/* * QEMU model of the ZynqMP generic DMA * * Copyright (c) 2014 Xilinx Inc. * Copyright (c) 2018 FEIMTECH AB * * Written by Edgar E. Iglesias <edgar.iglesias@xilinx.com>, * Francisco Iglesias <francisco.iglesias@feimtech.se> * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/dma/xlnx-zdma.h" #include "qemu/bitops.h" #include "qemu/log.h" #include "qemu/module.h" #include "qapi/error.h" #ifndef XLNX_ZDMA_ERR_DEBUG #define XLNX_ZDMA_ERR_DEBUG 0 #endif REG32(ZDMA_ERR_CTRL, 0x0) FIELD(ZDMA_ERR_CTRL, APB_ERR_RES, 0, 1) REG32(ZDMA_CH_ISR, 0x100) FIELD(ZDMA_CH_ISR, DMA_PAUSE, 11, 1) FIELD(ZDMA_CH_ISR, DMA_DONE, 10, 1) FIELD(ZDMA_CH_ISR, AXI_WR_DATA, 9, 1) FIELD(ZDMA_CH_ISR, AXI_RD_DATA, 8, 1) FIELD(ZDMA_CH_ISR, AXI_RD_DST_DSCR, 7, 1) FIELD(ZDMA_CH_ISR, AXI_RD_SRC_DSCR, 6, 1) FIELD(ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, 5, 1) FIELD(ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, 4, 1) FIELD(ZDMA_CH_ISR, BYTE_CNT_OVRFL, 3, 1) FIELD(ZDMA_CH_ISR, DST_DSCR_DONE, 2, 1) FIELD(ZDMA_CH_ISR, SRC_DSCR_DONE, 1, 1) FIELD(ZDMA_CH_ISR, INV_APB, 0, 1) REG32(ZDMA_CH_IMR, 0x104) FIELD(ZDMA_CH_IMR, DMA_PAUSE, 11, 1) FIELD(ZDMA_CH_IMR, DMA_DONE, 10, 1) FIELD(ZDMA_CH_IMR, AXI_WR_DATA, 9, 1) FIELD(ZDMA_CH_IMR, AXI_RD_DATA, 8, 1) FIELD(ZDMA_CH_IMR, AXI_RD_DST_DSCR, 7, 1) FIELD(ZDMA_CH_IMR, AXI_RD_SRC_DSCR, 6, 1) FIELD(ZDMA_CH_IMR, IRQ_DST_ACCT_ERR, 5, 1) FIELD(ZDMA_CH_IMR, IRQ_SRC_ACCT_ERR, 4, 1) FIELD(ZDMA_CH_IMR, BYTE_CNT_OVRFL, 3, 1) FIELD(ZDMA_CH_IMR, DST_DSCR_DONE, 2, 1) FIELD(ZDMA_CH_IMR, SRC_DSCR_DONE, 1, 1) FIELD(ZDMA_CH_IMR, INV_APB, 0, 1) REG32(ZDMA_CH_IEN, 0x108) FIELD(ZDMA_CH_IEN, DMA_PAUSE, 11, 1) FIELD(ZDMA_CH_IEN, DMA_DONE, 10, 1) FIELD(ZDMA_CH_IEN, AXI_WR_DATA, 9, 1) FIELD(ZDMA_CH_IEN, AXI_RD_DATA, 8, 1) FIELD(ZDMA_CH_IEN, AXI_RD_DST_DSCR, 7, 1) FIELD(ZDMA_CH_IEN, AXI_RD_SRC_DSCR, 6, 1) FIELD(ZDMA_CH_IEN, IRQ_DST_ACCT_ERR, 5, 1) FIELD(ZDMA_CH_IEN, IRQ_SRC_ACCT_ERR, 4, 1) FIELD(ZDMA_CH_IEN, BYTE_CNT_OVRFL, 3, 1) FIELD(ZDMA_CH_IEN, DST_DSCR_DONE, 2, 1) FIELD(ZDMA_CH_IEN, SRC_DSCR_DONE, 1, 1) FIELD(ZDMA_CH_IEN, INV_APB, 0, 1) REG32(ZDMA_CH_IDS, 0x10c) FIELD(ZDMA_CH_IDS, DMA_PAUSE, 11, 1) FIELD(ZDMA_CH_IDS, DMA_DONE, 10, 1) FIELD(ZDMA_CH_IDS, AXI_WR_DATA, 9, 1) FIELD(ZDMA_CH_IDS, AXI_RD_DATA, 8, 1) FIELD(ZDMA_CH_IDS, AXI_RD_DST_DSCR, 7, 1) FIELD(ZDMA_CH_IDS, AXI_RD_SRC_DSCR, 6, 1) FIELD(ZDMA_CH_IDS, IRQ_DST_ACCT_ERR, 5, 1) FIELD(ZDMA_CH_IDS, IRQ_SRC_ACCT_ERR, 4, 1) FIELD(ZDMA_CH_IDS, BYTE_CNT_OVRFL, 3, 1) FIELD(ZDMA_CH_IDS, DST_DSCR_DONE, 2, 1) FIELD(ZDMA_CH_IDS, SRC_DSCR_DONE, 1, 1) FIELD(ZDMA_CH_IDS, INV_APB, 0, 1) REG32(ZDMA_CH_CTRL0, 0x110) FIELD(ZDMA_CH_CTRL0, OVR_FETCH, 7, 1) FIELD(ZDMA_CH_CTRL0, POINT_TYPE, 6, 1) FIELD(ZDMA_CH_CTRL0, MODE, 4, 2) FIELD(ZDMA_CH_CTRL0, RATE_CTRL, 3, 1) FIELD(ZDMA_CH_CTRL0, CONT_ADDR, 2, 1) FIELD(ZDMA_CH_CTRL0, CONT, 