/* * QEMU GE IP-Octal 232 IndustryPack emulation * * Copyright (C) 2012 Igalia, S.L. * Author: Alberto Garcia <agarcia@igalia.com> * * This code is licensed under the GNU GPL v2 or (at your option) any * later version. */ #include "ipack.h" #include "qemu/bitops.h" #include "sysemu/char.h" /* #define DEBUG_IPOCTAL */ #ifdef DEBUG_IPOCTAL #define DPRINTF2(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF2(fmt, ...) do { } while (0) #endif #define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__) #define RX_FIFO_SIZE 3 /* The IP-Octal has 8 channels (a-h) divided into 4 blocks (A-D) */ #define N_CHANNELS 8 #define N_BLOCKS 4 #define REG_MRa 0x01 #define REG_MRb 0x11 #define REG_SRa 0x03 #define REG_SRb 0x13 #define REG_CSRa 0x03 #define REG_CSRb 0x13 #define REG_CRa 0x05 #define REG_CRb 0x15 #define REG_RHRa 0x07 #define REG_RHRb 0x17 #define REG_THRa 0x07 #define REG_THRb 0x17 #define REG_ACR 0x09 #define REG_ISR 0x0B #define REG_IMR 0x0B #define REG_OPCR 0x1B #define CR_ENABLE_RX BIT(0) #define CR_DISABLE_RX BIT(1) #define CR_ENABLE_TX BIT(2) #define CR_DISABLE_TX BIT(3) #define CR_CMD(cr) ((cr) >> 4) #define CR_NO_OP 0 #define CR_RESET_MR 1 #define CR_RESET_RX 2 #define CR_RESET_TX 3 #define CR_RESET_ERR 4 #define CR_RESET_BRKINT 5 #define CR_START_BRK 6 #define CR_STOP_BRK 7 #define CR_ASSERT_RTSN 8 #define CR_NEGATE_RTSN 9 #define CR_TIMEOUT_ON 10 #define CR_TIMEOUT_OFF 12 #define SR_RXRDY BIT(0) #define SR_FFULL BIT(1) #define SR_TXRDY BIT(2) #define SR_TXEMT BIT(3) #define SR_OVERRUN BIT(4) #define SR_PARITY BIT(5) #define SR_FRAMING BIT(6) #define SR_BREAK BIT(7) #define ISR_TXRDYA BIT(0) #define ISR_RXRDYA BIT(1) #define ISR_BREAKA BIT(2) #define ISR_CNTRDY BIT(3) #define ISR_TXRDYB BIT(4) #define ISR_RXRDYB BIT(5) #define ISR_BREAKB BIT(6) #define ISR_MPICHG BIT(7) #define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0)) #define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1)) #define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2)) typedef struct IPOctalState IPOctalState; typedef struct SCC2698Channel SCC2698Channel; typedef struct SCC2698Block SCC2698Block; struct SCC2698Channel { IPOctalState *ipoctal; CharDriverState *dev; bool rx_enabled; uint8_t mr[2]; uint8_t mr_idx; uint8_t sr; uint8_t rhr[RX_FIFO_SIZE]; uint8_t rhr_idx; uint8_t rx_pending; }; struct SCC2698Block { uint8_t imr; uint8_t isr; }; struct IPOctalState { IPackDevice dev; SCC2698Channel ch[N_CHANNELS]; SCC2698Block blk[N_BLOCKS]; uint8_t irq_vector; }; #define TYPE_IPOCTAL "ipoctal232" #define IPOCTAL(obj) \ OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL) static const VMStateDescription vmstate_scc2698_channel = { .name = "scc2698_channel", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_BOOL(rx_enabled, SCC2698Channel), VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2), VMSTATE_UINT8(mr_idx, SCC2698Channel), VMSTATE_UINT8(sr, SCC2698Channel), VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE), VMSTATE_UINT8(rhr_idx, SCC2698Channel), VMSTATE_UINT8(rx_pending, SCC2698Channel), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_scc2698_block = { .name = "scc2698_block", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(imr, SCC2698Block), VMSTATE_UINT8(isr, SCC2698Block), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_ipoctal = { .name = "ipoctal232", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_IPACK_DEVICE(dev, IPOctalState), VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1, vmstate_scc2698_channel, SCC2698Channel), VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1, vmstate_scc2698_block, SCC2698Block), VMSTATE_UINT8(irq_vector, IPOctalState), VMSTATE_END_OF_LIST() } }; /* data[10] is 0x0C, not 0x0B as the doc says */ static const uint8_t id_prom_data[] = { 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22, 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC }; static void update_irq(IPOctalState *dev, unsigned block) { /* Blocks A and B interrupt on INT0#, C and D on INT1#. Thus, to get the status we have to check two blocks. */ SCC2698Block *blk0 = &dev->blk[block]; SCC2698Block *blk1 = &dev->blk[block^1]; unsigned intno = block / 2; if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) { qemu_irq_raise(dev->dev.irq[intno]); } else { qemu_irq_lower(dev->dev.irq[intno]); } } static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val) { SCC2698Channel *ch = &dev->ch[channel]; SCC2698Block *blk = &dev->blk[channel / 2]; DPRINTF("Write CR%c %u: ", channel + 'a', val); /* The lower 4 