/* * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/module.h" #include "hw/char/escc.h" #include "ui/console.h" #include "qemu/cutils.h" #include "trace.h" /* * Chipset docs: * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual", * http://www.zilog.com/docs/serial/scc_escc_um.pdf * * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001 * (Slave I/O), also produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The serial ports implement full AMD AM8530 or Zilog Z8530 chips, * mouse and keyboard ports don't implement all functions and they are * only asynchronous. There is no DMA. * * Z85C30 is also used on PowerMacs and m68k Macs. * * There are some small differences between Sparc version (sunzilog) * and PowerMac (pmac): * Offset between control and data registers * There is some kind of lockup bug, but we can ignore it * CTS is inverted * DMA on pmac using DBDMA chip * pmac can do IRDA and faster rates, sunzilog can only do 38400 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz * * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog), * but registers are grouped by type and not by channel: * channel is selected by bit 0 of the address (instead of bit 1) * and register is selected by bit 1 of the address (instead of bit 0). */ /* * Modifications: * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented * serial mouse queue. * Implemented serial mouse protocol. * * 2010-May-23 Artyom Tarasenko: Reworked IUS logic */ #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a') #define SERIAL_CTRL 0 #define SERIAL_DATA 1 #define W_CMD 0 #define CMD_PTR_MASK 0x07 #define CMD_CMD_MASK 0x38 #define CMD_HI 0x08 #define CMD_CLR_TXINT 0x28 #define CMD_CLR_IUS 0x38 #define W_INTR 1 #define INTR_INTALL 0x01 #define INTR_TXINT 0x02 #define INTR_PAR_SPEC 0x04 #define INTR_RXMODEMSK 0x18 #define INTR_RXINT1ST 0x08 #define INTR_RXINTALL 0x10 #define INTR_WTRQ_TXRX 0x20 #define W_IVEC 2 #define W_RXCTRL 3 #define RXCTRL_RXEN 0x01 #define RXCTRL_HUNT 0x10 #define W_TXCTRL1 4 #define TXCTRL1_PAREN 0x01 #define TXCTRL1_PAREV 0x02 #define TXCTRL1_1STOP 0x04 #define TXCTRL1_1HSTOP 0x08 #define TXCTRL1_2STOP 0x0c #define TXCTRL1_STPMSK 0x0c #define TXCTRL1_CLK1X 0x00 #define TXCTRL1_CLK16X 0x40 #define TXCTRL1_CLK32X 0x80 #define TXCTRL1_CLK64X 0xc0 #define TXCTRL1_CLKMSK 0xc0 #define W_TXCTRL2 5 #define TXCTRL2_TXCRC 0x01 #define TXCTRL2_TXEN 0x08 #define TXCTRL2_BITMSK 0x60 #define TXCTRL2_5BITS 0x00 #define TXCTRL2_7BITS 0x20 #define TXCTRL2_6BITS 0x40 #define TXCTRL2_8BITS 0x60 #define W_SYNC1 6 #define W_SYNC2 7 #define W_TXBUF 8 #define W_MINTR 9 #define MINTR_VIS 0x01 #define MINTR_NV 0x02 #define MINTR_STATUSHI 0x10 #define MINTR_SOFTIACK 0x20 #define MINTR_RST_MASK 0xc0 #define MINTR_RST_B 0x40 #define MINTR_RST_A 0x80 #define MINTR_RST_ALL 0xc0 #define W_MISC1 10 #define MISC1_ENC_MASK 0x60 #define W_CLOCK 11 #define CLOCK_TRXC 0x08 #define W_BRGLO 12 #define W_BRGHI 13 #define W_MISC2 14 #define MISC2_BRG_EN 0x01 #define MISC2_BRG_SRC 0x02 #define MISC2_LCL_LOOP 0x10 #define MISC2_PLLCMD0 0x20 #define MISC2_PLLCMD1 0x40 #define MISC2_PLLCMD2 0x80 #define W_EXTINT 15 #define EXTINT_DCD 0x08 #define EXTINT_SYNCINT 0x10 #define EXTINT_CTSINT 0x20 #define EXTINT_TXUNDRN 0x40 #define EXTINT_BRKINT 0x80 #define R_STATUS 0 #define STATUS_RXAV 0x01 #define STATUS_ZERO 0x02 #define STATUS_TXEMPTY 0x04 #define STATUS_DCD 0x08 #define STATUS_SYNC 0x10 #define STATUS_CTS 0x20 #define STATUS_TXUNDRN 0x40 #define STATUS_BRK 0x80 #define R_SPEC 1 #define SPEC_ALLSENT 0x01 #define SPEC_BITS8 0x06 #define R_IVEC 2 #define IVEC_TXINTB 0x00 #define IVEC_LONOINT 0x06 #define IVEC_LORXINTA 0x0c #define IVEC_LORXINTB 0x04 #define