1, 1) REG32(ZDMA_CH_CTRL1, 0x114) FIELD(ZDMA_CH_CTRL1, DST_ISSUE, 5, 5) FIELD(ZDMA_CH_CTRL1, SRC_ISSUE, 0, 5) REG32(ZDMA_CH_FCI, 0x118) FIELD(ZDMA_CH_FCI, PROG_CELL_CNT, 2, 2) FIELD(ZDMA_CH_FCI, SIDE, 1, 1) FIELD(ZDMA_CH_FCI, EN, 0, 1) REG32(ZDMA_CH_STATUS, 0x11c) FIELD(ZDMA_CH_STATUS, STATE, 0, 2) REG32(ZDMA_CH_DATA_ATTR, 0x120) FIELD(ZDMA_CH_DATA_ATTR, ARBURST, 26, 2) FIELD(ZDMA_CH_DATA_ATTR, ARCACHE, 22, 4) FIELD(ZDMA_CH_DATA_ATTR, ARQOS, 18, 4) FIELD(ZDMA_CH_DATA_ATTR, ARLEN, 14, 4) FIELD(ZDMA_CH_DATA_ATTR, AWBURST, 12, 2) FIELD(ZDMA_CH_DATA_ATTR, AWCACHE, 8, 4) FIELD(ZDMA_CH_DATA_ATTR, AWQOS, 4, 4) FIELD(ZDMA_CH_DATA_ATTR, AWLEN, 0, 4) REG32(ZDMA_CH_DSCR_ATTR, 0x124) FIELD(ZDMA_CH_DSCR_ATTR, AXCOHRNT, 8, 1) FIELD(ZDMA_CH_DSCR_ATTR, AXCACHE, 4, 4) FIELD(ZDMA_CH_DSCR_ATTR, AXQOS, 0, 4) REG32(ZDMA_CH_SRC_DSCR_WORD0, 0x128) REG32(ZDMA_CH_SRC_DSCR_WORD1, 0x12c) FIELD(ZDMA_CH_SRC_DSCR_WORD1, MSB, 0, 17) REG32(ZDMA_CH_SRC_DSCR_WORD2, 0x130) FIELD(ZDMA_CH_SRC_DSCR_WORD2, SIZE, 0, 30) REG32(ZDMA_CH_SRC_DSCR_WORD3, 0x134) FIELD(ZDMA_CH_SRC_DSCR_WORD3, CMD, 3, 2) FIELD(ZDMA_CH_SRC_DSCR_WORD3, INTR, 2, 1) FIELD(ZDMA_CH_SRC_DSCR_WORD3, TYPE, 1, 1) FIELD(ZDMA_CH_SRC_DSCR_WORD3, COHRNT, 0, 1) REG32(ZDMA_CH_DST_DSCR_WORD0, 0x138) REG32(ZDMA_CH_DST_DSCR_WORD1, 0x13c) FIELD(ZDMA_CH_DST_DSCR_WORD1, MSB, 0, 17) REG32(ZDMA_CH_DST_DSCR_WORD2, 0x140) FIELD(ZDMA_CH_DST_DSCR_WORD2, SIZE, 0, 30) REG32(ZDMA_CH_DST_DSCR_WORD3, 0x144) FIELD(ZDMA_CH_DST_DSCR_WORD3, INTR, 2, 1) FIELD(ZDMA_CH_DST_DSCR_WORD3, TYPE, 1, 1) FIELD(ZDMA_CH_DST_DSCR_WORD3, COHRNT, 0, 1) REG32(ZDMA_CH_WR_ONLY_WORD0, 0x148) REG32(ZDMA_CH_WR_ONLY_WORD1, 0x14c) REG32(ZDMA_CH_WR_ONLY_WORD2, 0x150) REG32(ZDMA_CH_WR_ONLY_WORD3, 0x154) REG32(ZDMA_CH_SRC_START_LSB, 0x158) REG32(ZDMA_CH_SRC_START_MSB, 0x15c) FIELD(ZDMA_CH_SRC_START_MSB, ADDR, 0, 17) REG32(ZDMA_CH_DST_START_LSB, 0x160) REG32(ZDMA_CH_DST_START_MSB, 0x164) FIELD(ZDMA_CH_DST_START_MSB, ADDR, 0, 17) REG32(ZDMA_CH_RATE_CTRL, 0x18c) FIELD(ZDMA_CH_RATE_CTRL, CNT, 0, 12) REG32(ZDMA_CH_SRC_CUR_PYLD_LSB, 0x168) REG32(ZDMA_CH_SRC_CUR_PYLD_MSB, 0x16c) FIELD(ZDMA_CH_SRC_CUR_PYLD_MSB, ADDR, 0, 17) REG32(ZDMA_CH_DST_CUR_PYLD_LSB, 0x170) REG32(ZDMA_CH_DST_CUR_PYLD_MSB, 0x174) FIELD(ZDMA_CH_DST_CUR_PYLD_MSB, ADDR, 0, 17) REG32(ZDMA_CH_SRC_CUR_DSCR_LSB, 0x178) REG32(ZDMA_CH_SRC_CUR_DSCR_MSB, 0x17c) FIELD(ZDMA_CH_SRC_CUR_DSCR_MSB, ADDR, 0, 17) REG32(ZDMA_CH_DST_CUR_DSCR_LSB, 0x180) REG32(ZDMA_CH_DST_CUR_DSCR_MSB, 0x184) FIELD(ZDMA_CH_DST_CUR_DSCR_MSB, ADDR, 0, 17) REG32(ZDMA_CH_TOTAL_BYTE, 0x188) REG32(ZDMA_CH_RATE_CNTL, 0x18c) FIELD(ZDMA_CH_RATE_CNTL, CNT, 0, 12) REG32(ZDMA_CH_IRQ_SRC_ACCT, 0x190) FIELD(ZDMA_CH_IRQ_SRC_ACCT, CNT, 0, 8) REG32(ZDMA_CH_IRQ_DST_ACCT, 0x194) FIELD(ZDMA_CH_IRQ_DST_ACCT, CNT, 0, 8) REG32(ZDMA_CH_DBG0, 0x198) FIELD(ZDMA_CH_DBG0, CMN_BUF_FREE, 