/* * CFI parallel flash with Intel command set emulation * * Copyright (c) 2006 Thorsten Zitterell * Copyright (c) 2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * For now, this code can emulate flashes of 1, 2 or 4 bytes width. * Supported commands/modes are: * - flash read * - flash write * - flash ID read * - sector erase * - CFI queries * * It does not support timings * It does not support flash interleaving * It does not implement software data protection as found in many real chips * It does not implement erase suspend/resume commands * It does not implement multiple sectors erase * * It does not implement much more ... */ #include "hw/hw.h" #include "hw/block/flash.h" #include "block/block.h" #include "qemu/timer.h" #include "qemu/bitops.h" #include "exec/address-spaces.h" #include "qemu/host-utils.h" #include "hw/sysbus.h" #define PFLASH_BUG(fmt, ...) \ do { \ fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \ exit(1); \ } while(0) /* #define PFLASH_DEBUG */ #ifdef PFLASH_DEBUG #define DPRINTF(fmt, ...) \ do { \ fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \ } while (0) #else #define DPRINTF(fmt, ...) do { } while (0) #endif #define TYPE_CFI_PFLASH01 "cfi.pflash01" #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01) struct pflash_t { /*< private >*/ SysBusDevice parent_obj; /*< public >*/ BlockDriverState *bs; uint32_t nb_blocs; uint64_t sector_len; uint8_t bank_width; uint8_t device_width; /* If 0, device width not specified. */ uint8_t max_device_width; /* max device width in bytes */ uint8_t be; uint8_t wcycle; /* if 0, the flash is read normally */ int ro; uint8_t cmd; uint8_t status; uint16_t ident0; uint16_t ident1; uint16_t ident2; uint16_t ident3; uint8_t cfi_len; uint8_t cfi_table[0x52]; uint64_t counter; unsigned int writeblock_size; QEMUTimer *timer; MemoryRegion mem; char *name; void *storage; }; static int pflash_post_load(void *opaque, int version_id); static const VMStateDescription vmstate_pflash = { .name = "pflash_cfi01", .version_id = 1, .minimum_version_id = 1, .post_load = pflash_post_load, .fields = (VMStateField[]) { VMSTATE_UINT8(wcycle, pflash_t), VMSTATE_UINT8(cmd, pflash_t), VMSTATE_UINT8(status, pflash_t), VMSTATE_UINT64(counter, pflash_t), VMSTATE_END_OF_LIST() } }; static void pflash_timer (void *opaque) { pflash_t *pfl = opaque; DPRINTF("%s: command %02x done\n", __func__, pfl->cmd); /* Reset flash */ pfl->status ^= 0x80; memory_region_rom_device_set_romd(&pfl->mem, true); pfl->wcycle = 0; pfl->cmd = 0; } /* Perform a CFI query based on the bank width of the flash. * If this code is called we know we have a device_width set for * this flash. */ static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset) { int i; uint32_t resp = 0; hwaddr boff; /* Adjust incoming offset to match expected device-width * addressing. CFI query addresses are always specified in terms of * the maximum supported width of the device. This means that x8 * devices and x8/x16 devices in x8 mode behave differently. For * devices that are not used at their max width, we will be * provided with addresses that use higher address bits than * expected (based on the max width), so we will shift them lower * so that they will match the addresses used when * device_width==max_device_width. */ boff = offset >> (ctz32(pfl->bank_width) + ctz32(pfl->max_device_width) - ctz32(pfl->device_width)); if (boff > pfl->cfi_len) { return 0; } /* Now we will construct the CFI response generated by a single * device, then replicate that for all devices that make up the * bus. For wide parts used in x8 mode, CFI query responses * are different than native byte-wide parts. */ resp = pfl->cfi_table[boff]; if (pfl->device_width != pfl->max_device_width) { /* The only case currently supported is x8 mode for a * wider part. */ if (pfl->device_width != 1 || pfl->bank_width > 4) { DPRINTF("%s: Unsupported device configuration: " "device_width=%d, max_device_width=%d\n", __func__, pfl->device_width, pfl->max_device_width); return 0; } /* CFI query data is