/* * QEMU NVM Express Controller * * Copyright (c) 2012, Intel Corporation * * Written by Keith Busch * * This code is licensed under the GNU GPL v2 or later. */ /** * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e * * https://nvmexpress.org/developers/nvme-specification/ */ /** * Usage: add options: * -drive file=,if=none,id= * -device nvme,serial=,id=, \ * cmb_size_mb=, \ * [pmrdev=,] \ * max_ioqpairs=, \ * aerl=, aer_max_queued=, \ * mdts= * -device nvme-ns,drive=,bus=bus_name,nsid= * * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. * * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when * both provided. * Enabling pmr emulation can be achieved by pointing to memory-backend-file. * For example: * -object memory-backend-file,id=,share=on,mem-path=, \ * size= .... -device nvme,...,pmrdev= * * * nvme device parameters * ~~~~~~~~~~~~~~~~~~~~~~ * - `aerl` * The Asynchronous Event Request Limit (AERL). Indicates the maximum number * of concurrently outstanding Asynchronous Event Request commands suppoert * by the controller. This is a 0's based value. * * - `aer_max_queued` * This is the maximum number of events that the device will enqueue for * completion when there are no oustanding AERs. When the maximum number of * enqueued events are reached, subsequent events will be dropped. * */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "hw/block/block.h" #include "hw/pci/msix.h" #include "hw/pci/pci.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "sysemu/sysemu.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "sysemu/hostmem.h" #include "sysemu/block-backend.h" #include "exec/memory.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/cutils.h" #include "trace.h" #include "nvme.h" #include "nvme-ns.h" #define NVME_MAX_IOQPAIRS 0xffff #define NVME_DB_SIZE 4 #define NVME_SPEC_VER 0x00010300 #define NVME_CMB_BIR 2 #define NVME_PMR_BIR 2 #define NVME_TEMPERATURE 0x143 #define NVME_TEMPERATURE_WARNING 0x157 #define NVME_TEMPERATURE_CRITICAL 0x175 #define NVME_NUM_FW_SLOTS 1 #define NVME_GUEST_ERR(trace, fmt, ...) \ do { \ (trace_##trace)(__VA_ARGS__); \ qemu_log_mask(LOG_GUEST_ERROR, #trace \ " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ } while (0) static const bool nvme_feature_support[NVME_FID_MAX] = { [NVME_ARBITRATION] = true, [NVME_POWER_MANAGEMENT] = true, [NVME_TEMPERATURE_THRESHOLD] = true, [NVME_ERROR_RECOVERY] = true, [NVME_VOLATILE_WRITE_CACHE] = true, [NVME_NUMBER_OF_QUEUES] = true, [NVME_INTERRUPT_COALESCING] = true, [NVME_INTERRUPT_VECTOR_CONF] = true, [NVME_WRITE_ATOMICITY] = true, [NVME_ASYNCHRONOUS_EVENT_CONF] = true, [NVME_TIMESTAMP] = true, }; static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, }; static void nvme_process_sq(void *opaque); static uint16_t nvme_cid(NvmeRequest *req) { if (!req) { return 0xffff; } return le16_to_cpu(req->cqe.cid); } static uint16_t nvme_sqid(NvmeRequest *req) { return le16_to_cpu(req->sq->sqid); } static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) { hwaddr low = n->ctrl_mem.addr; hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size); return addr >= low && addr < hi; } static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) { assert(nvme_addr_is_cmb(n, addr)); return &n->cmbuf[addr - n->ctrl_mem.addr]; } static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) { hwaddr hi = addr + size - 1; if (hi < addr) { return 1; } if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { memcpy(buf, nvme_addr_to_cmb(n, addr), size); return 0; } return pci_dma_read(&n->parent_obj, addr, buf, size); } static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) { return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces); } static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) { return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; } static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) { return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; } static void nvme_inc_cq_tail(NvmeCQueue *cq) { cq->tail++; if (cq->tail >= cq->size) { cq->tail = 0; cq->phase = !cq->phase; } } static void nvme_inc_sq_head(NvmeSQueue *sq) { sq->head = (sq->head + 1) % sq->size; } static uint8_t nvme_cq_full(NvmeCQueue *cq) { return (cq->tail + 1) % cq->size == cq->head; } static uint8_t nvme_sq_empty(NvmeSQueue *sq) { return sq->head == sq->tail; } static void nvme_irq_check(NvmeCtrl *n) { if (msix_enabled(&(n->parent_obj))) { return; } if (~n->bar.intms & n->irq_status) { pci_irq_assert(&n->parent_obj); } else { pci_irq_deassert(&n->parent_obj); } } static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) { if (cq->irq_enabled) { if (msix_enabled(&(n->parent_obj))) { trace_pci_nvme_irq_msix(cq->vector); msix_notify(&(n->parent_obj), cq->vector); } else { trace_pci_nvme_irq_pin(); assert(cq->vector < 32); n->irq_status |= 1 << cq->vector; nvme_irq_check(n); } } else { trace_pci_nvme_irq_masked(); } } static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) { if (cq->irq_enabled) { if (msix_enabled(&(n->parent_obj))) { return; } else { assert(cq->vector < 32); n->irq_status &= ~(1 << cq->vector); nvme_irq_check(n); } } } static void nvme_req_clear(NvmeRequest *req) { req->ns = NULL; memset(&req->cqe, 0x0, sizeof(req->cqe)); req->status = NVME_SUCCESS; } static void nvme_req_exit(NvmeRequest *req) { if (req->qsg.sg) { qemu_sglist_destroy(&req->qsg); } if (req->iov.iov) { qemu_iovec_destroy(&req->iov); } } static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, size_t len) { if (!len) { return NVME_SUCCESS; } trace_pci_nvme_map_addr_cmb(addr, len); if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { return NVME_DATA_TRAS_ERROR; } qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); return NVME_SUCCESS; } static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, hwaddr addr, size_t len) { if (!len) { return NVME_SUCCESS; } trace_pci_nvme_map_addr(addr, len); if (nvme_addr_is_cmb(n, addr)) { if (qsg && qsg->sg) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } assert(iov); if (!iov->iov) { qemu_iovec_init(iov, 1); } return nvme_map_addr_cmb(n, iov, addr, len); } if (iov && iov->iov) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } assert(qsg); if (!qsg->sg) { pci_dma_sglist_init(qsg, &n->parent_obj, 1); } qemu_sglist_add(qsg, addr, len); return NVME_SUCCESS; } static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2, uint32_t len, NvmeRequest *req) { hwaddr trans_len = n->page_size - (prp1 % n->page_size); trans_len = MIN(len, trans_len); int num_prps = (len >> n->page_bits) + 1; uint16_t status; bool prp_list_in_cmb = false; int ret; QEMUSGList *qsg = &req->qsg; QEMUIOVector *iov = &req->iov; trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); if (unlikely(!prp1)) { trace_pci_nvme_err_invalid_prp(); return NVME_INVALID_FIELD | NVME_DNR; } if (nvme_addr_is_cmb(n, prp1)) { qemu_iovec_init(iov, num_prps); } else { pci_dma_sglist_init(qsg, &n->parent_obj, num_prps); } status = nvme_map_addr(n, qsg, iov, prp1, trans_len); if (status) { return status; } len -= trans_len; if (len) { if (unlikely(!prp2)) { trace_pci_nvme_err_invalid_prp2_missing(); return NVME_INVALID_FIELD | NVME_DNR; } if (len > n->page_size) { uint64_t prp_list[n->max_prp_ents]; uint32_t nents, prp_trans; int i = 0; if (nvme_addr_is_cmb(n, prp2)) { prp_list_in_cmb = true; } nents = (len + n->page_size - 1) >> n->page_bits; prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); if (ret) { trace_pci_nvme_err_addr_read(prp2); return NVME_DATA_TRAS_ERROR; } while (len != 0) { uint64_t prp_ent = le64_to_cpu(prp_list[i]); if (i == n->max_prp_ents - 1 && len > n->page_size) { if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prplist_ent(prp_ent); return NVME_INVALID_FIELD | NVME_DNR; } if (prp_list_in_cmb != nvme_addr_is_cmb(n, prp_ent)) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } i = 0; nents = (len + n->page_size - 1) >> n->page_bits; prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); ret = nvme_addr_read(n, prp_ent, (void *)prp_list, prp_trans); if (ret) { trace_pci_nvme_err_addr_read(prp_ent); return NVME_DATA_TRAS_ERROR; } prp_ent = le64_to_cpu(prp_list[i]); } if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prplist_ent(prp_ent); return NVME_INVALID_FIELD | NVME_DNR; } trans_len = MIN(len, n->page_size); status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len); if (status) { return status; } len -= trans_len; i++; } } else { if (unlikely(prp2 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prp2_align(prp2); return NVME_INVALID_FIELD | NVME_DNR; } status = nvme_map_addr(n, qsg, iov, prp2, len); if (status) { return status; } } } return NVME_SUCCESS; } /* * Map 'nsgld' data descriptors from 'segment'. The function will subtract the * number of bytes mapped in len. */ static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, NvmeSglDescriptor *segment, uint64_t nsgld, size_t *len, NvmeRequest *req) { dma_addr_t addr, trans_len; uint32_t dlen; uint16_t status; for (int i = 0; i < nsgld; i++) { uint8_t type = NVME_SGL_TYPE(segment[i].type); switch (type) { case NVME_SGL_DESCR_TYPE_BIT_BUCKET: if (req->cmd.opcode == NVME_CMD_WRITE) { continue; } case NVME_SGL_DESCR_TYPE_DATA_BLOCK: break; case NVME_SGL_DESCR_TYPE_SEGMENT: case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; default: return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; } dlen = le32_to_cpu(segment[i].len); if (!dlen) { continue; } if (*len == 0) { /* * All data has been mapped, but the SGL contains additional * segments and/or descriptors. The controller might accept * ignoring the rest of the SGL. */ uint16_t sgls = le16_to_cpu(n->id_ctrl.sgls); if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { break; } trace_pci_nvme_err_invalid_sgl_excess_length(nvme_cid(req)); return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } trans_len = MIN(*len, dlen); if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) { goto next; } addr = le64_to_cpu(segment[i].addr); if (UINT64_MAX - addr < dlen) { return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } status = nvme_map_addr(n, qsg, iov, addr, trans_len); if (status) { return status; } next: *len -= trans_len; } return NVME_SUCCESS; } static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov, NvmeSglDescriptor sgl, size_t len, NvmeRequest *req) { /* * Read the segment in chunks of 256 descriptors (one 4k page) to avoid * dynamically allocating a potentially huge SGL. The spec allows the SGL * to be larger (as in number of bytes required to describe the SGL * descriptors and segment chain) than the command transfer size, so it is * not bounded by MDTS. */ const int SEG_CHUNK_SIZE = 256; NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; uint64_t nsgld; uint32_t seg_len; uint16_t status; bool sgl_in_cmb = false; hwaddr addr; int ret; sgld = &sgl; addr = le64_to_cpu(sgl.addr); trace_pci_nvme_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), len); /* * If the entire transfer can be described with a single data block it can * be mapped directly. */ if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { status = nvme_map_sgl_data(n, qsg, iov, sgld, 1, &len, req); if (status) { goto unmap; } goto out; } /* * If the segment is located in the CMB, the submission queue of the * request must also reside there. */ if (nvme_addr_is_cmb(n, addr)) { if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } sgl_in_cmb = true; } for (;;) { switch (NVME_SGL_TYPE(sgld->type)) { case NVME_SGL_DESCR_TYPE_SEGMENT: case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: break; default: return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; } seg_len = le32_to_cpu(sgld->len); /* check the length of the (Last) Segment descriptor */ if ((!seg_len || seg_len & 0xf) && (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) { return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; } if (UINT64_MAX - addr < seg_len) { return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } nsgld = seg_len / sizeof(NvmeSglDescriptor); while (nsgld > SEG_CHUNK_SIZE) { if (nvme_addr_read(n, addr, segment, sizeof(segment))) { trace_pci_nvme_err_addr_read(addr); status = NVME_DATA_TRAS_ERROR; goto unmap; } status = nvme_map_sgl_data(n, qsg, iov, segment, SEG_CHUNK_SIZE, &len, req); if (status) { goto unmap; } nsgld -= SEG_CHUNK_SIZE; addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); } ret = nvme_addr_read(n, addr, segment, nsgld * sizeof(NvmeSglDescriptor)); if (ret) { trace_pci_nvme_err_addr_read(addr); status = NVME_DATA_TRAS_ERROR; goto unmap; } last_sgld = &segment[nsgld - 1]; /* * If the segment ends with a Data Block or Bit Bucket Descriptor Type, * then we are done. */ switch (NVME_SGL_TYPE(last_sgld->type)) { case NVME_SGL_DESCR_TYPE_DATA_BLOCK: case NVME_SGL_DESCR_TYPE_BIT_BUCKET: status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, req); if (status) { goto unmap; } goto out; default: break; } /* * If the last descriptor was not a Data Block or Bit Bucket, then the * current segment must not be a Last Segment. */ if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; goto unmap; } sgld = last_sgld; addr = le64_to_cpu(sgld->addr); /* * Do not map the last descriptor; it will be a Segment or Last Segment * descriptor and is handled by the next iteration. */ status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, req); if (status) { goto unmap; } /* * If the next segment is in the CMB, make sure that the sgl was * already located there. */ if (sgl_in_cmb != nvme_addr_is_cmb(n, addr)) { status = NVME_INVALID_USE_OF_CMB | NVME_DNR; goto unmap; } } out: /* if there is any residual left in len, the SGL was too short */ if (len) { status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; goto unmap; } return NVME_SUCCESS; unmap: if (iov->iov) { qemu_iovec_destroy(iov); } if (qsg->sg) { qemu_sglist_destroy(qsg); } return status; } static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req) { uint64_t prp1, prp2; switch (NVME_CMD_FLAGS_PSDT(req->cmd.flags)) { case NVME_PSDT_PRP: prp1 = le64_to_cpu(req->cmd.dptr.prp1); prp2 = le64_to_cpu(req->cmd.dptr.prp2); return nvme_map_prp(n, prp1, prp2, len, req); case NVME_PSDT_SGL_MPTR_CONTIGUOUS: case NVME_PSDT_SGL_MPTR_SGL: /* SGLs shall not be used for Admin commands in NVMe over PCIe */ if (!req->sq->sqid) { return NVME_INVALID_FIELD | NVME_DNR; } return nvme_map_sgl(n, &req->qsg, &req->iov, req->cmd.dptr.sgl, len, req); default: return NVME_INVALID_FIELD; } } static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len, DMADirection dir, NvmeRequest *req) { uint16_t status = NVME_SUCCESS; status = nvme_map_dptr(n, len, req); if (status) { return status; } /* assert that only one of qsg and iov carries data */ assert((req->qsg.nsg > 0) != (req->iov.niov > 0)); if (req->qsg.nsg > 0) { uint64_t residual; if (dir == DMA_DIRECTION_TO_DEVICE) { residual = dma_buf_write(ptr, len, &req->qsg); } else { residual = dma_buf_read(ptr, len, &req->qsg); } if (unlikely(residual)) { trace_pci_nvme_err_invalid_dma(); status = NVME_INVALID_FIELD | NVME_DNR; } } else { size_t bytes; if (dir == DMA_DIRECTION_TO_DEVICE) { bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len); } else { bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len); } if (unlikely(bytes != len)) { trace_pci_nvme_err_invalid_dma(); status = NVME_INVALID_FIELD | NVME_DNR; } } return status; } static void nvme_post_cqes(void *opaque) { NvmeCQueue *cq = opaque; NvmeCtrl *n = cq->ctrl; NvmeRequest *req, *next; int ret; QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { NvmeSQueue *sq; hwaddr addr; if (nvme_cq_full(cq)) { break; } sq = req->sq; req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); req->cqe.sq_id = cpu_to_le16(sq->sqid); req->cqe.sq_head = cpu_to_le16(sq->head); addr = cq->dma_addr + cq->tail * n->cqe_size; ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe, sizeof(req->cqe)); if (ret) { trace_pci_nvme_err_addr_write(addr); trace_pci_nvme_err_cfs(); n->bar.csts = NVME_CSTS_FAILED; break; } QTAILQ_REMOVE(&cq->req_list, req, entry); nvme_inc_cq_tail(cq); nvme_req_exit(req); QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); } if (cq->tail != cq->head) { nvme_irq_assert(n, cq); } } static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) { assert(cq->cqid == req->sq->cqid); trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, req->status); QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } static void nvme_process_aers(void *opaque) { NvmeCtrl *n = opaque; NvmeAsyncEvent *event, *next; trace_pci_nvme_process_aers(n->aer_queued); QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { NvmeRequest *req; NvmeAerResult *result; /* can't post cqe if there is nothing to complete */ if (!n->outstanding_aers) { trace_pci_nvme_no_outstanding_aers(); break; } /* ignore if masked (cqe posted, but event not cleared) */ if (n->aer_mask & (1 << event->result.event_type)) { trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); continue; } QTAILQ_REMOVE(&n->aer_queue, event, entry); n->aer_queued--; n->aer_mask |= 1 << event->result.event_type; n->outstanding_aers--; req = n->aer_reqs[n->outstanding_aers]; result = (NvmeAerResult *) &req->cqe.result; result->event_type = event->result.event_type; result->event_info = event->result.event_info; result->log_page = event->result.log_page; g_free(event); trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, result->log_page); nvme_enqueue_req_completion(&n->admin_cq, req); } } static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, uint8_t event_info, uint8_t log_page) { NvmeAsyncEvent *event; trace_pci_nvme_enqueue_event(event_type, event_info, log_page); if (n->aer_queued == n->params.aer_max_queued) { trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); return; } event = g_new(NvmeAsyncEvent, 1); event->result = (NvmeAerResult) { .event_type = event_type, .event_info = event_info, .log_page = log_page, }; QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); n->aer_queued++; nvme_process_aers(n); } static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) { n->aer_mask &= ~(1 << event_type); if (!QTAILQ_EMPTY(&n->aer_queue)) { nvme_process_aers(n); } } static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) { uint8_t mdts = n->params.mdts; if (mdts && len > n->page_size << mdts) { return NVME_INVALID_FIELD | NVME_DNR; } return NVME_SUCCESS; } static inline uint16_t nvme_check_bounds(NvmeCtrl *n, NvmeNamespace *ns, uint64_t slba, uint32_t nlb) { uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { return NVME_LBA_RANGE | NVME_DNR; } return NVME_SUCCESS; } static void nvme_rw_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; BlockAcctCookie *acct = &req->acct; BlockAcctStats *stats = blk_get_stats(blk); Error *local_err = NULL; trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); if (!ret) { block_acct_done(stats, acct); } else { uint16_t status; block_acct_failed(stats, acct); switch (req->cmd.opcode) { case NVME_CMD_READ: status = NVME_UNRECOVERED_READ; break; case NVME_CMD_FLUSH: case NVME_CMD_WRITE: case NVME_CMD_WRITE_ZEROES: status = NVME_WRITE_FAULT; break; default: status = NVME_INTERNAL_DEV_ERROR; break; } trace_pci_nvme_err_aio(nvme_cid(req), strerror(ret), status); error_setg_errno(&local_err, -ret, "aio failed"); error_report_err(local_err); req->status = status; } nvme_enqueue_req_completion(nvme_cq(req), req); } static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) { block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0, BLOCK_ACCT_FLUSH); req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_rw_cb, req); return NVME_NO_COMPLETE; } static uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; uint64_t offset = nvme_l2b(ns, slba); uint32_t count = nvme_l2b(ns, nlb); uint16_t status; trace_pci_nvme_write_zeroes(nvme_cid(req), nvme_nsid(ns), slba, nlb); status = nvme_check_bounds(n, ns, slba, nlb); if (status) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); return status; } block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0, BLOCK_ACCT_WRITE); req->aiocb = blk_aio_pwrite_zeroes(req->ns->blkconf.blk, offset, count, BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req); return NVME_NO_COMPLETE; } static uint16_t nvme_rw(NvmeCtrl *n, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; uint64_t slba = le64_to_cpu(rw->slba); uint64_t data_size = nvme_l2b(ns, nlb); uint64_t data_offset = nvme_l2b(ns, slba); enum BlockAcctType acct = req->cmd.opcode == NVME_CMD_WRITE ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ; BlockBackend *blk = ns->blkconf.blk; uint16_t status; trace_pci_nvme_rw(nvme_cid(req), nvme_io_opc_str(rw->opcode), nvme_nsid(ns), nlb, data_size, slba); status = nvme_check_mdts(n, data_size); if (status) { trace_pci_nvme_err_mdts(nvme_cid(req), data_size); goto invalid; } status = nvme_check_bounds(n, ns, slba, nlb); if (status) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); goto invalid; } status = nvme_map_dptr(n, data_size, req); if (status) { goto invalid; } block_acct_start(blk_get_stats(blk), &req->acct, data_size, acct); if (req->qsg.sg) { if (acct == BLOCK_ACCT_WRITE) { req->aiocb = dma_blk_write(blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); } else { req->aiocb = dma_blk_read(blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); } } else { if (acct == BLOCK_ACCT_WRITE) { req->aiocb = blk_aio_pwritev(blk, data_offset, &req->iov, 0, nvme_rw_cb, req); } else { req->aiocb = blk_aio_preadv(blk, data_offset, &req->iov, 0, nvme_rw_cb, req); } } return NVME_NO_COMPLETE; invalid: block_acct_invalid(blk_get_stats(ns->blkconf.blk), acct); return status; } static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) { uint32_t nsid = le32_to_cpu(req->cmd.nsid); trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } req->ns = nvme_ns(n, nsid); if (unlikely(!req->ns)) { return NVME_INVALID_FIELD | NVME_DNR; } switch (req->cmd.opcode) { case NVME_CMD_FLUSH: return nvme_flush(n, req); case NVME_CMD_WRITE_ZEROES: return nvme_write_zeroes(n, req); case NVME_CMD_WRITE: case NVME_CMD_READ: return nvme_rw(n, req); default: trace_pci_nvme_err_invalid_opc(req->cmd.opcode); return NVME_INVALID_OPCODE | NVME_DNR; } } static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) { n->sq[sq->sqid] = NULL; timer_del(sq->timer); timer_free(sq->timer); g_free(sq->io_req); if (sq->sqid) { g_free(sq); } } static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) { NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; NvmeRequest *r, *next; NvmeSQueue *sq; NvmeCQueue *cq; uint16_t qid = le16_to_cpu(c->qid); if (unlikely(!qid || nvme_check_sqid(n, qid))) { trace_pci_nvme_err_invalid_del_sq(qid); return NVME_INVALID_QID | NVME_DNR; } trace_pci_nvme_del_sq(qid); sq = n->sq[qid]; while (!QTAILQ_EMPTY(&sq->out_req_list)) { r = QTAILQ_FIRST(&sq->out_req_list); assert(r->aiocb); blk_aio_cancel(r->aiocb); } if (!nvme_check_cqid(n, sq->cqid)) { cq = n->cq[sq->cqid]; QTAILQ_REMOVE(&cq->sq_list, sq, entry); nvme_post_cqes(cq); QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { if (r->sq == sq) { QTAILQ_REMOVE(&cq->req_list, r, entry); QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); } } } nvme_free_sq(sq, n); return NVME_SUCCESS; } static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, uint16_t sqid, uint16_t cqid, uint16_t size) { int i; NvmeCQueue *cq; sq->ctrl = n; sq->dma_addr = dma_addr; sq->sqid = sqid; sq->size = size; sq->cqid = cqid; sq->head = sq->tail = 0; sq->io_req = g_new0(NvmeRequest, sq->size); QTAILQ_INIT(&sq->req_list); QTAILQ_INIT(&sq->out_req_list); for (i = 0; i < sq->size; i++) { sq->io_req[i].sq = sq; QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); } sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq); assert(n->cq[cqid]); cq = n->cq[cqid]; QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); n->sq[sqid] = sq; } static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) { NvmeSQueue *sq; NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; uint16_t cqid = le16_to_cpu(c->cqid); uint16_t sqid = le16_to_cpu(c->sqid); uint16_t qsize = le16_to_cpu(c->qsize); uint16_t qflags = le16_to_cpu(c->sq_flags); uint64_t prp1 = le64_to_cpu(c->prp1); trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { trace_pci_nvme_err_invalid_create_sq_cqid(cqid); return NVME_INVALID_CQID | NVME_DNR; } if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) { trace_pci_nvme_err_invalid_create_sq_sqid(sqid); return NVME_INVALID_QID | NVME_DNR; } if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { trace_pci_nvme_err_invalid_create_sq_size(qsize); return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; } if (unlikely(!prp1 || prp1 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_create_sq_addr(prp1); return NVME_INVALID_FIELD | NVME_DNR; } if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); return NVME_INVALID_FIELD | NVME_DNR; } sq = g_malloc0(sizeof(*sq)); nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); return NVME_SUCCESS; } static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t nsid = le32_to_cpu(req->cmd.nsid); uint32_t trans_len; time_t current_ms; uint64_t units_read = 0, units_written = 0; uint64_t read_commands = 0, write_commands = 0; NvmeSmartLog smart; if (nsid && nsid != 0xffffffff) { return NVME_INVALID_FIELD | NVME_DNR; } if (off >= sizeof(smart)) { return NVME_INVALID_FIELD | NVME_DNR; } for (int i = 1; i <= n->num_namespaces; i++) { NvmeNamespace *ns = nvme_ns(n, i); if (!ns) { continue; } BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS; units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS; read_commands += s->nr_ops[BLOCK_ACCT_READ]; write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; } trans_len = MIN(sizeof(smart) - off, buf_len); memset(&smart, 0x0, sizeof(smart)); smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(units_read, 1000)); smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(units_written, 1000)); smart.host_read_commands[0] = cpu_to_le64(read_commands); smart.host_write_commands[0] = cpu_to_le64(write_commands); smart.temperature = cpu_to_le16(n->temperature); if ((n->temperature >= n->features.temp_thresh_hi) || (n->temperature <= n->features.temp_thresh_low)) { smart.critical_warning |= NVME_SMART_TEMPERATURE; } current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); smart.power_on_hours[0] = cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); if (!rae) { nvme_clear_events(n, NVME_AER_TYPE_SMART); } return nvme_dma(n, (uint8_t *) &smart + off, trans_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t trans_len; NvmeFwSlotInfoLog fw_log = { .afi = 0x1, }; if (off >= sizeof(fw_log)) { return NVME_INVALID_FIELD | NVME_DNR; } strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); trans_len = MIN(sizeof(fw_log) - off, buf_len); return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t trans_len; NvmeErrorLog errlog; if (off >= sizeof(errlog)) { return NVME_INVALID_FIELD | NVME_DNR; } if (!rae) { nvme_clear_events(n, NVME_AER_TYPE_ERROR); } memset(&errlog, 0x0, sizeof(errlog)); trans_len = MIN(sizeof(errlog) - off, buf_len); return nvme_dma(n, (uint8_t *)&errlog, trans_len, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t dw12 = le32_to_cpu(cmd->cdw12); uint32_t dw13 = le32_to_cpu(cmd->cdw13); uint8_t lid = dw10 & 0xff; uint8_t lsp = (dw10 >> 8) & 0xf; uint8_t rae = (dw10 >> 15) & 0x1; uint32_t numdl, numdu; uint64_t off, lpol, lpou; size_t len; uint16_t status; numdl = (dw10 >> 16); numdu = (dw11 & 0xffff); lpol = dw12; lpou = dw13; len = (((numdu << 16) | numdl) + 1) << 2; off = (lpou << 32ULL) | lpol; if (off & 0x3) { return NVME_INVALID_FIELD | NVME_DNR; } trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); status = nvme_check_mdts(n, len); if (status) { trace_pci_nvme_err_mdts(nvme_cid(req), len); return status; } switch (lid) { case NVME_LOG_ERROR_INFO: return nvme_error_info(n, rae, len, off, req); case NVME_LOG_SMART_INFO: return nvme_smart_info(n, rae, len, off, req); case NVME_LOG_FW_SLOT_INFO: return nvme_fw_log_info(n, len, off, req); default: trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); return NVME_INVALID_FIELD | NVME_DNR; } } static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) { n->cq[cq->cqid] = NULL; timer_del(cq->timer); timer_free(cq->timer); msix_vector_unuse(&n->parent_obj, cq->vector); if (cq->cqid) { g_free(cq); } } static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) { NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; NvmeCQueue *cq; uint16_t qid = le16_to_cpu(c->qid); if (unlikely(!qid || nvme_check_cqid(n, qid))) { trace_pci_nvme_err_invalid_del_cq_cqid(qid); return NVME_INVALID_CQID | NVME_DNR; } cq = n->cq[qid]; if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { trace_pci_nvme_err_invalid_del_cq_notempty(qid); return NVME_INVALID_QUEUE_DEL; } nvme_irq_deassert(n, cq); trace_pci_nvme_del_cq(qid); nvme_free_cq(cq, n); return NVME_SUCCESS; } static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled) { int ret; ret = msix_vector_use(&n->parent_obj, vector); assert(ret == 0); cq->ctrl = n; cq->cqid = cqid; cq->size = size; cq->dma_addr = dma_addr; cq->phase = 1; cq->irq_enabled = irq_enabled; cq->vector = vector; cq->head = cq->tail = 0; QTAILQ_INIT(&cq->req_list); QTAILQ_INIT(&cq->sq_list); n->cq[cqid] = cq; cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq); } static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) { NvmeCQueue *cq; NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; uint16_t cqid = le16_to_cpu(c->cqid); uint16_t vector = le16_to_cpu(c->irq_vector); uint16_t qsize = le16_to_cpu(c->qsize); uint16_t qflags = le16_to_cpu(c->cq_flags); uint64_t prp1 = le64_to_cpu(c->prp1); trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, NVME_CQ_FLAGS_IEN(qflags) != 0); if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) { trace_pci_nvme_err_invalid_create_cq_cqid(cqid); return NVME_INVALID_CQID | NVME_DNR; } if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { trace_pci_nvme_err_invalid_create_cq_size(qsize); return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; } if (unlikely(!prp1)) { trace_pci_nvme_err_invalid_create_cq_addr(prp1); return NVME_INVALID_FIELD | NVME_DNR; } if (unlikely(!msix_enabled(&n->parent_obj) && vector)) { trace_pci_nvme_err_invalid_create_cq_vector(vector); return NVME_INVALID_IRQ_VECTOR | NVME_DNR; } if (unlikely(vector >= n->params.msix_qsize)) { trace_pci_nvme_err_invalid_create_cq_vector(vector); return NVME_INVALID_IRQ_VECTOR | NVME_DNR; } if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); return NVME_INVALID_FIELD | NVME_DNR; } cq = g_malloc0(sizeof(*cq)); nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, NVME_CQ_FLAGS_IEN(qflags)); /* * It is only required to set qs_created when creating a completion queue; * creating a submission queue without a matching completion queue will * fail. */ n->qs_created = true; return NVME_SUCCESS; } static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_identify_ctrl(); return nvme_dma(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; NvmeIdNs *id_ns, inactive = { 0 }; uint32_t nsid = le32_to_cpu(c->nsid); trace_pci_nvme_identify_ns(nsid); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { id_ns = &inactive; } else { id_ns = &ns->id_ns; } return nvme_dma(n, (uint8_t *)id_ns, sizeof(NvmeIdNs), DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; static const int data_len = NVME_IDENTIFY_DATA_SIZE; uint32_t min_nsid = le32_to_cpu(c->nsid); uint32_t *list; uint16_t ret; int j = 0; trace_pci_nvme_identify_nslist(min_nsid); /* * Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values * since the Active Namespace ID List should return namespaces with ids * *higher* than the NSID specified in the command. This is also specified * in the spec (NVM Express v1.3d, Section 5.15.4). */ if (min_nsid >= NVME_NSID_BROADCAST - 1) { return NVME_INVALID_NSID | NVME_DNR; } list = g_malloc0(data_len); for (int i = 1; i <= n->num_namespaces; i++) { if (i <= min_nsid || !nvme_ns(n, i)) { continue; } list[j++] = cpu_to_le32(i); if (j == data_len / sizeof(uint32_t)) { break; } } ret = nvme_dma(n, (uint8_t *)list, data_len, DMA_DIRECTION_FROM_DEVICE, req); g_free(list); return ret; } static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); uint8_t list[NVME_IDENTIFY_DATA_SIZE]; struct data { struct { NvmeIdNsDescr hdr; uint8_t v[16]; } uuid; }; struct data *ns_descrs = (struct data *)list; trace_pci_nvme_identify_ns_descr_list(nsid); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } if (unlikely(!nvme_ns(n, nsid))) { return NVME_INVALID_FIELD | NVME_DNR; } memset(list, 0x0, sizeof(list)); /* * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data * structure, a Namespace UUID (nidt = 0x3) must be reported in the * Namespace Identification Descriptor. Add a very basic Namespace UUID * here. */ ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID; ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN; stl_be_p(&ns_descrs->uuid.v, nsid); return nvme_dma(n, list, NVME_IDENTIFY_DATA_SIZE, DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; switch (le32_to_cpu(c->cns)) { case NVME_ID_CNS_NS: return nvme_identify_ns(n, req); case NVME_ID_CNS_CTRL: return nvme_identify_ctrl(n, req); case NVME_ID_CNS_NS_ACTIVE_LIST: return nvme_identify_nslist(n, req); case NVME_ID_CNS_NS_DESCR_LIST: return nvme_identify_ns_descr_list(n, req); default: trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); return NVME_INVALID_FIELD | NVME_DNR; } } static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) { uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; req->cqe.result = 1; if (nvme_check_sqid(n, sqid)) { return NVME_INVALID_FIELD | NVME_DNR; } return NVME_SUCCESS; } static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) { trace_pci_nvme_setfeat_timestamp(ts); n->host_timestamp = le64_to_cpu(ts); n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); } static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) { uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; union nvme_timestamp { struct { uint64_t timestamp:48; uint64_t sync:1; uint64_t origin:3; uint64_t rsvd1:12; }; uint64_t all; }; union nvme_timestamp ts; ts.all = 0; ts.timestamp = n->host_timestamp + elapsed_time; /* If the host timestamp is non-zero, set the timestamp origin */ ts.origin = n->host_timestamp ? 0x01 : 0x00; trace_pci_nvme_getfeat_timestamp(ts.all); return cpu_to_le64(ts.all); } static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) { uint64_t timestamp = nvme_get_timestamp(n); return nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp), DMA_DIRECTION_FROM_DEVICE, req); } static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t nsid = le32_to_cpu(cmd->nsid); uint32_t result; uint8_t fid = NVME_GETSETFEAT_FID(dw10); NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); uint16_t iv; static const uint32_t nvme_feature_default[NVME_FID_MAX] = { [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, }; trace_pci_nvme_getfeat(nvme_cid(req), fid, sel, dw11); if (!nvme_feature_support[fid]) { return NVME_INVALID_FIELD | NVME_DNR; } if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { /* * The Reservation Notification Mask and Reservation Persistence * features require a status code of Invalid Field in Command when * NSID is 0xFFFFFFFF. Since the device does not support those * features we can always return Invalid Namespace or Format as we * should do for all other features. */ return NVME_INVALID_NSID | NVME_DNR; } if (!nvme_ns(n, nsid)) { return NVME_INVALID_FIELD | NVME_DNR; } } switch (sel) { case NVME_GETFEAT_SELECT_CURRENT: break; case NVME_GETFEAT_SELECT_SAVED: /* no features are saveable by the controller; fallthrough */ case NVME_GETFEAT_SELECT_DEFAULT: goto defaults; case NVME_GETFEAT_SELECT_CAP: result = nvme_feature_cap[fid]; goto out; } switch (fid) { case NVME_TEMPERATURE_THRESHOLD: result = 0; /* * The controller only implements the Composite Temperature sensor, so * return 0 for all other sensors. */ if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { goto out; } switch (NVME_TEMP_THSEL(dw11)) { case NVME_TEMP_THSEL_OVER: result = n->features.temp_thresh_hi; goto out; case NVME_TEMP_THSEL_UNDER: result = n->features.temp_thresh_low; goto out; } return NVME_INVALID_FIELD | NVME_DNR; case NVME_VOLATILE_WRITE_CACHE: result = n->features.vwc; trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); goto out; case NVME_ASYNCHRONOUS_EVENT_CONF: result = n->features.async_config; goto out; case NVME_TIMESTAMP: return nvme_get_feature_timestamp(n, req); default: break; } defaults: switch (fid) { case NVME_TEMPERATURE_THRESHOLD: result = 0; if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { break; } if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { result = NVME_TEMPERATURE_WARNING; } break; case NVME_NUMBER_OF_QUEUES: result = (n->params.max_ioqpairs - 1) | ((n->params.max_ioqpairs - 1) << 16); trace_pci_nvme_getfeat_numq(result); break; case NVME_INTERRUPT_VECTOR_CONF: iv = dw11 & 0xffff; if (iv >= n->params.max_ioqpairs + 1) { return NVME_INVALID_FIELD | NVME_DNR; } result = iv; if (iv == n->admin_cq.vector) { result |= NVME_INTVC_NOCOALESCING; } break; default: result = nvme_feature_default[fid]; break; } out: req->cqe.result = cpu_to_le32(result); return NVME_SUCCESS; } static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) { uint16_t ret; uint64_t timestamp; ret = nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp), DMA_DIRECTION_TO_DEVICE, req); if (ret != NVME_SUCCESS) { return ret; } nvme_set_timestamp(n, timestamp); return NVME_SUCCESS; } static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t nsid = le32_to_cpu(cmd->nsid); uint8_t fid = NVME_GETSETFEAT_FID(dw10); uint8_t save = NVME_SETFEAT_SAVE(dw10); trace_pci_nvme_setfeat(nvme_cid(req), fid, save, dw11); if (save) { return NVME_FID_NOT_SAVEABLE | NVME_DNR; } if (!nvme_feature_support[fid]) { return NVME_INVALID_FIELD | NVME_DNR; } if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { if (nsid != NVME_NSID_BROADCAST) { if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } } } else if (nsid && nsid != NVME_NSID_BROADCAST) { if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; } if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; } switch (fid) { case NVME_TEMPERATURE_THRESHOLD: if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { break; } switch (NVME_TEMP_THSEL(dw11)) { case NVME_TEMP_THSEL_OVER: n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); break; case NVME_TEMP_THSEL_UNDER: n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); break; default: return NVME_INVALID_FIELD | NVME_DNR; } if (((n->temperature >= n->features.temp_thresh_hi) || (n->temperature <= n->features.temp_thresh_low)) && NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) { nvme_enqueue_event(n, NVME_AER_TYPE_SMART, NVME_AER_INFO_SMART_TEMP_THRESH, NVME_LOG_SMART_INFO); } break; case NVME_VOLATILE_WRITE_CACHE: n->features.vwc = dw11 & 0x1; for (int i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { blk_flush(ns->blkconf.blk); } blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); } break; case