/* * QEMU model of Xilinx AXI-DMA block. * * Copyright (c) 2011 Edgar E. Iglesias. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "qapi/error.h" #include "qemu/timer.h" #include "hw/hw.h" #include "hw/irq.h" #include "hw/ptimer.h" #include "hw/qdev-properties.h" #include "qemu/log.h" #include "qemu/module.h" #include "system/dma.h" #include "hw/stream.h" #include "qom/object.h" #include "trace.h" #define D(x) #define TYPE_XILINX_AXI_DMA "xlnx.axi-dma" #define TYPE_XILINX_AXI_DMA_DATA_STREAM "xilinx-axi-dma-data-stream" #define TYPE_XILINX_AXI_DMA_CONTROL_STREAM "xilinx-axi-dma-control-stream" OBJECT_DECLARE_SIMPLE_TYPE(XilinxAXIDMA, XILINX_AXI_DMA) typedef struct XilinxAXIDMAStreamSink XilinxAXIDMAStreamSink; DECLARE_INSTANCE_CHECKER(XilinxAXIDMAStreamSink, XILINX_AXI_DMA_DATA_STREAM, TYPE_XILINX_AXI_DMA_DATA_STREAM) DECLARE_INSTANCE_CHECKER(XilinxAXIDMAStreamSink, XILINX_AXI_DMA_CONTROL_STREAM, TYPE_XILINX_AXI_DMA_CONTROL_STREAM) #define R_DMACR (0x00 / 4) #define R_DMASR (0x04 / 4) #define R_CURDESC (0x08 / 4) #define R_TAILDESC (0x10 / 4) #define R_MAX (0x30 / 4) #define CONTROL_PAYLOAD_WORDS 5 #define CONTROL_PAYLOAD_SIZE (CONTROL_PAYLOAD_WORDS * (sizeof(uint32_t))) enum { DMACR_RUNSTOP = 1, DMACR_TAILPTR_MODE = 2, DMACR_RESET = 4 }; enum { DMASR_HALTED = 1, DMASR_IDLE = 2, DMASR_SLVERR = 1 << 5, DMASR_DECERR = 1 << 6, DMASR_IOC_IRQ = 1 << 12, DMASR_DLY_IRQ = 1 << 13, DMASR_ERR_IRQ = 1 << 14, DMASR_IRQ_MASK = 7 << 12 }; struct SDesc { uint64_t nxtdesc; uint64_t buffer_address; uint64_t reserved; uint32_t control; uint32_t status; uint8_t app[CONTROL_PAYLOAD_SIZE]; }; enum { SDESC_CTRL_EOF = (1 << 26), SDESC_CTRL_SOF = (1 << 27), SDESC_CTRL_LEN_MASK = (1 << 23) - 1 }; enum { SDESC_STATUS_EOF = (1 << 26), SDESC_STATUS_SOF_BIT = 27, SDESC_STATUS_SOF = (1 << SDESC_STATUS_SOF_BIT), SDESC_STATUS_COMPLETE = (1 << 31) }; struct Stream { struct XilinxAXIDMA *dma; ptimer_state *ptimer; qemu_irq irq; int nr; bool sof; struct SDesc desc; unsigned int complete_cnt; uint32_t regs[R_MAX]; uint8_t app[20]; unsigned char txbuf[16 * 1024]; }; struct XilinxAXIDMAStreamSink { Object parent; struct XilinxAXIDMA *dma; }; struct XilinxAXIDMA { SysBusDevice busdev; MemoryRegion iomem; MemoryRegion *dma_mr; AddressSpace as; uint32_t freqhz; StreamSink *tx_data_dev; StreamSink *tx_control_dev; XilinxAXIDMAStreamSink rx_data_dev; XilinxAXIDMAStreamSink rx_control_dev; struct Stream streams[2]; StreamCanPushNotifyFn notify; void *notify_opaque; }; /* * Helper calls to extract info from descriptors and other trivial * state from regs. */ static inline int stream_desc_sof(struct SDesc *d) { return d->control & SDESC_CTRL_SOF; } static inline int stream_desc_eof(struct SDesc *d) { return d->control & SDESC_CTRL_EOF; } static inline int stream_resetting(struct Stream *s) { return !!(s->regs[R_DMACR] & DMACR_RESET); } static inline int stream_running(struct Stream *s) { return s->regs[R_DMACR] & DMACR_RUNSTOP; } static inline int stream_idle(struct Stream *s) { return !!