repeated, rather than zero padded for * wide devices used in x8 mode. */ for (i = 1; i < pfl->max_device_width; i++) { resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]); } } /* Replicate responses for each device in bank. */ if (pfl->device_width < pfl->bank_width) { for (i = pfl->device_width; i < pfl->bank_width; i += pfl->device_width) { resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp); } } return resp; } /* Perform a device id query based on the bank width of the flash. */ static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset) { int i; uint32_t resp; hwaddr boff; /* Adjust incoming offset to match expected device-width * addressing. Device ID read addresses are always specified in * terms of the maximum supported width of the device. This means * that x8 devices and x8/x16 devices in x8 mode behave * differently. For devices that are not used at their max width, * we will be provided with addresses that use higher address bits * than expected (based on the max width), so we will shift them * lower so that they will match the addresses used when * device_width==max_device_width. */ boff = offset >> (ctz32(pfl->bank_width) + ctz32(pfl->max_device_width) - ctz32(pfl->device_width)); /* Mask off upper bits which may be used in to query block * or sector lock status at other addresses. * Offsets 2/3 are block lock status, is not emulated. */ switch (boff & 0xFF) { case 0: resp = pfl->ident0; DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp); break; case 1: resp = pfl->ident1; DPRINTF("%s: Device ID Code %04x\n", __func__, resp); break; default: DPRINTF("%s: Read Device Information offset=%x\n", __func__, (unsigned)offset); return 0; break; } /* Replicate responses for each device in bank. */ if (pfl->device_width < pfl->bank_width) { for (i = pfl->device_width; i < pfl->bank_width; i += pfl->device_width) { resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp); } } return resp; } static uint32_t pflash_read (pflash_t *pfl, hwaddr offset, int width, int be) { hwaddr boff; uint32_t ret; uint8_t *p; ret = -1; #if 0 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n", __func__, offset, pfl->cmd, width); #endif switch (pfl->cmd) { default: /* This should never happen : reset state & treat it as a read */ DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd); pfl->wcycle = 0; pfl->cmd = 0; /* fall through to read code */ case 0x00: /* Flash area read */ p = pfl->storage; switch (width) { case 1: ret = p[offset]; DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n", __func__, offset, ret); break; case 2: if (be) { ret = p[offset] << 8; ret |= p[offset + 1]; } else { ret = p[offset]; ret |= p[offset + 1] << 8; } DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n", __func__, offset, ret); break; case 4: if (be) { ret = p[offset] << 24; ret |= p[offset + 1] << 16; ret |= p[offset + 2] << 8; ret |= p[offset + 3]; } else { ret = p[offset]; ret |= p[offset + 1] << 8; ret |= p[offset + 2] << 16; ret |= p[offset + 3] << 24; } DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n", __func__, offset, ret); break; default: DPRINTF("BUG in %s\n", __func__); } break; case 0x10: /* Single byte program */ case 0x20: /* Block erase */ case 0x28: /* Block erase */ case 0x40: /* single byte program */ case 0x50: /* Clear status register */ case 0x60: /* Block /un)lock */ case 0x70: /* Status Register */ case 0xe8: /* Write block */ /* Status register read. Return status from each device in * bank. */ ret = pfl->status; if (pfl->device_width && width > pfl->device_width) { int shift = pfl->device_width * 8; while (shift + pfl->device_width * 8 <= width * 8) { ret |= pfl->status << shift; shift += pfl->device_width * 8; } } else if (!pfl->device_width && width > 2) { /* Handle 32 bit flash cases where device width is not * set. (Existing behavior before device width added.) */ ret |= pfl->status << 16; } DPRINTF("%s: status %x\n", __func__, ret); break; case 0x90: if (!pfl->device_width) { /* Preserve old behavior if device width not