IVEC_LOTXINTA 0x08 #define IVEC_HINOINT 0x60 #define IVEC_HIRXINTA 0x30 #define IVEC_HIRXINTB 0x20 #define IVEC_HITXINTA 0x10 #define R_INTR 3 #define INTR_EXTINTB 0x01 #define INTR_TXINTB 0x02 #define INTR_RXINTB 0x04 #define INTR_EXTINTA 0x08 #define INTR_TXINTA 0x10 #define INTR_RXINTA 0x20 #define R_IPEN 4 #define R_TXCTRL1 5 #define R_TXCTRL2 6 #define R_BC 7 #define R_RXBUF 8 #define R_RXCTRL 9 #define R_MISC 10 #define MISC_2CLKMISS 0x40 #define R_MISC1 11 #define R_BRGLO 12 #define R_BRGHI 13 #define R_MISC1I 14 #define R_EXTINT 15 static uint8_t sunkbd_layout_dip_switch(const char *sunkbd_layout); static void handle_kbd_command(ESCCChannelState *s, int val); static int serial_can_receive(void *opaque); static void serial_receive_byte(ESCCChannelState *s, int ch); static int reg_shift(ESCCState *s) { return s->bit_swap ? s->it_shift + 1 : s->it_shift; } static int chn_shift(ESCCState *s) { return s->bit_swap ? s->it_shift : s->it_shift + 1; } static void clear_queue(void *opaque) { ESCCChannelState *s = opaque; ESCCSERIOQueue *q = &s->queue; q->rptr = q->wptr = q->count = 0; } static void put_queue(void *opaque, int b) { ESCCChannelState *s = opaque; ESCCSERIOQueue *q = &s->queue; trace_escc_put_queue(CHN_C(s), b); if (q->count >= ESCC_SERIO_QUEUE_SIZE) { return; } q->data[q->wptr] = b; if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) { q->wptr = 0; } q->count++; serial_receive_byte(s, 0); } static uint32_t get_queue(void *opaque) { ESCCChannelState *s = opaque; ESCCSERIOQueue *q = &s->queue; int val; if (q->count == 0) { return 0; } else { val = q->data[q->rptr]; if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) { q->rptr = 0; } q->count--; } trace_escc_get_queue(CHN_C(s), val); if (q->count > 0) { serial_receive_byte(s, 0); } return val; } static int escc_update_irq_chn(ESCCChannelState *s) { if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) || /* tx ints enabled, pending */ ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) || ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) && s->rxint == 1) || /* rx ints enabled, pending */ ((s->wregs[W_EXTINT] & EXTINT_BRKINT) && (s->rregs[R_STATUS] & STATUS_BRK)))) { /* break int e&p */ return 1; } return 0; } static void escc_update_irq(ESCCChannelState *s) { int irq; irq = escc_update_irq_chn(s); irq |= escc_update_irq_chn(s->otherchn); trace_escc_update_irq(irq); qemu_set_irq(s->irq, irq); } static void escc_reset_chn(ESCCChannelState *s) { s->reg = 0; s->rx = s->tx = 0; s->rxint = s->txint = 0; s->rxint_under_svc = s->txint_under_svc = 0; s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0; s->sunmouse_dx = s->sunmouse_dy = s->sunmouse_buttons = 0; clear_queue(s); } static void escc_soft_reset_chn(ESCCChannelState *s) { escc_reset_chn(s); s->wregs[W_CMD] = 0; s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX; s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN; /* 1 stop bit */ s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP; s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS; s->wregs[W_MINTR] &= ~MINTR_SOFTIACK; s->wregs[W_MISC1] &= MISC1_ENC_MASK; /* PLL disabled */ s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC | MISC2_PLLCMD1 | MISC2_PLLCMD2; s->wregs[W_MISC2] |= MISC2_PLLCMD0; /* Enable most interrupts */ s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT | EXTINT_TXUNDRN | EXTINT_BRKINT; s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK; s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN; if (s->disabled) { s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS; } s->rregs[R_SPEC] &= SPEC_ALLSENT; s->rregs[R_SPEC] |= SPEC_BITS8; s->rregs[R_INTR] = 0; s->rregs[R_MISC] &= MISC_2CLKMISS; } static