0, 9) REG32(ZDMA_CH_DBG1, 0x19c) FIELD(ZDMA_CH_DBG1, CMN_BUF_OCC, 0, 9) REG32(ZDMA_CH_CTRL2, 0x200) FIELD(ZDMA_CH_CTRL2, EN, 0, 1) enum { PT_REG = 0, PT_MEM = 1, }; enum { CMD_HALT = 1, CMD_STOP = 2, }; enum { RW_MODE_RW = 0, RW_MODE_WO = 1, RW_MODE_RO = 2, }; enum { DTYPE_LINEAR = 0, DTYPE_LINKED = 1, }; enum { AXI_BURST_FIXED = 0, AXI_BURST_INCR = 1, }; static void zdma_ch_imr_update_irq(XlnxZDMA *s) { bool pending; pending = s->regs[R_ZDMA_CH_ISR] & ~s->regs[R_ZDMA_CH_IMR]; qemu_set_irq(s->irq_zdma_ch_imr, pending); } static void zdma_ch_isr_postw(RegisterInfo *reg, uint64_t val64) { XlnxZDMA *s = XLNX_ZDMA(reg->opaque); zdma_ch_imr_update_irq(s); } static uint64_t zdma_ch_ien_prew(RegisterInfo *reg, uint64_t val64) { XlnxZDMA *s = XLNX_ZDMA(reg->opaque); uint32_t val = val64; s->regs[R_ZDMA_CH_IMR] &= ~val; zdma_ch_imr_update_irq(s); return 0; } static uint64_t zdma_ch_ids_prew(RegisterInfo *reg, uint64_t val64) { XlnxZDMA *s = XLNX_ZDMA(reg->opaque); uint32_t val = val64; s->regs[R_ZDMA_CH_IMR] |= val; zdma_ch_imr_update_irq(s); return 0; } static void zdma_set_state(XlnxZDMA *s, XlnxZDMAState state) { s->state = state; ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, state); /* Signal error if we have an error condition. */ if (s->error) { ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, 3); } } static void zdma_src_done(XlnxZDMA *s) { unsigned int cnt; cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT); cnt++; ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT, cnt); ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, SRC_DSCR_DONE, true); /* Did we overflow? */ if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT)) { ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, true); } zdma_ch_imr_update_irq(s); } static void zdma_dst_done(XlnxZDMA *s) { unsigned int cnt; cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT); cnt++; ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT, cnt); ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DST_DSCR_DONE, true); /* Did we overflow? */ if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT)) { ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, true); } zdma_ch_imr_update_irq(s); } static uint64_t zdma_get_regaddr64(XlnxZDMA *s, unsigned int basereg) { uint64_t addr; addr = s->regs[basereg + 1]; addr <<= 32; addr |= s->regs[basereg]; return addr; } static void zdma_put_regaddr64(XlnxZDMA *s, unsigned int basereg, uint64_t addr) { s->regs[basereg] = addr; s->regs[basereg + 1] = addr >> 32; } static bool zdma_load_descriptor(XlnxZDMA *s, uint64_t addr, void *buf) { /* ZDMA descriptors must be aligned to their own size. */ if (addr % sizeof(XlnxZDMADescr)) { qemu_log_mask(LOG_GUEST_ERROR, "zdma: unaligned descriptor at %" PRIx64, addr); memset(buf, 