specified */ boff = offset & 0xFF; if (pfl->bank_width == 2) { boff = boff >> 1; } else if (pfl->bank_width == 4) { boff = boff >> 2; } switch (boff) { case 0: ret = pfl->ident0 << 8 | pfl->ident1; DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret); break; case 1: ret = pfl->ident2 << 8 | pfl->ident3; DPRINTF("%s: Device ID Code %04x\n", __func__, ret); break; default: DPRINTF("%s: Read Device Information boff=%x\n", __func__, (unsigned)boff); ret = 0; break; } } else { /* If we have a read larger than the bank_width, combine multiple * manufacturer/device ID queries into a single response. */ int i; for (i = 0; i < width; i += pfl->bank_width) { ret = deposit32(ret, i * 8, pfl->bank_width * 8, pflash_devid_query(pfl, offset + i * pfl->bank_width)); } } break; case 0x98: /* Query mode */ if (!pfl->device_width) { /* Preserve old behavior if device width not specified */ boff = offset & 0xFF; if (pfl->bank_width == 2) { boff = boff >> 1; } else if (pfl->bank_width == 4) { boff = boff >> 2; } if (boff > pfl->cfi_len) { ret = 0; } else { ret = pfl->cfi_table[boff]; } } else { /* If we have a read larger than the bank_width, combine multiple * CFI queries into a single response. */ int i; for (i = 0; i < width; i += pfl->bank_width) { ret = deposit32(ret, i * 8, pfl->bank_width * 8, pflash_cfi_query(pfl, offset + i * pfl->bank_width)); } } break; } return ret; } /* update flash content on disk */ static void pflash_update(pflash_t *pfl, int offset, int size) { int offset_end; if (pfl->bs) { offset_end = offset + size; /* round to sectors */ offset = offset >> 9; offset_end = (offset_end + 511) >> 9; bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9), offset_end - offset); } } static inline void pflash_data_write(pflash_t *pfl, hwaddr offset, uint32_t value, int width, int be) { uint8_t *p = pfl->storage; DPRINTF("%s: block write offset " TARGET_FMT_plx " value %x counter %016" PRIx64 "\n", __func__, offset, value, pfl->counter); switch (width) { case 1: p[offset] = value; break; case 2: if (be) { p[offset] = value >> 8; p[offset + 1] = value; } else { p[offset] = value; p[offset + 1] = value >> 8; } break; case 4: if (be) { p[offset] = value >> 24; p[offset + 1] = value >> 16; p[offset + 2] = value >> 8; p[offset + 3] = value; } else { p[offset] = value; p[offset + 1] = value >> 8; p[offset + 2] = value >> 16; p[offset + 3] = value >> 24; } break; } } static void pflash_write(pflash_t *pfl, hwaddr offset, uint32_t value, int width, int be) { uint8_t *p; uint8_t cmd; cmd = value; DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n", __func__, offset, value, width, pfl->wcycle); if (!pfl->wcycle) { /* Set the device in I/O access mode */ memory_region_rom_device_set_romd(&pfl->mem, false); } switch (pfl->wcycle) { case 0: /* read mode */ switch (cmd) { case 0x00: /* ??? */ goto reset_flash; case 0x10: /* Single Byte Program */ case 0x40: /* Single Byte Program */ DPRINTF("%s: Single Byte Program\n", __func__); break; case 0x20: /* Block erase */ p = pfl->storage; offset &= ~(pfl->sector_len - 1); DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n", __func__, offset, (unsigned)pfl->sector_len); if (!pfl->ro) { memset(p + offset, 0xff, pfl->sector_len); pflash_update(pfl, offset, pfl->sector_len); } else { pfl->status |= 0x20; /* Block erase error */ } pfl->status |= 0x80; /* Ready! */ break; case 0x50: /* Clear status bits */ DPRINTF("%s: Clear status bits\n", __func__); pfl->status = 0x0; goto reset_flash; case 0x60: /* Block (un)lock */ DPRINTF("%s: Block unlock\n", __func__); break; case 0x70: /* Status Register */ DPRINTF("%s: Read status register\n", __func__); pfl->cmd = cmd; return; case 0x90: /* Read Device ID */ DPRINTF("%s: Read Device information\n", __func__); pfl->cmd = cmd; return; case 0x98: /* CFI query */ DPRINTF("%s: CFI query\n", __func__); break; case 0xe8: /* Write to buffer */ DPRINTF("%s: Write to buffer\n", __func__); pfl->status |= 0x80; /* Ready! */ break; case 0xf0: /* Probe for AMD flash */ DPRINTF("%s: Probe for AMD