void escc_hard_reset_chn(ESCCChannelState *s) { escc_soft_reset_chn(s); /* * Hard reset is almost identical to soft reset above, except that the * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14 * (W_MISC2) have extra bits forced to 0/1 */ s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV; s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A; s->wregs[W_MISC1] = 0; s->wregs[W_CLOCK] = CLOCK_TRXC; s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2; s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0; } static void escc_reset(DeviceState *d) { ESCCState *s = ESCC(d); int i, j; for (i = 0; i < 2; i++) { ESCCChannelState *cs = &s->chn[i]; /* * According to the ESCC datasheet "Miscellaneous Questions" section * on page 384, the values of the ESCC registers are not guaranteed on * power-on until an explicit hardware or software reset has been * issued. For now we zero the registers so that a device reset always * returns the emulated device to a fixed state. */ for (j = 0; j < ESCC_SERIAL_REGS; j++) { cs->rregs[j] = 0; cs->wregs[j] = 0; } /* * ...but there is an exception. The "Transmit Interrupts and Transmit * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset * (including a hardware reset by software), or a channel reset, this * bit is set to 1". The Sun PROM checks this bit early on startup and * gets stuck in an infinite loop if it is not set. */ cs->rregs[R_STATUS] |= STATUS_TXEMPTY; escc_reset_chn(cs); } } static inline void set_rxint(ESCCChannelState *s) { s->rxint = 1; /* * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority * than chn_a rx/tx/special_condition service */ s->rxint_under_svc = 1; if (s->chn == escc_chn_a) { s->rregs[R_INTR] |= INTR_RXINTA; if (s->wregs[W_MINTR] & MINTR_STATUSHI) { s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA; } else { s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA; } } else { s->otherchn->rregs[R_INTR] |= INTR_RXINTB; if (s->wregs[W_MINTR] & MINTR_STATUSHI) { s->rregs[R_IVEC] = IVEC_HIRXINTB; } else { s->rregs[R_IVEC] = IVEC_LORXINTB; } } escc_update_irq(s); } static inline void set_txint(ESCCChannelState *s) { s->txint = 1; if (!s->rxint_under_svc) { s->txint_under_svc = 1; if (s->chn == escc_chn_a) { if (s->wregs[W_INTR] & INTR_TXINT) { s->rregs[R_INTR] |= INTR_TXINTA; } if (s->wregs[W_MINTR] & MINTR_STATUSHI) { s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA; } else { s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA; } } else { s->rregs[R_IVEC] = IVEC_TXINTB; if (s->wregs[W_INTR] & INTR_TXINT) { s->otherchn->rregs[R_INTR] |= INTR_TXINTB; } } escc_update_irq(s); } } static inline void clr_rxint(ESCCChannelState *s) { s->rxint = 0; s->rxint_under_svc = 0; if (s->chn == escc_chn_a) { if (s->wregs[W_MINTR] & MINTR_STATUSHI) { s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; } else { s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; } s->rregs[R_INTR] &= ~INTR_RXINTA; } else { if (s->wregs[W_MINTR] & MINTR_STATUSHI) { s->rregs[R_IVEC] = IVEC_HINOINT; } else { s->rregs[R_IVEC] = IVEC_LONOINT; } s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB; } if (s->txint) { set_txint(s); } escc_update_irq(s); } static inline void clr_txint(ESCCChannelState *s) { s->txint = 0; s->txint_under_svc = 0; if (s->chn == escc_chn_a) { if (s->wregs[W_MINTR] & MINTR_STATUSHI) { s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; } else { s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; } s->rregs[R_INTR] &= ~INTR_TXINTA; } else { s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; if (s->wregs[W_MINTR] & MINTR_STATUSHI) { s->rregs[R_IVEC] = IVEC_HINOINT; } else { s->rregs[R_IVEC] = IVEC_LONOINT; } s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; } if (s->rxint) { set_rxint(s); } escc_update_irq(s); } static void escc_update_parameters(ESCCChannelState *s) { int speed, parity, data_bits, stop_bits; QEMUSerialSetParams ssp; if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) { return; } if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) { if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) { parity = 'E'; } else { parity = 'O'; } } else { parity = 'N'; } if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) { stop_bits = 2; } else { stop_bits = 1; } switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) { case TXCTRL2_5BITS: data_bits = 5; break; case TXCTRL2_7BITS: data_bits = 7; break; case TXCTRL2_6BITS: data_bits = 6; break; default: case TXCTRL2_8BITS: data_bits = 8; break; } speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2); switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) { case TXCTRL1_CLK1X: break; case TXCTRL1_CLK16X: speed /= 16; break; case TXCTRL1_CLK32X: speed /= 32; break; default: case TXCTRL1_CLK64X: speed /= 64; break; } ssp.speed = speed; ssp.parity = parity; ssp.data_bits = data_bits; ssp.stop_bits = stop_bits; trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits); qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); } static void escc_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { ESCCState *serial = opaque; ESCCChannelState *s; uint32_t saddr; int newreg, channel; val &= 0xff; saddr = (addr >> reg_shift(serial)) & 1; channel = (addr >> chn_shift(serial)) & 1; s = &serial->chn[channel]; switch (saddr) { case SERIAL_CTRL: trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff); newreg = 0; switch (s->reg) { case W_CMD: newreg = val & CMD_PTR_MASK; val &= CMD_CMD_MASK; switch (val) { case CMD_HI: newreg |= CMD_HI; break; case CMD_CLR_TXINT: clr_txint(s); break; case CMD_CLR_IUS: if (s->rxint_under_svc) { s->rxint_under_svc = 0; if (s->txint) { set_txint(s); } } else if (s->txint_under_svc) { s->txint_under_svc = 0; } escc_update_irq(s); break; default: break; } break; case W_RXCTRL: s->wregs[s->reg] = val; if (val & RXCTRL_HUNT) { s->rregs[R_STATUS] |= STATUS_SYNC; } break; case W_INTR ... W_IVEC: case W_SYNC1 ... W_TXBUF: case W_MISC1 ... W_CLOCK: case W_MISC2 ... W_EXTINT: s->wregs[s->reg] = val; break; case W_TXCTRL1: s->wregs[s->reg] = val; /* * The ESCC datasheet states that SPEC_ALLSENT is always set in * sync mode, and set in async mode when all characters have * cleared the transmitter. Since writes to SERIAL_DATA use the * blocking qemu_chr_fe_write_all() function to write each * character, the guest can never see the state when async data * is in the process of being transmitted so we can set this bit * unconditionally regardless of the state of the W_TXCTRL1 mode * bits. */ s->rregs[R_SPEC] |= SPEC_ALLSENT; escc_update_parameters(s); break; case W_TXCTRL2: s->wregs[s->reg] = val; escc_update_parameters(s); break; case W_BRGLO: case W_BRGHI: s->wregs[s->reg] = val; s->rregs[s->reg] = val; escc_update_parameters(s); break; case W_MINTR: switch (val & MINTR_RST_MASK) { case 0: default: break; case MINTR_RST_B: trace_escc_soft_reset_chn(CHN_C(&serial->chn[0])); escc_soft_reset_chn(&serial->chn[0]); return; case MINTR_RST_A: trace_escc_soft_reset_chn(CHN_C(&serial->chn[1])); escc_soft_reset_chn(&serial->chn[1]); return; case MINTR_RST_ALL: trace_escc_hard_reset(); escc_hard_reset_chn(&serial->chn[0]); escc_hard_reset_chn(&serial->chn[1]); return; } break; default: break; } if (s->reg == 0) { s->reg = newreg; } else { s->reg = 0; } break; case SERIAL_DATA: trace_escc_mem_writeb_data(CHN_C(s), val); /* * Lower the irq when data is written to the