifo[10] >> 7; cur_drv->perpendicular = (fdctrl.fifo[10] >> 2) & 0xF; fdctrl.config = fdctrl.fifo[11]; fdctrl.precomp_trk = fdctrl.fifo[12]; fdctrl.pwrd = fdctrl.fifo[13]; fdctrl_reset_fifo(); break; case 0x4D: /* FORMAT_TRACK */ // FLOPPY_DPRINTF("treat FORMAT_TRACK command\n"); FLOPPY_ERROR("treat FORMAT_TRACK command\n"); fdctrl_unimplemented(); break; case 0x8E: /* DRIVE_SPECIFICATION_COMMAND */ FLOPPY_DPRINTF("treat DRIVE_SPECIFICATION_COMMAND command\n"); if (fdctrl.fifo[fdctrl.data_pos - 1] & 0x80) { /* Command parameters done */ if (fdctrl.fifo[fdctrl.data_pos - 1] & 0x40) { fdctrl.fifo[0] = fdctrl.fifo[1]; fdctrl.fifo[2] = 0; fdctrl.fifo[3] = 0; fdctrl_set_fifo(4, 1); } else { fdctrl_reset_fifo(); } } else if (fdctrl.data_len > 7) { /* ERROR */ fdctrl.fifo[0] = 0x80 | (cur_drv->head << 2) | fdctrl.cur_drv; fdctrl_set_fifo(1, 1); } break; case 0x8F: /* RELATIVE_SEEK_OUT */ FLOPPY_DPRINTF("treat RELATIVE_SEEK_OUT command\n"); fdctrl.cur_drv = fdctrl.fifo[1] & 1; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; cur_drv->head = (fdctrl.fifo[1] >> 2) & 1; if (fdctrl.fifo[2] + cur_drv->track > cur_drv->max_track) { /* ERROR */ fdctrl_raise_irq(0x70); } else { cur_drv->track += fdctrl.fifo[2]; cur_drv->dir = 0; fdctrl_reset_fifo(); fdctrl_raise_irq(0x20); } break; case 0xCD: /* FORMAT_AND_WRITE */ // FLOPPY_DPRINTF("treat FORMAT_AND_WRITE command\n"); FLOPPY_ERROR("treat FORMAT_AND_WRITE command\n"); fdctrl_unimplemented(); break; case 0xCF: /* RELATIVE_SEEK_IN */ FLOPPY_DPRINTF("treat RELATIVE_SEEK_IN command\n"); fdctrl.cur_drv = fdctrl.fifo[1] & 1; cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1; cur_drv->head = (fdctrl.fifo[1] >> 2) & 1; if (fdctrl.fifo[2] > cur_drv->track) { /* ERROR */ fdctrl_raise_irq(0x60); } else { fdctrl_reset_fifo(); cur_drv->track -= fdctrl.fifo[2]; cur_drv->dir = 1; /* Raise Interrupt */ fdctrl_raise_irq(0x20); } break; } } }