flash\n", __func__); goto reset_flash; case 0xff: /* Read array mode */ DPRINTF("%s: Read array mode\n", __func__); goto reset_flash; default: goto error_flash; } pfl->wcycle++; pfl->cmd = cmd; break; case 1: switch (pfl->cmd) { case 0x10: /* Single Byte Program */ case 0x40: /* Single Byte Program */ DPRINTF("%s: Single Byte Program\n", __func__); if (!pfl->ro) { pflash_data_write(pfl, offset, value, width, be); pflash_update(pfl, offset, width); } else { pfl->status |= 0x10; /* Programming error */ } pfl->status |= 0x80; /* Ready! */ pfl->wcycle = 0; break; case 0x20: /* Block erase */ case 0x28: if (cmd == 0xd0) { /* confirm */ pfl->wcycle = 0; pfl->status |= 0x80; } else if (cmd == 0xff) { /* read array mode */ goto reset_flash; } else goto error_flash; break; case 0xe8: /* Mask writeblock size based on device width, or bank width if * device width not specified. */ if (pfl->device_width) { value = extract32(value, 0, pfl->device_width * 8); } else { value = extract32(value, 0, pfl->bank_width * 8); } DPRINTF("%s: block write of %x bytes\n", __func__, value); pfl->counter = value; pfl->wcycle++; break; case 0x60: if (cmd == 0xd0) { pfl->wcycle = 0; pfl->status |= 0x80; } else if (cmd == 0x01) { pfl->wcycle = 0; pfl->status |= 0x80; } else if (cmd == 0xff) { goto reset_flash; } else { DPRINTF("%s: Unknown (un)locking command\n", __func__); goto reset_flash; } break; case 0x98: if (cmd == 0xff) { goto reset_flash; } else { DPRINTF("%s: leaving query mode\n", __func__); } break; default: goto error_flash; } break; case 2: switch (pfl->cmd) { case 0xe8: /* Block write */ if (!pfl->ro) { pflash_data_write(pfl, offset, value, width, be); } else { pfl->status |= 0x10; /* Programming error */ } pfl->status |= 0x80; if (!pfl->counter) { hwaddr mask = pfl->writeblock_size - 1; mask = ~mask; DPRINTF("%s: block write finished\n", __func__); pfl->wcycle++; if (!pfl->ro) { /* Flush the entire write buffer onto backing storage. */ pflash_update(pfl, offset & mask, pfl->writeblock_size); } else { pfl->status |= 0x10; /* Programming error */ } } pfl->counter--; break; default: goto error_flash; } break; case 3: /* Confirm mode */ switch (pfl->cmd) { case 0xe8: /* Block write */ if (cmd == 0xd0) { pfl->wcycle = 0; pfl->status |= 0x80; } else { DPRINTF("%s: unknown command for \"write block\"\n", __func__); PFLASH_BUG("Write block confirm"); goto reset_flash; } break; default: goto error_flash; } break; default: /* Should never happen */ DPRINTF("%s: invalid write state\n", __func__); goto reset_flash; } return; error_flash: qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence " "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)" "\n", __func__, offset, pfl->wcycle, pfl->cmd, value); reset_flash: memory_region_rom_device_set_romd(&pfl->mem, true); pfl->wcycle = 0; pfl->cmd = 0; } static uint32_t pflash_readb_be(void *opaque, hwaddr addr) { return pflash_read(opaque, addr, 1, 1); } static uint32_t pflash_readb_le(void *opaque, hwaddr addr) { return pflash_read(opaque, addr, 1, 0); } static uint32_t pflash_readw_be(void *opaque, hwaddr addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 2, 1); } static uint32_t pflash_readw_le(void *opaque, hwaddr addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 2, 0); } static uint32_t pflash_readl_be(void *opaque, hwaddr addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 4, 1); } static uint32_t pflash_readl_le(void *opaque, hwaddr addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 4, 0); } static void pflash_writeb_be(void *opaque, hwaddr addr, uint32_t value) { pflash_write(opaque, addr, value, 1, 1); } static void pflash_writeb_le(void *opaque, hwaddr addr, uint32_t value) { pflash_write(opaque, addr, value, 1, 0); } static void pflash_writew_be(void *opaque, hwaddr addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 2, 1); } static void pflash_writew_le(void *opaque, hwaddr addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 2, 0); } static void pflash_writel_be(void *opaque, hwaddr addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 4, 1); } static void pflash_writel_le(void *opaque, hwaddr addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 4, 0); } static const MemoryRegionOps pflash_cfi01_ops_be = { .old_mmio = { .