NVME_NUMBER_OF_QUEUES: if (n->qs_created) { return NVME_CMD_SEQ_ERROR | NVME_DNR; } /* * NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR * and NSQR. */ if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { return NVME_INVALID_FIELD | NVME_DNR; } trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1, ((dw11 >> 16) & 0xFFFF) + 1, n->params.max_ioqpairs, n->params.max_ioqpairs); req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) | ((n->params.max_ioqpairs - 1) << 16)); break; case NVME_ASYNCHRONOUS_EVENT_CONF: n->features.async_config = dw11; break; case NVME_TIMESTAMP: return nvme_set_feature_timestamp(n, req); default: return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; } return NVME_SUCCESS; } static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_aer(nvme_cid(req)); if (n->outstanding_aers > n->params.aerl) { trace_pci_nvme_aer_aerl_exceeded(); return NVME_AER_LIMIT_EXCEEDED; } n->aer_reqs[n->outstanding_aers] = req; n->outstanding_aers++; if (!QTAILQ_EMPTY(&n->aer_queue)) { nvme_process_aers(n); } return NVME_NO_COMPLETE; } static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, nvme_adm_opc_str(req->cmd.opcode)); switch (req->cmd.opcode) { case NVME_ADM_CMD_DELETE_SQ: return nvme_del_sq(n, req); case NVME_ADM_CMD_CREATE_SQ: return nvme_create_sq(n, req); case NVME_ADM_CMD_GET_LOG_PAGE: return nvme_get_log(n, req); case NVME_ADM_CMD_DELETE_CQ: return nvme_del_cq(n, req); case NVME_ADM_CMD_CREATE_CQ: return nvme_create_cq(n, req); case NVME_ADM_CMD_IDENTIFY: return nvme_identify(n, req); case NVME_ADM_CMD_ABORT: return nvme_abort(n, req); case NVME_ADM_CMD_SET_FEATURES: return nvme_set_feature(n, req); case NVME_ADM_CMD_GET_FEATURES: return nvme_get_feature(n, req); case NVME_ADM_CMD_ASYNC_EV_REQ: return nvme_aer(n, req); default: trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); return NVME_INVALID_OPCODE | NVME_DNR; } } static void nvme_process_sq(void *opaque) { NvmeSQueue *sq = opaque; NvmeCtrl *n = sq->ctrl; NvmeCQueue *cq = n->cq[sq->cqid]; uint16_t status; hwaddr addr; NvmeCmd cmd; NvmeRequest *req; while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { addr = sq->dma_addr + sq->head * n->sqe_size; if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { trace_pci_nvme_err_addr_read(addr); trace_pci_nvme_err_cfs(); n->bar.csts = NVME_CSTS_FAILED; break; } nvme_inc_sq_head(sq); req = QTAILQ_FIRST(&sq->req_list); QTAILQ_REMOVE(&sq->req_list, req, entry); QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); nvme_req_clear(req); req->cqe.cid = cmd.cid; memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); status = sq->sqid ? nvme_io_cmd(n, req) : nvme_admin_cmd(n, req); if (status != NVME_NO_COMPLETE) { req->status = status; nvme_enqueue_req_completion(cq, req); } } } static void nvme_clear_ctrl(NvmeCtrl *n) { NvmeNamespace *ns; int i; for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_ns_drain(ns); } for (i = 0; i < n->params.max_ioqpairs + 1; i++) { if (n->sq[i] != NULL) { nvme_free_sq(n->sq[i], n); } } for (i = 0; i < n->params.max_ioqpairs + 1; i++) { if (n->cq[i] != NULL) { nvme_free_cq(n->cq[i], n); } } while (!QTAILQ_EMPTY(&n->aer_queue)) { NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); QTAILQ_REMOVE(&n->aer_queue, event, entry); g_free(event); } n->aer_queued = 0; n->outstanding_aers = 0; n->qs_created = false; for (i = 1; i <= n->num_namespaces; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_ns_flush(ns); } n->bar.cc = 0; } static int nvme_start_ctrl(NvmeCtrl *n) { uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12; uint32_t page_size = 1 << page_bits; if (unlikely(n->cq[0])) { trace_pci_nvme_err_startfail_cq(); return -1; } if (unlikely(n->sq[0])) { trace_pci_nvme_err_startfail_sq(); return -1; } if (unlikely(!n->bar.asq)) { trace_pci_nvme_err_startfail_nbarasq(); return -1; } if (unlikely(!n->bar.acq)) { trace_pci_nvme_err_startfail_nbaracq(); return -1; } if (unlikely(n->bar.asq & (page_size - 1))) { trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq); return -1; } if (unlikely(n->bar.acq & (page_size - 1))) { trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq); return -1; } if (unlikely(NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap))) { trace_pci_nvme_err_startfail_page_too_small( NVME_CC_MPS(n->bar.cc), NVME_CAP_MPSMIN(n->bar.cap)); return -1; } if (unlikely(NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap))) { trace_pci_nvme_err_startfail_page_too_large( NVME_CC_MPS(n->bar.cc), NVME_CAP_MPSMAX(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { trace_pci_nvme_err_startfail_cqent_too_small( NVME_CC_IOCQES(n->bar.cc), NVME_CTRL_CQES_MIN(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { trace_pci_nvme_err_startfail_cqent_too_large( NVME_CC_IOCQES(n->bar.cc), NVME_CTRL_CQES_MAX(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { trace_pci_nvme_err_startfail_sqent_too_small( NVME_CC_IOSQES(n->bar.cc), NVME_CTRL_SQES_MIN(n->bar.cap)); return -1; } if (unlikely(NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { trace_pci_nvme_err_startfail_sqent_too_large( NVME_CC_IOSQES(n->bar.cc), NVME_CTRL_SQES_MAX(n->bar.cap)); return -1; } if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) { trace_pci_nvme_err_startfail_asqent_sz_zero(); return -1; } if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) { trace_pci_nvme_err_startfail_acqent_sz_zero(); return -1; } n->page_bits = page_bits; n->page_size = page_size; n->max_prp_ents = n->page_size / sizeof(uint64_t); n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc); n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc); nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0, NVME_AQA_ACQS(n->bar.aqa) + 1, 1); nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0, NVME_AQA_ASQS(n->bar.aqa) + 1); nvme_set_timestamp(n, 0ULL); QTAILQ_INIT(&n->aer_queue); return 0; } static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, unsigned size) { if (unlikely(offset & (sizeof(uint32_t) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, "MMIO write not 32-bit aligned," " offset=0x%"PRIx64"", offset); /* should be ignored, fall through for now */ } if (unlikely(size < sizeof(uint32_t))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, "MMIO write smaller than 32-bits," " offset=0x%"PRIx64", size=%u", offset, size); /* should be ignored, fall through for now */ } switch (offset) { case 0xc: /* INTMS */ if (unlikely(msix_enabled(&(n->parent_obj)))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, "undefined access to interrupt mask set" " when MSI-X is enabled"); /* should be ignored, fall through for now */ } n->bar.intms |= data & 0xffffffff; n->bar.intmc = n->bar.intms; trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc); nvme_irq_check(n); break; case 0x10: /* INTMC */ if (unlikely(msix_enabled(&(n->parent_obj)))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, "undefined access to interrupt mask clr" " when MSI-X is enabled"); /* should be ignored, fall through for now */ } n->bar.intms &= ~(data & 0xffffffff); n->bar.intmc = n->bar.intms; trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc); nvme_irq_check(n); break; case 0x14: /* CC */ trace_pci_nvme_mmio_cfg(data & 0xffffffff); /* Windows first sends data, then sends enable bit */ if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) && !