(s->regs[R_DMASR] & DMASR_IDLE); } static inline int stream_halted(struct Stream *s) { return !!(s->regs[R_DMASR] & DMASR_HALTED); } static void stream_reset(struct Stream *s) { s->regs[R_DMASR] = DMASR_HALTED; /* starts up halted. */ s->regs[R_DMACR] = 1 << 16; /* Starts with one in compl threshold. */ s->sof = true; } /* Map an offset addr into a channel index. */ static inline int streamid_from_addr(hwaddr addr) { int sid; sid = addr / (0x30); sid &= 1; return sid; } static MemTxResult stream_desc_load(struct Stream *s, hwaddr addr) { struct SDesc *d = &s->desc; MemTxResult result = address_space_read(&s->dma->as, addr, MEMTXATTRS_UNSPECIFIED, d, sizeof *d); if (result != MEMTX_OK) { trace_xilinx_axidma_loading_desc_fail(result); if (result == MEMTX_DECODE_ERROR) { s->regs[R_DMASR] |= DMASR_DECERR; } else { s->regs[R_DMASR] |= DMASR_SLVERR; } s->regs[R_DMACR] &= ~DMACR_RUNSTOP; s->regs[R_DMASR] |= DMASR_HALTED; s->regs[R_DMASR] |= DMASR_ERR_IRQ; return result; } /* Convert from LE into host endianness. */ d->buffer_address = le64_to_cpu(d->buffer_address); d->nxtdesc = le64_to_cpu(d->nxtdesc); d->control = le32_to_cpu(d->control); d->status = le32_to_cpu(d->status); return result; } static void stream_desc_store(struct Stream *s, hwaddr addr) { struct SDesc *d = &s->desc; /* Convert from host endianness into LE. */ d->buffer_address = cpu_to_le64(d->buffer_address); d->nxtdesc = cpu_to_le64(d->nxtdesc); d->control = cpu_to_le32(d->control); d->status = cpu_to_le32(d->status); address_space_write(&s->dma->as, addr, MEMTXATTRS_UNSPECIFIED, d, sizeof *d); } static void stream_update_irq(struct Stream *s) { unsigned int pending, mask, irq; pending = s->regs[R_DMASR] & DMASR_IRQ_MASK; mask = s->regs[R_DMACR] & DMASR_IRQ_MASK; irq = pending & mask; qemu_set_irq(s->irq, !!irq); } static void stream_reload_complete_cnt(struct Stream *s) { unsigned int comp_th; comp_th = (s->regs[R_DMACR] >> 16) & 0xff; s->complete_cnt = comp_th; } static void timer_hit(void *opaque) { struct Stream *s = opaque; stream_reload_complete_cnt(s); s->regs[R_DMASR] |= DMASR_DLY_IRQ; stream_update_irq(s); } static void stream_complete(struct Stream *s) { unsigned int comp_delay; /* Start the delayed timer. */ ptimer_transaction_begin(s->ptimer); comp_delay = s->regs[R_DMACR] >> 24; if (comp_delay) { ptimer_stop(s->ptimer); ptimer_set_count(s->ptimer, comp_delay); ptimer_run(s->ptimer, 1); } s->complete_cnt--; if (s->complete_cnt == 0) { /* Raise the IOC irq. */ s->regs[R_DMASR] |= DMASR_IOC_IRQ; stream_reload_complete_cnt(s); } ptimer_transaction_commit(s->ptimer); } static void stream_process_mem2s(struct Stream *s, StreamSink *tx_data_dev, StreamSink *tx_control_dev) { uint32_t prev_d; uint32_t txlen; uint64_t addr; bool eop; if (!stream_running(s) || stream_idle(s) || stream_halted(s)) { return; } while (1) { if (MEMTX_OK != stream_desc_load(s, s->regs[R_CURDESC])) { break; } if (s->desc.status & SDESC_STATUS_COMPLETE) { s->regs[R_DMASR] |= DMASR_HALTED; break; } if (stream_desc_sof(&s->desc)) { stream_push(tx_control_dev, s->desc.app, sizeof(s->desc.app), true); } txlen = s->desc.control & SDESC_CTRL_LEN_MASK; eop = stream_desc_eof(&s->desc); addr = s->desc.buffer_address; while (txlen) { unsigned int len; len = txlen > sizeof s->txbuf ? sizeof s->txbuf : txlen; address_space_read(&s->dma->as, addr, MEMTXATTRS_UNSPECIFIED, s->txbuf, len); stream_push(tx_data_dev, s->txbuf, len, eop && len == txlen); txlen -= len; addr += len; } if (eop) { stream_complete(s); } /* Update the descriptor. */ s->desc.status = txlen | SDESC_STATUS_COMPLETE; stream_desc_store(s, s->regs[R_CURDESC]); /* Advance. */ prev_d = s->regs[R_CURDESC]; s->regs[R_CURDESC] = s->desc.nxtdesc; if (prev_d == s->regs[R_TAILDESC]) { s->regs[R_DMASR] |= DMASR_IDLE; break; } } } static size_t stream_process_s2mem(struct Stream *s, unsigned char *buf, size_t len, bool eop) { uint32_t prev_d; unsigned int rxlen; size_t pos = 0; if (!stream_running(s) || stream_idle(s) || stream_halted(s)) { return 0; } while (len) { if (MEMTX_OK != stream_desc_load(s, s->regs[R_CURDESC])) { break; } if (s->desc.status & SDESC_STATUS_COMPLETE) { s->regs[R_DMASR] |= DMASR_HALTED; break; } rxlen = s->desc.control & SDESC_CTRL_LEN_MASK; if (rxlen > len) { /* It fits. */ rxlen = len; } address_space_write(&s->dma->as, s->desc.buffer_address, MEMTXATTRS_UNSPECIFIED, buf + pos, rxlen); len -= rxlen; pos += rxlen; /* Update the descriptor. */ if (eop) { stream_complete(s); memcpy(s->desc.app, s->app, sizeof(s->desc.app)); s->desc.status |= SDESC_STATUS_EOF; } s->desc.status |= s->sof << SDESC_STATUS_SOF_BIT; s->desc.status |= SDESC_STATUS_COMPLETE; stream_desc_store(s, s->regs[R_CURDESC]); s->sof = eop; /* Advance. */ prev_d = s->regs[R_CURDESC]; s->regs[R_CURDESC] = s->desc.nxtdesc; if (prev_d == s->regs[R_TAILDESC]) { s->regs[R_DMASR] |= DMASR_IDLE; break; } } return pos; } static void xilinx_axidma_reset(DeviceState *dev) { int i; XilinxAXIDMA *s = XILINX_AXI_DMA(dev); for (i = 0; i < 2; i++) { stream_reset(&s->streams[i]); } } static size_t xilinx_axidma_control_stream_push(StreamSink *obj, unsigned char *buf, size_t len, bool eop) { XilinxAXIDMAStreamSink *cs = XILINX_AXI_DMA_CONTROL_STREAM(obj); struct Stream *s = &cs->dma->streams[1]; if (len != CONTROL_PAYLOAD_SIZE) { hw_error("AXI DMA requires %d byte control stream payload\n", (int)CONTROL_PAYLOAD_SIZE); } memcpy(s->app, buf, len); return len; } static bool xilinx_axidma_data_stream_can_push(StreamSink *obj, StreamCanPushNotifyFn notify, void *notify_opaque) { XilinxAXIDMAStreamSink *ds = XILINX_AXI_DMA_DATA_STREAM(obj); struct Stream *s = &ds->dma->streams[1]; if (!stream_running(s) || stream_idle(s) || stream_halted(s)) { ds->dma->notify = notify; ds->dma->notify_opaque = notify_opaque; return false; } return true; } static size_t xilinx_axidma_data_stream_push(StreamSink *obj, unsigned char *buf, size_t len, bool eop) { XilinxAXIDMAStreamSink *ds = XILINX_AXI_DMA_DATA_STREAM(obj); struct