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, }, .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, }, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static const MemoryRegionOps pflash_cfi01_ops_le = { .old_mmio = { .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, }, .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, }, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static void pflash_cfi01_realize(DeviceState *dev, Error **errp) { pflash_t *pfl = CFI_PFLASH01(dev); uint64_t total_len; int ret; uint64_t blocks_per_device, device_len; int num_devices; total_len = pfl->sector_len * pfl->nb_blocs; /* These are only used to expose the parameters of each device * in the cfi_table[]. */ num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1; blocks_per_device = pfl->nb_blocs / num_devices; device_len = pfl->sector_len * blocks_per_device; /* XXX: to be fixed */ #if 0 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) && total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024)) return NULL; #endif memory_region_init_rom_device( &pfl->mem, OBJECT(dev), pfl->be ? &pflash_cfi01_ops_be : &pflash_cfi01_ops_le, pfl, pfl->name, total_len); vmstate_register_ram(&pfl->mem, DEVICE(pfl)); pfl->storage = memory_region_get_ram_ptr(&pfl->mem); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem); if (pfl->bs) { /* read the initial flash content */ ret = bdrv_read(pfl->bs, 0, pfl->storage, total_len >> 9); if (ret < 0) { vmstate_unregister_ram(&pfl->mem, DEVICE(pfl)); error_setg(errp, "failed to read the initial flash content"); return; } } if (pfl->bs) { pfl->ro = bdrv_is_read_only(pfl->bs); } else { pfl->ro = 0; } /* Default to devices being used at their maximum device width. This was * assumed before the device_width support was added. */ if (!pfl->max_device_width) { pfl->max_device_width = pfl->device_width; } pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl); pfl->wcycle = 0; pfl->cmd = 0; pfl->status = 0; /* Hardcoded CFI table */ pfl->cfi_len = 0x52; /* Standard "QRY" string */ pfl->cfi_table[0x10] = 'Q'; pfl->cfi_table[0x11] = 'R'; pfl->cfi_table[0x12] = 'Y'; /* Command set (Intel) */ pfl->cfi_table[0x13] = 0x01; pfl->cfi_table[0x14] = 0x00; /* Primary extended table address (none) */ pfl->cfi_table[0x15] = 0x31; pfl->cfi_table[0x16] = 0x00; /* Alternate command set (none) */ pfl->cfi_table[0x17] = 0x00; pfl->cfi_table[0x18] = 0x00; /* Alternate extended table (none) */ pfl->cfi_table[0x19] = 0x00; pfl->cfi_table[0x1A] = 0x00; /* Vcc min */ pfl->cfi_table[0x1B] = 0x45; /* Vcc max */ pfl->cfi_table[0x1C] = 0x55; /* Vpp min (no Vpp pin) */ pfl->cfi_table[0x1D] = 0x00; /* Vpp max (no Vpp pin) */ pfl->cfi_table[0x1E] = 0x00; /* Reserved */ pfl->cfi_table[0x1F] = 0x07; /* Timeout for min size buffer write */ pfl->cfi_table[0x20] = 0x07; /* Typical timeout for block erase */ pfl->cfi_table[0x21] = 0x0a; /* Typical timeout for full chip erase (4096 ms) */ pfl->cfi_table[0x22] = 0x00; /* Reserved */ pfl->cfi_table[0x23] = 0x04; /* Max timeout for buffer write */ pfl->cfi_table[0x24] = 0x04; /* Max timeout for block erase */ pfl->cfi_table[0x25] = 0x04; /* Max timeout for chip erase */ pfl->cfi_table[0x26] = 0x00; /* Device size */ pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */ /* Flash device interface (8 & 16 bits) */ pfl->cfi_table[0x28] = 0x02; pfl->cfi_table[0x29] = 0x00; /* Max number of bytes in multi-bytes write */ if (pfl->bank_width == 1) { pfl->cfi_table[0x2A] = 0x08; } else { pfl->cfi_table[0x2A] = 0x0B; } pfl->writeblock_size = 1 << pfl->cfi_table[0x2A]; pfl->cfi_table[0x2B] = 0x00; /* Number of erase block regions (uniform) */ pfl->cfi_table[0x2C] = 0x01; /* Erase block region 1 */ pfl->cfi_table[0x2D] = blocks_per_device - 1; pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8; pfl->cfi_table[0x2F] = pfl->sector_len >> 8; pfl->cfi_table[0x30] = pfl->sector_len >> 16; /* Extended */ pfl->cfi_table[0x31] = 'P'; pfl->cfi_table[0x32] = 'R'; pfl->cfi_table[0x33] = 'I'; pfl->cfi_table[0x34] = '1'; pfl->cfi_table[0x35] = '0'; pfl->cfi_table[0x36] = 0x00; pfl->cfi_table[0x37] = 0x00; pfl->cfi_table[0x38] = 0x00; pfl->cfi_table[0x39] = 0x00; pfl->cfi_table[0x3a] = 0x00; pfl->cfi_table[0x3b] = 0x00; pfl->cfi_table[0x3c] = 0x00; pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */ } static Property pflash_cfi01_properties[] = { DEFINE_PROP_DRIVE("drive", struct pflash_t, bs), /* num-blocks is the number of blocks actually visible to the guest, * ie the total size of the device divided by the sector length. * If we're emulating flash devices wired in parallel the actual * number of blocks per indvidual device will differ. */ DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0), DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0), /* width here is the overall width of this QEMU device in bytes. * The QEMU device may be emulating a number of flash devices * wired up in parallel; the width of each individual flash * device should be specified via device-width. If the individual * devices have a maximum width which is greater than the width * they are being used for, this maximum width should be set via * max-device-width (which otherwise defaults to device-width). * So for instance a 32-bit wide QEMU flash device made from four * 16-bit flash devices used in 8-bit wide mode would be configured * with width = 4, device-width = 1, max-device-width = 2. * * If device-width is not specified we default to backwards * compatible behaviour which is a bad emulation of two * 16 bit devices making up a 32 bit wide QEMU device. This * is deprecated for new uses of this device. */ DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0), DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0), DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0), DEFINE_PROP_UINT8("big-endian", struct pflash_t, be, 0), DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0), DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0), DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0), DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0), DEFINE_PROP_STRING("name", struct pflash_t, name), DEFINE_PROP_END_OF_LIST(), }; static void pflash_cfi01_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = pflash_cfi01_realize; dc->props = pflash_cfi01_properties; dc->vmsd = &vmstate_pflash; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo pflash_cfi01_info = { .name = TYPE_CFI_PFLASH01, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(struct pflash_t), .class_init = pflash_cfi01_class_init, }; static void pflash_cfi01_register_types(void) { type_register_static(&pflash_cfi01_info); } type_init(pflash_cfi01_register_types) pflash_t *pflash_cfi01_register(hwaddr base, DeviceState *qdev, const char *name, hwaddr size, BlockDriverState *bs, uint32_t sector_len, int nb_blocs, int bank_width, uint16_t id0, uint16_t id1, uint16_t id2, uint16_t id3, int be) { DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01); if (bs && qdev_prop_set_drive(dev, "drive", bs)) { abort(); } qdev_prop_set_uint32(dev, "num-blocks", nb_blocs); qdev_prop_set_uint64(dev, "sector-length", sector_len); qdev_prop_set_uint8(dev, "width", bank_width); qdev_prop_set_uint8(dev, "big-endian", !!be); qdev_prop_set_uint16(dev, "id0", id0); qdev_prop_set_uint16(dev, "id1", id1); qdev_prop_set_uint16(dev, "id2", id2); qdev_prop_set_uint16(dev, "id3", id3); qdev_prop_set_string(dev, "name", name); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); return CFI_PFLASH01(dev); } MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl) { return &fl->mem; } static int pflash_post_load(void *opaque, int version_id) { pflash_t *pfl = opaque; if (!pfl->ro) { DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name); pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs); } return 0; }