0x0, sizeof(XlnxZDMADescr)); s->error = true; return false; } address_space_rw(s->dma_as, addr, s->attr, buf, sizeof(XlnxZDMADescr), false); return true; } static void zdma_load_src_descriptor(XlnxZDMA *s) { uint64_t src_addr; unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); if (ptype == PT_REG) { memcpy(&s->dsc_src, &s->regs[R_ZDMA_CH_SRC_DSCR_WORD0], sizeof(s->dsc_src)); return; } src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB); if (!zdma_load_descriptor(s, src_addr, &s->dsc_src)) { ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_SRC_DSCR, true); } } static void zdma_load_dst_descriptor(XlnxZDMA *s) { uint64_t dst_addr; unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); if (ptype == PT_REG) { memcpy(&s->dsc_dst, &s->regs[R_ZDMA_CH_DST_DSCR_WORD0], sizeof(s->dsc_dst)); return; } dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB); if (!zdma_load_descriptor(s, dst_addr, &s->dsc_dst)) { ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_DST_DSCR, true); } } static uint64_t zdma_update_descr_addr(XlnxZDMA *s, bool type, unsigned int basereg) { uint64_t addr, next; if (type == DTYPE_LINEAR) { next = zdma_get_regaddr64(s, basereg); next += sizeof(s->dsc_dst); zdma_put_regaddr64(s, basereg, next); } else { addr = zdma_get_regaddr64(s, basereg); addr += sizeof(s->dsc_dst); address_space_rw(s->dma_as, addr, s->attr, (void *) &next, 8, false); zdma_put_regaddr64(s, basereg, next); } return next; } static void zdma_write_dst(XlnxZDMA *s, uint8_t *buf, uint32_t len) { uint32_t dst_size, dlen; bool dst_intr, dst_type; unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE); unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR, AWBURST); /* FIXED burst types are only supported in simple dma mode. */ if (ptype != PT_REG) { burst_type = AXI_BURST_INCR; } while (len) { dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2, SIZE); dst_type = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, TYPE); if (dst_size == 0 && ptype == PT_MEM) { uint64_t next; next = zdma_update_descr_addr(s, dst_type, R_ZDMA_CH_DST_CUR_DSCR_LSB); zdma_load_descriptor(s, next, &s->dsc_dst); dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2, SIZE); dst_type = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, TYPE); } /* Match what hardware does by ignoring the dst_size and only using * the src size for Simple register mode. */ if (ptype == PT_REG && rw_mode != RW_MODE_WO) { dst_size = len; } dst_intr = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, INTR); dlen = len > dst_size ? dst_size : len; if (burst_type == AXI_BURST_FIXED) { if (dlen > (s->cfg.bus_width / 8)) { dlen = s->cfg.bus_width / 8; } } address_space_rw(s->dma_as, s->dsc_dst.addr, s->attr, buf, dlen, true); if (burst_type == AXI_BURST_INCR) { s->dsc_dst.addr += dlen; } dst_size -= dlen; buf += dlen; len -= dlen; if (dst_size == 0 && dst_intr) { zdma_dst_done(s); } /* Write back to buffered descriptor. */ s->dsc_dst.words[2] = FIELD_DP32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2, SIZE, dst_size); } } static void zdma_process_descr(XlnxZDMA *s) { uint64_t src_addr; uint32_t src_size, len; unsigned int src_cmd; bool src_intr, src_type; unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE); unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR, ARBURST); src_addr = s->dsc_src.addr; src_size = FIELD_EX32(s->dsc_src.words[2], ZDMA_CH_SRC_DSCR_WORD2, SIZE); src_cmd = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, CMD); src_type = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, TYPE); src_intr = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, INTR); /* FIXED burst types and non-rw modes are only supported in * simple dma mode. */ if (ptype != PT_REG) { if (rw_mode != RW_MODE_RW) { qemu_log_mask(LOG_GUEST_ERROR, "zDMA: rw-mode=%d but not simple DMA mode.\n", rw_mode); } if (burst_type != AXI_BURST_INCR) { qemu_log_mask(LOG_GUEST_ERROR, "zDMA: burst_type=%d but not simple DMA mode.\n", burst_type); } burst_type = AXI_BURST_INCR; rw_mode = RW_MODE_RW; } if (rw_mode == RW_MODE_WO) { /* In Simple DMA Write-Only, we need to push DST size bytes * regardless of what SRC size is set to. */ src_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2, SIZE); memcpy(s->buf, &s->regs[R_ZDMA_CH_WR_ONLY_WORD0], s->cfg.bus_width / 8); } while (src_size) { len = src_size > ARRAY_SIZE(s->buf) ? ARRAY_SIZE(s->buf) : src_size; if (burst_type == AXI_BURST_FIXED) { if (len > (s->cfg.bus_width / 8)) { len = s->cfg.bus_width / 8; } } if (rw_mode == RW_MODE_WO) { if (len > s->cfg.bus_width / 8) { len = s->cfg.bus_width / 8; } } else { address_space_rw(s->dma_as, src_addr, s->attr, s->buf, len, false); if (burst_type == AXI_BURST_INCR) { src_addr += len; } } if (rw_mode != RW_MODE_RO) { zdma_write_dst(s, s->buf, len); } s->regs[R_ZDMA_CH_TOTAL_BYTE] += len; src_size -= len; } ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_DONE, true); if (src_intr) { zdma_src_done(s); } /* Load next descriptor. */ if (ptype == PT_REG || src_cmd == CMD_STOP) { ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL2, EN, 0); zdma_set_state(s, DISABLED); return; } if (src_cmd == CMD_HALT) { zdma_set_state(s, PAUSED); ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_PAUSE, 1); zdma_ch_imr_update_irq(s); return; } zdma_update_descr_addr(s, src_type, R_ZDMA_CH_SRC_CUR_DSCR_LSB); } static void zdma_run(XlnxZDMA *s) { while (s->state == ENABLED && !s->error) { zdma_load_src_descriptor(s); if (s->error) { zdma_set_state(s, DISABLED); } else { zdma_process_descr(s); } } zdma_ch_imr_update_irq(s); } static void zdma_update_descr_addr_from_start(XlnxZDMA *s) { uint64_t src_addr, dst_addr; src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_START_LSB); zdma_put_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB, src_addr); dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_START_LSB); zdma_put_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB, dst_addr); zdma_load_dst_descriptor(s); } static void zdma_ch_ctrlx_postw(RegisterInfo *reg, uint64_t val64) { XlnxZDMA *s = XLNX_ZDMA(reg->opaque); if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL2, EN)) { s->error = false; if (s->state == PAUSED && ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) { if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT_ADDR) == 1) { zdma_update_descr_addr_from_start(s); } else { bool src_type = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, TYPE); zdma_update_descr_addr(s, src_type, R_ZDMA_CH_SRC_CUR_DSCR_LSB); } ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL0, CONT, false); zdma_set_state(s, ENABLED); } else if (s->state == DISABLED) { zdma_update_descr_addr_from_start(s); zdma_set_state(s, ENABLED); } } else { /* Leave Paused state? */ if (s->state == PAUSED && ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) { zdma_set_state(s, DISABLED); } } zdma_run(s); } static RegisterAccessInfo zdma_regs_info[] = { { .name = "ZDMA_ERR_CTRL", .addr = A_ZDMA_ERR_CTRL, .rsvd = 0xfffffffe, },{ .name = "ZDMA_CH_ISR", .addr = A_ZDMA_CH_ISR, .rsvd = 0xfffff000, .w1c = 0xfff, .post_write = zdma_ch_isr_postw, },{ .name = "ZDMA_CH_IMR", .addr = A_ZDMA_CH_IMR, .reset = 0xfff, .rsvd = 0xfffff000, .ro = 0xfff, },{ .name = "ZDMA_CH_IEN", .addr = A_ZDMA_CH_IEN, .rsvd = 0xfffff000, .pre_write = zdma_ch_ien_prew, },{ .name = "ZDMA_CH_IDS", .addr = A_ZDMA_CH_IDS, .rsvd = 0xfffff000, .pre_write = zdma_ch_ids_prew, },{ .name = "ZDMA_CH_CTRL0", .addr = A_ZDMA_CH_CTRL0, .reset = 0x80, .rsvd = 0xffffff01, .post_write = zdma_ch_ctrlx_postw, },{ .name = "ZDMA_CH_CTRL1", .addr = A_ZDMA_CH_CTRL1, .reset = 0x3ff, .rsvd = 0xfffffc00, },{ .name = "ZDMA_CH_FCI", .addr = A_ZDMA_CH_FCI, .rsvd = 0xffffffc0, },{ .name = "ZDMA_CH_STATUS", .addr = A_ZDMA_CH_STATUS, .rsvd = 0xfffffffc, .ro = 0x3, },{ .name = "ZDMA_CH_DATA_ATTR", .addr = A_ZDMA_CH_DATA_ATTR, .reset = 0x483d20f, .rsvd = 0xf0000000, },{ .name = "ZDMA_CH_DSCR_ATTR", .addr = A_ZDMA_CH_DSCR_ATTR, .rsvd = 0xfffffe00, },{ .name = "ZDMA_CH_SRC_DSCR_WORD0", .addr = A_ZDMA_CH_SRC_DSCR_WORD0, },{ .name = "ZDMA_CH_SRC_DSCR_WORD1", .addr = A_ZDMA_CH_SRC_DSCR_WORD1, .rsvd = 0xfffe0000, },{ .name = "ZDMA_CH_SRC_DSCR_WORD2", .addr = A_ZDMA_CH_SRC_DSCR_WORD2, .rsvd = 0xc0000000, },{ .name = "ZDMA_CH_SRC_DSCR_WORD3", .addr = A_ZDMA_CH_SRC_DSCR_WORD3, .rsvd = 0xffffffe0, },{ .name = "ZDMA_CH_DST_DSCR_WORD0", .addr = A_ZDMA_CH_DST_DSCR_WORD0, },{ .name = "ZDMA_CH_DST_DSCR_WORD1", .addr = A_ZDMA_CH_DST_DSCR_WORD1, .rsvd = 0xfffe0000, },{ .name = "ZDMA_CH_DST_DSCR_WORD2", .addr = A_ZDMA_CH_DST_DSCR_WORD2, .rsvd = 0xc0000000, },{ .name = "ZDMA_CH_DST_DSCR_WORD3", .addr = A_ZDMA_CH_DST_DSCR_WORD3, .rsvd = 0xfffffffa, },{ .name = "ZDMA_CH_WR_ONLY_WORD0", .addr = A_ZDMA_CH_WR_ONLY_WORD0, },{ .name = "ZDMA_CH_WR_ONLY_WORD1", .addr = A_ZDMA_CH_WR_ONLY_WORD1, },{ .name = "ZDMA_CH_WR_ONLY_WORD2", .addr = A_ZDMA_CH_WR_ONLY_WORD2, },{ .name = "ZDMA_CH_WR_ONLY_WORD3", .addr = A_ZDMA_CH_WR_ONLY_WORD3, },{ .name = "ZDMA_CH_SRC_START_LSB", .addr = A_ZDMA_CH_SRC_START_LSB, },{ .name = "ZDMA_CH_SRC_START_MSB", .addr = A_ZDMA_CH_SRC_START_MSB, .rsvd = 0xfffe0000, },{ .name = "ZDMA_CH_DST_START_LSB", .addr = A_ZDMA_CH_DST_START_LSB, },{ .name = "ZDMA_CH_DST_START_MSB", .addr = A_ZDMA_CH_DST_START_MSB, .rsvd = 0xfffe0000, },{ .name = "ZDMA_CH_SRC_CUR_PYLD_LSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_LSB, .ro = 0xffffffff, },{ .name = "ZDMA_CH_SRC_CUR_PYLD_MSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_MSB, .rsvd = 0xfffe0000, .ro = 0x1ffff, },{ .name = "ZDMA_CH_DST_CUR_PYLD_LSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_LSB, .ro = 0xffffffff, },{ .name = "ZDMA_CH_DST_CUR_PYLD_MSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_MSB, .rsvd = 0xfffe0000, .ro = 0x1ffff, },{ .name = "ZDMA_CH_SRC_CUR_DSCR_LSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_LSB, .ro = 0xffffffff, },{ .name = "ZDMA_CH_SRC_CUR_DSCR_MSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_MSB, .rsvd = 0xfffe0000, .ro = 0x1ffff, },{ .name = "ZDMA_CH_DST_CUR_DSCR_LSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_LSB, .ro = 0xffffffff, },{ .name = "ZDMA_CH_DST_CUR_DSCR_MSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_MSB, .rsvd = 0xfffe0000, .ro = 0x1ffff, },{ .name = "ZDMA_CH_TOTAL_BYTE", .addr = A_ZDMA_CH_TOTAL_BYTE, .w1c = 0xffffffff, },{ .name = "ZDMA_CH_RATE_CNTL", .addr = A_ZDMA_CH_RATE_CNTL, .rsvd = 0xfffff000, },{ .name = "ZDMA_CH_IRQ_SRC_ACCT", .addr = A_ZDMA_CH_IRQ_SRC_ACCT, .rsvd = 0xffffff00, .ro = 0xff, .cor = 0xff, },{ .name = "ZDMA_CH_IRQ_DST_ACCT", .addr = A_ZDMA_CH_IRQ_DST_ACCT, .rsvd = 0xffffff00, .ro = 0xff, .cor = 0xff, },{ .name = "ZDMA_CH_DBG0", .addr = A_ZDMA_CH_DBG0, .rsvd = 0xfffffe00, .ro = 0x1ff, },{ .name = "ZDMA_CH_DBG1", .addr = A_ZDMA_CH_DBG1, .rsvd = 0xfffffe00, .ro = 0x1ff, },{ .name = "ZDMA_CH_CTRL2", .addr = A_ZDMA_CH_CTRL2, .rsvd = 0xfffffffe, .post_write = zdma_ch_ctrlx_postw, } }; static void zdma_reset(DeviceState *dev) { XlnxZDMA *s = XLNX_ZDMA(dev); unsigned int i; for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) { register_reset(&s->regs_info[i]); } zdma_ch_imr_update_irq(s); } static uint64_t zdma_read(void *opaque, hwaddr addr, unsigned size) { XlnxZDMA *s = XLNX_ZDMA(opaque); RegisterInfo *r = &s->regs_info[addr / 4]; if (!r->data) { gchar *path = object_get_canonical_path(OBJECT(s)); qemu_log("%s: Decode error: read from %" HWADDR_PRIx "\n", path, addr); g_free(path); ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true); zdma_ch_imr_update_irq(s); return 0; } return register_read(r, ~0, NULL, false); } static void zdma_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { XlnxZDMA *s = XLNX_ZDMA(opaque); RegisterInfo *r = &s->regs_info[addr / 4]; if (!r->data) { gchar *path = object_get_canonical_path(OBJECT(s)); qemu_log("%s: Decode error: write to %" HWADDR_PRIx "=%" PRIx64 "\n", path, addr, value); g_free(path); ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true); zdma_ch_imr_update_irq(s); return; } register_write(r, value, ~0, NULL, false); } static const MemoryRegionOps zdma_ops = { .read = zdma_read, .write = zdma_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static void zdma_realize(DeviceState *dev, Error **errp) { XlnxZDMA *s = XLNX_ZDMA(dev); unsigned int i; for (i = 0; i < ARRAY_SIZE(zdma_regs_info); ++i) { RegisterInfo *r = &s->regs_info[zdma_regs_info[i].addr / 4]; *r = (RegisterInfo) { .data = (uint8_t *)&s->regs[ zdma_regs_info[i].addr / 4], .data_size = sizeof(uint32_t), .access = &zdma_regs_info[i], .opaque = s, }; } if (s->dma_mr) { s->dma_as = g_malloc0(sizeof(AddressSpace)); address_space_init(s->dma_as, s->dma_mr, NULL); } else { s->dma_as = &address_space_memory; } s->attr = MEMTXATTRS_UNSPECIFIED; } static void zdma_init(Object *obj) { XlnxZDMA *s = XLNX_ZDMA(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); memory_region_init_io(&s->iomem, obj, &zdma_ops, s, TYPE_XLNX_ZDMA, ZDMA_R_MAX * 4); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq_zdma_ch_imr); object_property_add_link(obj, "dma", TYPE_MEMORY_REGION, (Object **)&s->dma_mr, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG, &error_abort); } static const VMStateDescription vmstate_zdma = { .name = TYPE_XLNX_ZDMA, .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, XlnxZDMA, ZDMA_R_MAX), VMSTATE_UINT32(state, XlnxZDMA), VMSTATE_UINT32_ARRAY(dsc_src.words, XlnxZDMA, 4), VMSTATE_UINT32_ARRAY(dsc_dst.words, XlnxZDMA, 4), VMSTATE_END_OF_LIST(), } }; static Property zdma_props[] = { DEFINE_PROP_UINT32("bus-width", XlnxZDMA, cfg.bus_width, 64), DEFINE_PROP_END_OF_LIST(), }; static void zdma_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = zdma_reset; dc->realize = zdma_realize; dc->props = zdma_props; dc->vmsd = &vmstate_zdma; } static const TypeInfo zdma_info = { .name = TYPE_XLNX_ZDMA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(XlnxZDMA), .class_init = zdma_class_init, .instance_init = zdma_init, }; static void zdma_register_types(void) { type_register_static(&zdma_info); } type_init(zdma_register_types)