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc)) { n->bar.cc = data; } if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) { n->bar.cc = data; if (unlikely(nvme_start_ctrl(n))) { trace_pci_nvme_err_startfail(); n->bar.csts = NVME_CSTS_FAILED; } else { trace_pci_nvme_mmio_start_success(); n->bar.csts = NVME_CSTS_READY; } } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) { trace_pci_nvme_mmio_stopped(); nvme_clear_ctrl(n); n->bar.csts &= ~NVME_CSTS_READY; } if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) { trace_pci_nvme_mmio_shutdown_set(); nvme_clear_ctrl(n); n->bar.cc = data; n->bar.csts |= NVME_CSTS_SHST_COMPLETE; } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) { trace_pci_nvme_mmio_shutdown_cleared(); n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE; n->bar.cc = data; } break; case 0x1C: /* CSTS */ if (data & (1 << 4)) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, "attempted to W1C CSTS.NSSRO" " but CAP.NSSRS is zero (not supported)"); } else if (data != 0) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, "attempted to set a read only bit" " of controller status"); } break; case 0x20: /* NSSR */ if (data == 0x4E564D65) { trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); } else { /* The spec says that writes of other values have no effect */ return; } break; case 0x24: /* AQA */ n->bar.aqa = data & 0xffffffff; trace_pci_nvme_mmio_aqattr(data & 0xffffffff); break; case 0x28: /* ASQ */ n->bar.asq = data; trace_pci_nvme_mmio_asqaddr(data); break; case 0x2c: /* ASQ hi */ n->bar.asq |= data << 32; trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq); break; case 0x30: /* ACQ */ trace_pci_nvme_mmio_acqaddr(data); n->bar.acq = data; break; case 0x34: /* ACQ hi */ n->bar.acq |= data << 32; trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq); break; case 0x38: /* CMBLOC */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, "invalid write to reserved CMBLOC" " when CMBSZ is zero, ignored"); return; case 0x3C: /* CMBSZ */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, "invalid write to read only CMBSZ, ignored"); return; case 0xE00: /* PMRCAP */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, "invalid write to PMRCAP register, ignored"); return; case 0xE04: /* TODO PMRCTL */ break; case 0xE08: /* PMRSTS */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, "invalid write to PMRSTS register, ignored"); return; case 0xE0C: /* PMREBS */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, "invalid write to PMREBS register, ignored"); return; case 0xE10: /* PMRSWTP */ NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, "invalid write to PMRSWTP register, ignored"); return; case 0xE14: /* TODO PMRMSC */ break; default: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, "invalid MMIO write," " offset=0x%"PRIx64", data=%"PRIx64"", offset, data); break; } } static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; uint8_t *ptr = (uint8_t *)&n->bar; uint64_t val = 0; trace_pci_nvme_mmio_read(addr); if (unlikely(addr & (sizeof(uint32_t) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, "MMIO read not 32-bit aligned," " offset=0x%"PRIx64"", addr); /* should RAZ, fall through for now */ } else if (unlikely(size < sizeof(uint32_t))) { NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, "MMIO read smaller than 32-bits," " offset=0x%"PRIx64"", addr); /* should RAZ, fall through for now */ } if (addr < sizeof(n->bar)) { /* * When PMRWBM bit 1 is set then read from * from PMRSTS should ensure prior writes * made it to persistent media */ if (addr == 0xE08 && (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) { memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size); } memcpy(&val, ptr + addr, size); } else { NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, "MMIO read beyond last register," " offset=0x%"PRIx64", returning 0", addr); } return val; } static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) { uint32_t qid; if (unlikely(addr & ((1 << 2) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, "doorbell write not 32-bit aligned," " offset=0x%"PRIx64", ignoring", addr); return; } if (((addr - 0x1000) >> 2) & 1) { /* Completion queue doorbell write */ uint16_t new_head = val & 0xffff; int start_sqs; NvmeCQueue *cq; qid = (addr - (0x1000 + (1 << 2))) >> 3; if (unlikely(nvme_check_cqid(n, qid))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, "completion queue doorbell write" " for nonexistent queue," " sqid=%"PRIu32", ignoring", qid); /* * NVM Express v1.3d, Section 4.1 state: "If host software writes * an invalid value to the Submission Queue Tail Doorbell or * Completion Queue Head Doorbell regiter and an Asynchronous Event * Request command is outstanding, then an asynchronous event is * posted to the Admin Completion Queue with a status code of * Invalid Doorbell Write Value." * * Also note that the spec includes the "Invalid Doorbell Register" * status code, but nowhere does it specify when to use it. * However, it seems reasonable to use it here in a similar * fashion. */ if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_REGISTER, NVME_LOG_ERROR_INFO); } return; } cq = n->cq[qid]; if (unlikely(new_head >= cq->size)) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, "completion queue doorbell write value" " beyond queue size, sqid=%"PRIu32"," " new_head=%"PRIu16", ignoring", qid, new_head); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_VALUE, NVME_LOG_ERROR_INFO); } return; } trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); start_sqs = nvme_cq_full(cq) ? 1 : 0; cq->head = new_head; if (start_sqs) { NvmeSQueue *sq; QTAILQ_FOREACH(sq, &cq->sq_list, entry) { timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } if (cq->tail == cq->head) { nvme_irq_deassert(n, cq); } } else { /* Submission queue doorbell write */ uint16_t new_tail = val & 0xffff; NvmeSQueue *sq; qid = (addr - 0x1000) >> 3; if (unlikely(nvme_check_sqid(n, qid))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, "submission queue doorbell write" " for nonexistent queue," " sqid=%"PRIu32", ignoring", qid); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_REGISTER, NVME_LOG_ERROR_INFO); } return; } sq = n->sq[qid]; if (unlikely(new_tail >= sq->size)) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, "submission queue doorbell write value" " beyond queue size, sqid=%"PRIu32"," " new_tail=%"PRIu16", ignoring", qid, new_tail); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_VALUE, NVME_LOG_ERROR_INFO); } return; } trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); sq->tail = new_tail; timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); } } static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; trace_pci_nvme_mmio_write(addr, data); if (addr < sizeof(n->bar)) { nvme_write_bar(n, addr, data, size); } else { nvme_process_db(n, addr, data); } } static const MemoryRegionOps nvme_mmio_ops = { .read = nvme_mmio_read, .write = nvme_mmio_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 2, .max_access_size = 8, }, }; static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; stn_le_p(&n->cmbuf[addr], size, data); } static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; return ldn_le_p(&n->cmbuf[addr], size); } static const MemoryRegionOps nvme_cmb_ops = { .read = nvme_cmb_read, .write = nvme_cmb_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static void nvme_check_constraints(NvmeCtrl *n, Error **errp) { NvmeParams *params = &n->params; if (params->num_queues) { warn_report("num_queues is deprecated; please use max_ioqpairs " "instead"); params->max_ioqpairs = params->num_queues - 1; } if (n->conf.blk) { warn_report("drive property is deprecated; " "please use an nvme-ns device instead"); } if (params->max_ioqpairs < 1 || params->max_ioqpairs > NVME_MAX_IOQPAIRS) { error_setg(errp, "max_ioqpairs must be between 1 and %d", NVME_MAX_IOQPAIRS); return; } if (params->msix_qsize < 1 || params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { error_setg(errp, "msix_qsize must be between 1 and %d", PCI_MSIX_FLAGS_QSIZE + 1); return; } if (!params->serial) { error_setg(errp, "serial property not set"); return; } if (!n->params.cmb_size_mb && n->pmrdev) { if (host_memory_backend_is_mapped(n->pmrdev)) { error_setg(errp, "can't