Stream *s = &ds->dma->streams[1]; size_t ret; ret = stream_process_s2mem(s, buf, len, eop); stream_update_irq(s); return ret; } static uint64_t axidma_read(void *opaque, hwaddr addr, unsigned size) { XilinxAXIDMA *d = opaque; struct Stream *s; uint32_t r = 0; int sid; sid = streamid_from_addr(addr); s = &d->streams[sid]; addr = addr % 0x30; addr >>= 2; switch (addr) { case R_DMACR: /* Simulate one cycles reset delay. */ s->regs[addr] &= ~DMACR_RESET; r = s->regs[addr]; break; case R_DMASR: s->regs[addr] &= 0xffff; s->regs[addr] |= (s->complete_cnt & 0xff) << 16; s->regs[addr] |= (ptimer_get_count(s->ptimer) & 0xff) << 24; r = s->regs[addr]; break; default: r = s->regs[addr]; D(qemu_log("%s ch=%d addr=" HWADDR_FMT_plx " v=%x\n", __func__, sid, addr * 4, r)); break; } return r; } static void axidma_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { XilinxAXIDMA *d = opaque; struct Stream *s; int sid; sid = streamid_from_addr(addr); s = &d->streams[sid]; addr = addr % 0x30; addr >>= 2; switch (addr) { case R_DMACR: /* Tailptr mode is always on. */ value |= DMACR_TAILPTR_MODE; /* Remember our previous reset state. */ value |= (s->regs[addr] & DMACR_RESET); s->regs[addr] = value; if (value & DMACR_RESET) { stream_reset(s); } if ((value & 1) && !stream_resetting(s)) { /* Start processing. */ s->regs[R_DMASR] &= ~(DMASR_HALTED | DMASR_IDLE); } stream_reload_complete_cnt(s); break; case R_DMASR: /* Mask away write to clear irq lines. */ value &= ~(value & DMASR_IRQ_MASK); s->regs[addr] = value; break; case R_TAILDESC: s->regs[addr] = value; s->regs[R_DMASR] &= ~DMASR_IDLE; /* Not idle. */ if (!sid) { stream_process_mem2s(s, d->tx_data_dev, d->tx_control_dev); } break; default: D(qemu_log("%s: ch=%d addr=" HWADDR_FMT_plx " v=%x\n", __func__, sid, addr * 4, (unsigned)value)); s->regs[addr] = value; break; } if (sid == 1 && d->notify) { StreamCanPushNotifyFn notifytmp = d->notify; d->notify = NULL; notifytmp(d->notify_opaque); } stream_update_irq(s); } static const MemoryRegionOps axidma_ops = { .read = axidma_read, .write = axidma_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void xilinx_axidma_realize(DeviceState *dev, Error **errp) { XilinxAXIDMA *s = XILINX_AXI_DMA(dev); XilinxAXIDMAStreamSink *ds = XILINX_AXI_DMA_DATA_STREAM(&s->rx_data_dev); XilinxAXIDMAStreamSink *cs = XILINX_AXI_DMA_CONTROL_STREAM( &s->rx_control_dev); int i; object_property_add_link(OBJECT(ds), "dma", TYPE_XILINX_AXI_DMA, (Object **)&ds->dma, object_property_allow_set_link, OBJ_PROP_LINK_STRONG); object_property_add_link(OBJECT(cs), "dma", TYPE_XILINX_AXI_DMA, (Object **)&cs->dma, object_property_allow_set_link, OBJ_PROP_LINK_STRONG); object_property_set_link(OBJECT(ds), "dma", OBJECT(s), &error_abort); object_property_set_link(OBJECT(cs), "dma", OBJECT(s), &error_abort); for (i = 0; i < 2; i++) { struct Stream *st = &s->streams[i]; st->dma = s; st->nr = i; st->ptimer = ptimer_init(timer_hit, st, PTIMER_POLICY_LEGACY); ptimer_transaction_begin(st->ptimer); ptimer_set_freq(st->ptimer, s->freqhz); ptimer_transaction_commit(st->ptimer); } address_space_init(&s->as, s->dma_mr ? s->dma_mr : get_system_memory(), "dma"); } static void xilinx_axidma_init(Object *obj) { XilinxAXIDMA *s = XILINX_AXI_DMA(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); object_initialize_child(OBJECT(s), "axistream-connected-target", &s->rx_data_dev, TYPE_XILINX_AXI_DMA_DATA_STREAM); object_initialize_child(OBJECT(s), "axistream-control-connected-target", &s->rx_control_dev, TYPE_XILINX_AXI_DMA_CONTROL_STREAM); sysbus_init_irq(sbd, &s->streams[0].irq); sysbus_init_irq(sbd, &s->streams[1].irq); memory_region_init_io(&s->iomem, obj, &axidma_ops, s, "xlnx.axi-dma", R_MAX * 4 * 2); sysbus_init_mmio(sbd, &s->iomem); } static const Property axidma_properties[] = { DEFINE_PROP_UINT32("freqhz", XilinxAXIDMA, freqhz, 50000000), DEFINE_PROP_LINK("axistream-connected", XilinxAXIDMA, tx_data_dev, TYPE_STREAM_SINK, StreamSink *), DEFINE_PROP_LINK("axistream-control-connected", XilinxAXIDMA, tx_control_dev, TYPE_STREAM_SINK, StreamSink *), DEFINE_PROP_LINK("dma", XilinxAXIDMA, dma_mr, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_END_OF_LIST(), }; static void axidma_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = xilinx_axidma_realize; device_class_set_legacy_reset(dc, xilinx_axidma_reset); device_class_set_props(dc, axidma_properties); } static StreamSinkClass xilinx_axidma_data_stream_class = { .push = xilinx_axidma_data_stream_push, .can_push = xilinx_axidma_data_stream_can_push, }; static StreamSinkClass xilinx_axidma_control_stream_class = { .push = xilinx_axidma_control_stream_push, }; static void xilinx_axidma_stream_class_init(ObjectClass *klass, void *data) { StreamSinkClass *ssc = STREAM_SINK_CLASS(klass); ssc->push = ((StreamSinkClass *)data)->push; ssc->can_push = ((StreamSinkClass *)data)->can_push; } static const TypeInfo axidma_info = { .name = TYPE_XILINX_AXI_DMA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(XilinxAXIDMA), .class_init = axidma_class_init, .instance_init = xilinx_axidma_init, }; static const TypeInfo xilinx_axidma_data_stream_info = { .name = TYPE_XILINX_AXI_DMA_DATA_STREAM, .parent = TYPE_OBJECT, .instance_size = sizeof(XilinxAXIDMAStreamSink), .class_init = xilinx_axidma_stream_class_init, .class_data = &xilinx_axidma_data_stream_class, .interfaces = (InterfaceInfo[]) { { TYPE_STREAM_SINK }, { } } }; static const TypeInfo xilinx_axidma_control_stream_info = { .name = TYPE_XILINX_AXI_DMA_CONTROL_STREAM, .parent = TYPE_OBJECT, .instance_size = sizeof(XilinxAXIDMAStreamSink), .class_init = xilinx_axidma_stream_class_init, .class_data = &xilinx_axidma_control_stream_class, .interfaces = (InterfaceInfo[]) { { TYPE_STREAM_SINK }, { } } }; static void xilinx_axidma_register_types(void) { type_register_static(&axidma_info); type_register_static(&xilinx_axidma_data_stream_info); type_register_static(&xilinx_axidma_control_stream_info); } type_init(xilinx_axidma_register_types)