Tx buffer and no other * interrupts are currently pending. The irq will be raised again once * the Tx buffer becomes empty below. */ s->txint = 0; escc_update_irq(s); s->tx = val; if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */ if (s->wregs[W_MISC2] & MISC2_LCL_LOOP) { serial_receive_byte(s, s->tx); } else if (qemu_chr_fe_backend_connected(&s->chr)) { /* * XXX this blocks entire thread. Rewrite to use * qemu_chr_fe_write and background I/O callbacks */ qemu_chr_fe_write_all(&s->chr, &s->tx, 1); } else if (s->type == escc_kbd && !s->disabled) { handle_kbd_command(s, val); } } s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */ s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */ set_txint(s); break; default: break; } } static uint64_t escc_mem_read(void *opaque, hwaddr addr, unsigned size) { ESCCState *serial = opaque; ESCCChannelState *s; uint32_t saddr; uint32_t ret; int channel; saddr = (addr >> reg_shift(serial)) & 1; channel = (addr >> chn_shift(serial)) & 1; s = &serial->chn[channel]; switch (saddr) { case SERIAL_CTRL: trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]); ret = s->rregs[s->reg]; s->reg = 0; return ret; case SERIAL_DATA: s->rregs[R_STATUS] &= ~STATUS_RXAV; clr_rxint(s); if (s->type == escc_kbd || s->type == escc_mouse) { ret = get_queue(s); } else { ret = s->rx; } trace_escc_mem_readb_data(CHN_C(s), ret); qemu_chr_fe_accept_input(&s->chr); return ret; default: break; } return 0; } static const MemoryRegionOps escc_mem_ops = { .read = escc_mem_read, .write = escc_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 1, }, }; static int serial_can_receive(void *opaque) { ESCCChannelState *s = opaque; int ret; if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */ || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) { /* char already available */ ret = 0; } else { ret = 1; } return ret; } static void serial_receive_byte(ESCCChannelState *s, int ch) { trace_escc_serial_receive_byte(CHN_C(s), ch); s->rregs[R_STATUS] |= STATUS_RXAV; s->rx = ch; set_rxint(s); } static void serial_receive_break(ESCCChannelState *s) { s->rregs[R_STATUS] |= STATUS_BRK; escc_update_irq(s); } static void serial_receive1(void *opaque, const uint8_t *buf, int size) { ESCCChannelState *s = opaque; serial_receive_byte(s, buf[0]); } static void serial_event(void *opaque, QEMUChrEvent event) { ESCCChannelState *s = opaque; if (event == CHR_EVENT_BREAK) { serial_receive_break(s); } } static const VMStateDescription vmstate_escc_chn = { .name = "escc_chn", .version_id = 2, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(vmstate_dummy, ESCCChannelState), VMSTATE_UINT32(reg, ESCCChannelState), VMSTATE_UINT32(rxint, ESCCChannelState), VMSTATE_UINT32(txint, ESCCChannelState), VMSTATE_UINT32(rxint_under_svc, ESCCChannelState), VMSTATE_UINT32(txint_under_svc, ESCCChannelState), VMSTATE_UINT8(rx, ESCCChannelState), VMSTATE_UINT8(tx, ESCCChannelState), VMSTATE_BUFFER(wregs, ESCCChannelState), VMSTATE_BUFFER(rregs, ESCCChannelState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_escc = { .name = "escc", .version_id = 2, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn, ESCCChannelState), VMSTATE_END_OF_LIST() } }; static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src, InputEvent *evt) { ESCCChannelState *s = (ESCCChannelState *)dev; int qcode, keycode; InputKeyEvent *key; assert(evt->type == INPUT_EVENT_KIND_KEY); key = evt->u.key.data; qcode = qemu_input_key_value_to_qcode(key->key); trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode), key->down); if (qcode == Q_KEY_CODE_CAPS_LOCK) { if (key->down) { s->caps_lock_mode ^= 1; if (s->caps_lock_mode == 2) { return; /* Drop second press */ } } else { s->caps_lock_mode ^= 2; if (s->caps_lock_mode == 3) { return; /* Drop first release */ } } } if (qcode == Q_KEY_CODE_NUM_LOCK) { if (key->down) { s->num_lock_mode ^= 1; if (s->num_lock_mode == 2) { return; /* Drop second press */ } } else { s->num_lock_mode ^= 2; if (s->num_lock_mode == 3) { return; /* Drop first release */ } } } if (qcode >= qemu_input_map_qcode_to_sun_len) { return; } keycode = qemu_input_map_qcode_to_sun[qcode]; if (!key->down) { keycode |= 0x80; } trace_escc_sunkbd_event_out(keycode); put_queue(s, keycode); } static const QemuInputHandler sunkbd_handler = { .name = "sun keyboard", .mask = INPUT_EVENT_MASK_KEY, .event = sunkbd_handle_event, }; static uint8_t sunkbd_layout_dip_switch(const char *kbd_layout) { /* Return the value of the dip-switches in a SUN Type 5 keyboard */ static uint8_t ret = 0xff; if ((ret == 0xff) && kbd_layout) { int i; struct layout_values { const char *lang; uint8_t dip; } languages[] = /* * Dip values from table 3-16 Layouts for Type 4, 5 and 5c Keyboards */ { {"en-us", 0x21}, /* U.S.A. (US5.kt) */ /* 0x22 is some other US (US_UNIX5.kt) */ {"fr", 0x23}, /* France (France5.kt) */ {"da", 0x24}, /* Denmark (Denmark5.kt) */ {"de", 0x25}, /* Germany (Germany5.kt) */ {"it", 0x26}, /* Italy (Italy5.kt) */ {"nl", 0x27}, /* The Netherlands (Netherland5.kt) */ {"no", 0x28}, /* Norway (Norway.kt) */ {"pt", 0x29}, /* Portugal (Portugal5.kt) */ {"es", 0x2a}, /* Spain (Spain5.kt) */ {"sv", 0x2b}, /* Sweden (Sweden5.kt) */ {"fr-ch", 0x2c}, /* Switzerland/French (Switzer_Fr5.kt) */ {"de-ch", 0x2d}, /* Switzerland/German (Switzer_Ge5.kt) */ {"en-gb", 0x2e}, /* Great Britain (UK5.kt) */ {"ko", 0x2f}, /* Korea (Korea5.kt) */ {"tw", 0x30}, /* Taiwan (Taiwan5.kt) */ {"ja", 0x31}, /* Japan (Japan5.kt) */ {"fr-ca", 0x32}, /* Canada/French (Canada_Fr5.kt) */ {"hu", 0x33}, /* Hungary (Hungary5.kt) */ {"pl", 0x34}, /* Poland (Poland5.kt) */ {"cz", 0x35}, /* Czech (Czech5.kt) */ {"ru", 0x36}, /* Russia (Russia5.kt) */ {"lv", 0x37}, /* Latvia (Latvia5.kt) */ {"tr", 0x38}, /* Turkey-Q5 (TurkeyQ5.kt) */ {"gr", 0x39}, /* Greece (Greece5.kt) */ {"ar", 0x3a}, /* Arabic (Arabic5.kt) */ {"lt", 0x3b}, /* Lithuania (Lithuania5.kt) */ {"nl-be", 0x3c}, /* Belgium (Belgian5.kt) */ {"be", 0x3c}, /* Belgium (Belgian5.kt) */ }; for (i = 0; i < sizeof(languages) / sizeof(struct layout_values); i++) { if (!strcmp(kbd_layout, languages[i].lang)) { ret = languages[i].dip; return ret; } } /* Found no known language code */ if ((kbd_layout[0] >= '0') && (kbd_layout[0] <= '9')) { unsigned int tmp; /* As a fallback we also accept numeric dip switch value */ if (!qemu_strtoui(kbd_layout, NULL, 0, &tmp)) { ret = tmp; } } } if (ret == 0xff) { /* Final fallback if keyboard_layout was not set or recognized */ ret = 0x21; /* en-us layout */ } return ret; } static void handle_kbd_command(ESCCChannelState *s, int val) { trace_escc_kbd_command(val); if (s->led_mode) { /* Ignore led byte */ s->led_mode = 0; return; } switch (val) { case 1: /* Reset, return type code */ clear_queue(s); put_queue(s, 0xff); put_queue(s, 4); /* Type 4 */ put_queue(s, 0x7f); break; case 0xe: /* Set leds */ s->led_mode = 1; break; case 7: /* Query layout */ case 0xf: clear_queue(s); put_queue(s, 0xfe); put_queue(s, sunkbd_layout_dip_switch(s->sunkbd_layout)); break; default: break; } } static void sunmouse_handle_event(DeviceState *dev, QemuConsole *src, InputEvent *evt) { ESCCChannelState *s = (ESCCChannelState *)dev; InputMoveEvent *move; InputBtnEvent *btn; static const int bmap[INPUT_BUTTON__MAX] = { [INPUT_BUTTON_LEFT] = 0x4, [INPUT_BUTTON_MIDDLE] = 0x2, [INPUT_BUTTON_RIGHT] = 0x1, }; switch (evt->type) { case INPUT_EVENT_KIND_REL: move = evt->u.rel.data; if (move->axis == INPUT_AXIS_X) { s->sunmouse_dx += move->value; } else if (move->axis == INPUT_AXIS_Y) { s->sunmouse_dy -= move->value; } break; case INPUT_EVENT_KIND_BTN: btn = evt->u.btn.data; if (bmap[btn->button]) { if (btn->down) { s->sunmouse_buttons |= bmap[btn->button]; } else { s->sunmouse_buttons &= ~bmap[btn->button]; } /* Indicate we have a supported button event */ s->sunmouse_buttons |= 0x80; } break; default: /* keep gcc happy */ break; } } static void sunmouse_sync(DeviceState *dev) { ESCCChannelState *s = (ESCCChannelState *)dev; int ch; if (s->sunmouse_dx == 0 && s->sunmouse_dy == 0 && (s->sunmouse_buttons & 0x80) == 0) { /* Nothing to do after button event filter */ return; } /* Clear our button event flag */ s->sunmouse_buttons &= ~0x80; trace_escc_sunmouse_event(s->sunmouse_dx, s->sunmouse_dy, s->sunmouse_buttons); ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */ ch ^= s->sunmouse_buttons; put_queue(s, ch); ch = s->sunmouse_dx; if (ch > 127) { ch = 127; } else if (ch < -127) { ch = -127; } put_queue(s, ch & 0xff); s->sunmouse_dx -= ch; ch = s->sunmouse_dy; if (ch > 127) { ch = 127; } else if (ch < -127) { ch = -127; } put_queue(s, ch & 0xff); s->sunmouse_dy -= ch; /* MSC protocol specifies two extra motion bytes */ put_queue(s, 0); put_queue(s, 0); } static const QemuInputHandler sunmouse_handler = { .name = "QEMU Sun Mouse", .mask = INPUT_EVENT_MASK_BTN | INPUT_EVENT_MASK_REL, .event = sunmouse_handle_event, .sync = sunmouse_sync, }; static void escc_init1(Object *obj) { ESCCState *s = ESCC(obj); SysBusDevice *dev = SYS_BUS_DEVICE(obj); unsigned int i; for (i = 0; i < 2; i++) { sysbus_init_irq(dev, &s->chn[i].irq); s->chn[i].chn = 1 - i; } s->chn[0].otherchn = &s->chn[1]; s->chn[1].otherchn = &s->chn[0]; sysbus_init_mmio(dev, &s->mmio); } static void escc_realize(DeviceState *dev, Error **errp) { ESCCState *s = ESCC(dev); unsigned int i; s->chn[0].disabled = s->disabled; s->chn[1].disabled = s->disabled; memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc", ESCC_SIZE << s->it_shift); for (i = 0; i < 2; i++) { if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) { s->chn[i].clock = s->frequency / 2; qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive, serial_receive1, serial_event, NULL, &s->chn[i], NULL, true); } } if (s->chn[0].type == escc_mouse) { s->chn[0].hs = qemu_input_handler_register((DeviceState *)(&s->chn[0]), &sunmouse_handler); } if (s->chn[1].type == escc_kbd) { s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]), &sunkbd_handler); } } static const Property escc_properties[] = { DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0), DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0), DEFINE_PROP_BOOL("bit_swap", ESCCState, bit_swap, false), DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0), DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0), DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0), DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr), DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr), DEFINE_PROP_STRING("chnA-sunkbd-layout", ESCCState, chn[1].sunkbd_layout), DEFINE_PROP_END_OF_LIST(), }; static void escc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_legacy_reset(dc, escc_reset); dc->realize = escc_realize; dc->vmsd = &vmstate_escc; device_class_set_props(dc, escc_properties); set_bit(DEVICE_CATEGORY_INPUT, dc->categories); } static const TypeInfo escc_info = { .name = TYPE_ESCC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ESCCState), .instance_init = escc_init1, .class_init = escc_class_init, }; static void escc_register_types(void) { type_register_static(&escc_info); } type_init(escc_register_types)