bits are used to enable and disable Tx and Rx */ if (val & CR_ENABLE_RX) { DPRINTF2("Rx on, "); ch->rx_enabled = true; } if (val & CR_DISABLE_RX) { DPRINTF2("Rx off, "); ch->rx_enabled = false; } if (val & CR_ENABLE_TX) { DPRINTF2("Tx on, "); ch->sr |= SR_TXRDY | SR_TXEMT; blk->isr |= ISR_TXRDY(channel); } if (val & CR_DISABLE_TX) { DPRINTF2("Tx off, "); ch->sr &= ~(SR_TXRDY | SR_TXEMT); blk->isr &= ~ISR_TXRDY(channel); } DPRINTF2("cmd: "); /* The rest of the bits implement different commands */ switch (CR_CMD(val)) { case CR_NO_OP: DPRINTF2("none"); break; case CR_RESET_MR: DPRINTF2("reset MR"); ch->mr_idx = 0; break; case CR_RESET_RX: DPRINTF2("reset Rx"); ch->rx_enabled = false; ch->rx_pending = 0; ch->sr &= ~SR_RXRDY; blk->isr &= ~ISR_RXRDY(channel); break; case CR_RESET_TX: DPRINTF2("reset Tx"); ch->sr &= ~(SR_TXRDY | SR_TXEMT); blk->isr &= ~ISR_TXRDY(channel); break; case CR_RESET_ERR: DPRINTF2("reset err"); ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK); break; case CR_RESET_BRKINT: DPRINTF2("reset brk ch int"); blk->isr &= ~(ISR_BREAKA | ISR_BREAKB); break; default: DPRINTF2("unsupported 0x%x", CR_CMD(val)); } DPRINTF2("\n"); } static uint16_t io_read(IPackDevice *ip, uint8_t addr) { IPOctalState *dev = IPOCTAL(ip); uint16_t ret = 0; /* addr[7:6]: block (A-D) addr[7:5]: channel (a-h) addr[5:0]: register */ unsigned block = addr >> 5; unsigned channel = addr >> 4; /* Big endian, accessed using 8-bit bytes at odd locations */ unsigned offset = (addr & 0x1F) ^ 1; SCC2698Channel *ch = &dev->ch[channel]; SCC2698Block *blk = &dev->blk[block]; uint8_t old_isr = blk->isr; switch (offset) { case REG_MRa: case REG_MRb: ret = ch->mr[ch->mr_idx]; DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret); ch->mr_idx = 1; break; case REG_SRa: case REG_SRb: ret = ch->sr; DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret); break; case REG_RHRa: case REG_RHRb: ret = ch->rhr[ch->rhr_idx]; if (ch->rx_pending > 0) { ch->rx_pending--; if (ch->rx_pending == 0) { ch->sr &= ~SR_RXRDY; blk->isr &= ~ISR_RXRDY(channel); if (ch->dev) { qemu_chr_accept_input(ch->dev); } } else { ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE; } if (ch->sr & SR_BREAK) { ch->sr &= ~SR_BREAK; blk->isr |= ISR_BREAK(channel); } } DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret); break; case REG_ISR: ret = blk->isr; DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret); break; default: DPRINTF("Read unknown/unsupported register 0x%02x\n", offset); } if (old_isr != blk->isr) { update_irq(dev, block); } return ret; } static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val) { IPOctalState *dev = IPOCTAL(ip); unsigned reg = val & 0xFF; /* addr[7:6]: block (A-D) addr[7:5]: channel (a-h) addr[5:0]: register */ unsigned block = addr >> 5; unsigned channel = addr >> 4; /* Big endian, accessed using 8-bit bytes at odd locations */ unsigned offset = (addr & 0x1F) ^ 1; SCC2698Channel *ch = &dev->ch[channel]; SCC2698Block *blk = &dev->blk[block]; uint8_t old_isr = blk->isr; uint8_t old_imr = blk->imr; switch (offset) { case REG_MRa: case REG_MRb: ch->mr[ch->mr_idx] = reg; DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg); ch->mr_idx = 1; break; /* Not implemented */ case REG_CSRa: case REG_CSRb: DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg); break; case REG_CRa: case REG_CRb: write_cr(dev, channel, reg); break; case REG_THRa: case REG_THRb: if (ch->sr & SR_TXRDY) { DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg); if (ch->dev) { uint8_t thr = reg; qemu_chr_fe_write(ch->dev, &thr, 1); } } else { DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg); } break; /* Not implemented */ case REG_ACR: DPRINTF("Write ACR%c 0x%x\n", block + 'A', val); break; case REG_IMR: DPRINTF("Write IMR%c 0x%x\n", block + 'A', val); blk->imr = reg; break; /* Not implemented */ case REG_OPCR: DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val); break; default: DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val); } if (old_isr != blk->isr || old_imr != blk->imr) { update_irq(dev, block); } } static uint16_t id_read(IPackDevice *ip, uint8_t addr) { uint16_t ret = 0; unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */ if (pos < ARRAY_SIZE(id_prom_data)) { ret = id_prom_data[pos]; } else { DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr); } return ret; } static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val) { IPOctalState *dev = IPOCTAL(ip); if (addr == 1) { DPRINTF("Write IRQ vector: %u\n", (unsigned) val); dev->irq_vector = val; /* Undocumented, but the hw works like that */ } else { DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); } } static uint16_t int_read(IPackDevice *ip, uint8_t addr) { IPOctalState *dev = IPOCTAL(ip); /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */ if (addr != 0 && addr != 2) { DPRINTF("Attempt to read from 0x%x\n", addr); return 0; } else { /* Update interrupts if necessary */ update_irq(dev, addr); return dev->irq_vector; } } static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val) { DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); } static uint16_t mem_read16(IPackDevice *ip, uint32_t addr) { DPRINTF("Attempt to read from 0x%x\n", addr); return 0; } static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val) { DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); } static uint8_t mem_read8(IPackDevice *ip, uint32_t addr) { DPRINTF("Attempt to read from 0x%x\n", addr); return 0; } static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val) { IPOctalState *dev = IPOCTAL(ip); if (addr == 1) { DPRINTF("Write IRQ vector: %u\n", (unsigned) val); dev->irq_vector = val; } else { DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr); } } static int hostdev_can_receive(void *opaque) { SCC2698Channel *ch = opaque; int available_bytes = RX_FIFO_SIZE - ch->rx_pending; return ch->rx_enabled ? available_bytes : 0; } static void hostdev_receive(void *opaque, const uint8_t *buf, int size) { SCC2698Channel *ch = opaque; IPOctalState *dev = ch->ipoctal; unsigned pos = ch->rhr_idx + ch->rx_pending; int i; assert(size + ch->rx_pending <= RX_FIFO_SIZE); /* Copy data to the RxFIFO */ for (i = 0; i < size; i++) { pos %= RX_FIFO_SIZE; ch->rhr[pos++] = buf[i]; } ch->rx_pending += size; /* If the RxFIFO was empty raise an interrupt */ if (!(ch->sr & SR_RXRDY)) { unsigned block, channel = 0; /* Find channel number to update the ISR register */ while (&dev->ch[channel] != ch) { channel++; } block = channel / 2; dev->blk[block].isr |= ISR_RXRDY(channel); ch->sr |= SR_RXRDY; update_irq(dev, block); } } static void hostdev_event(void *opaque, int event) { SCC2698Channel *ch = opaque; switch (event) { case CHR_EVENT_OPENED: DPRINTF("Device %s opened\n", ch->dev->label); break; case CHR_EVENT_BREAK: { uint8_t zero = 0; DPRINTF("Device %s received break\n", ch->dev->label); if (!(ch->sr & SR_BREAK)) { IPOctalState *dev = ch->ipoctal; unsigned block, channel = 0; while (&dev->ch[channel] != ch) { channel++; } block = channel / 2; ch->sr |= SR_BREAK; dev->blk[block].isr |= ISR_BREAK(channel); } /* Put a zero character in the buffer */ hostdev_receive(ch, &zero, 1); } break; default: DPRINTF("Device %s received event %d\n", ch->dev->label, event); } } static int ipoctal_init(IPackDevice *ip) { IPOctalState *s = IPOCTAL(ip); unsigned i; for (i = 0; i < N_CHANNELS; i++) { SCC2698Channel *ch = &s->ch[i]; ch->ipoctal = s; /* Redirect IP-Octal channels to host character devices */ if (ch->dev) { qemu_chr_add_handlers(ch->dev, hostdev_can_receive, hostdev_receive, hostdev_event, ch); DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label); } else { DPRINTF("Could not redirect channel %u, no chardev set\n", i); } } return 0; } static Property ipoctal_properties[] = { DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev), DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev), DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev), DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev), DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev), DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev), DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev), DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev), DEFINE_PROP_END_OF_LIST(), }; static void ipoctal_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass); ic->init = ipoctal_init; ic->io_read = io_read; ic->io_write = io_write; ic->id_read = id_read; ic->id_write = id_write; ic->int_read = int_read; ic->int_write = int_write; ic->mem_read16 = mem_read16; ic->mem_write16 = mem_write16; ic->mem_read8 = mem_read8; ic->mem_write8 = mem_write8; set_bit(DEVICE_CATEGORY_INPUT, dc->categories); dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack"; dc->props = ipoctal_properties; dc->vmsd = &vmstate_ipoctal; } static const TypeInfo ipoctal_info = { .name = TYPE_IPOCTAL, .parent = TYPE_IPACK_DEVICE, .instance_size = sizeof(IPOctalState), .class_init = ipoctal_class_init, }; static void ipoctal_register_types(void) { type_register_static(&ipoctal_info); } type_init(ipoctal_register_types)