use already busy memdev: %s", object_get_canonical_path_component(OBJECT(n->pmrdev))); return; } if (!is_power_of_2(n->pmrdev->size)) { error_setg(errp, "pmr backend size needs to be power of 2 in size"); return; } host_memory_backend_set_mapped(n->pmrdev, true); } } static void nvme_init_state(NvmeCtrl *n) { n->num_namespaces = NVME_MAX_NAMESPACES; /* add one to max_ioqpairs to account for the admin queue pair */ n->reg_size = pow2ceil(sizeof(NvmeBar) + 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE); n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); n->temperature = NVME_TEMPERATURE; n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); } int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp) { uint32_t nsid = nvme_nsid(ns); if (nsid > NVME_MAX_NAMESPACES) { error_setg(errp, "invalid namespace id (must be between 0 and %d)", NVME_MAX_NAMESPACES); return -1; } if (!nsid) { for (int i = 1; i <= n->num_namespaces; i++) { NvmeNamespace *ns = nvme_ns(n, i); if (!ns) { nsid = ns->params.nsid = i; break; } } if (!nsid) { error_setg(errp, "no free namespace id"); return -1; } } else { if (n->namespaces[nsid - 1]) { error_setg(errp, "namespace id '%d' is already in use", nsid); return -1; } } trace_pci_nvme_register_namespace(nsid); n->namespaces[nsid - 1] = ns; return 0; } static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) { NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR); NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0); NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0); NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1); NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */ NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb); n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz)); memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n, "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz)); pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc), PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem); } static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) { /* Controller Capabilities register */ NVME_CAP_SET_PMRS(n->bar.cap, 1); /* PMR Capabities register */ n->bar.pmrcap = 0; NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0); NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0); NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR); NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0); /* Turn on bit 1 support */ NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02); NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0); NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0); /* PMR Control register */ n->bar.pmrctl = 0; NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0); /* PMR Status register */ n->bar.pmrsts = 0; NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0); NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0); NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0); NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0); /* PMR Elasticity Buffer Size register */ n->bar.pmrebs = 0; NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0); NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0); NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0); /* PMR Sustained Write Throughput register */ n->bar.pmrswtp = 0; NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0); NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0); /* PMR Memory Space Control register */ n->bar.pmrmsc = 0; NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0); NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0); pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap), PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr); } static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) { uint8_t *pci_conf = pci_dev->config; pci_conf[PCI_INTERRUPT_PIN] = 1; pci_config_set_prog_interface(pci_conf, 0x2); if (n->params.use_intel_id) { pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, 0x5845); } else { pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); } pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); pcie_endpoint_cap_init(pci_dev, 0x80); memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", n->reg_size); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem); if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) { return; } if (n->params.cmb_size_mb) { nvme_init_cmb(n, pci_dev); } else if (n->pmrdev) { nvme_init_pmr(n, pci_dev); } } static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) { NvmeIdCtrl *id = &n->id_ctrl; uint8_t *pci_conf = pci_dev->config; char *subnqn; id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' '); strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); id->rab = 6; id->ieee[0] = 0x00; id->ieee[1] = 0x02; id->ieee[2] = 0xb3; id->mdts = n->params.mdts; id->ver = cpu_to_le32(NVME_SPEC_VER); id->oacs = cpu_to_le16(0); /* * Because the controller always completes the Abort command immediately, * there can never be more than one concurrently executing Abort command, * so this value is never used for anything. Note that there can easily be * many Abort commands in the queues, but they are not considered * "executing" until processed by nvme_abort. * * The specification recommends a value of 3 for Abort Command Limit (four * concurrently outstanding Abort commands), so lets use that though it is * inconsequential. */ id->acl = 3; id->aerl = n->params.aerl; id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; id->lpa = NVME_LPA_EXTENDED; /* recommended default value (~70 C) */ id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); id->sqes = (0x6 << 4) | 0x6; id->cqes = (0x4 << 4) | 0x4; id->nn = cpu_to_le32(n->num_namespaces); id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | NVME_ONCS_FEATURES); id->vwc = 0x1; id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN | NVME_CTRL_SGLS_BITBUCKET); subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial); strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0'); g_free(subnqn); id->psd[0].mp = cpu_to_le16(0x9c4); id->psd[0].enlat = cpu_to_le32(0x10); id->psd[0].exlat = cpu_to_le32(0x4); n->bar.cap = 0; NVME_CAP_SET_MQES(n->bar.cap, 0x7ff); NVME_CAP_SET_CQR(n->bar.cap, 1); NVME_CAP_SET_TO(n->bar.cap, 0xf); NVME_CAP_SET_CSS(n->bar.cap, 1); NVME_CAP_SET_MPSMAX(n->bar.cap, 4); n->bar.vs = NVME_SPEC_VER; n->bar.intmc = n->bar.intms = 0; } static void nvme_realize(PCIDevice *pci_dev, Error **errp) { NvmeCtrl *n = NVME(pci_dev); NvmeNamespace *ns; Error *local_err = NULL; nvme_check_constraints(n, &local_err); if (local_err) { error_propagate(errp, local_err); return; } qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, &pci_dev->qdev, n->parent_obj.qdev.id); nvme_init_state(n); nvme_init_pci(n, pci_dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } nvme_init_ctrl(n, pci_dev); /* setup a namespace if the controller drive property was given */ if (n->namespace.blkconf.blk) { ns = &n->namespace; ns->params.nsid = 1; if (nvme_ns_setup(n, ns, errp)) { return; } } } static void nvme_exit(PCIDevice *pci_dev) { NvmeCtrl *n = NVME(pci_dev); nvme_clear_ctrl(n); g_free(n->namespaces); g_free(n->cq); g_free(n->sq); g_free(n->aer_reqs); if (n->params.cmb_size_mb) { g_free(n->cmbuf); } if (n->pmrdev) { host_memory_backend_set_mapped(n->pmrdev, false); } msix_uninit_exclusive_bar(pci_dev); } static Property nvme_props[] = { DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND, HostMemoryBackend *), DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription nvme_vmstate = { .name = "nvme", .unmigratable = 1, }; static void nvme_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); pc->realize = nvme_realize; pc->exit = nvme_exit; pc->class_id = PCI_CLASS_STORAGE_EXPRESS; pc->revision = 2; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); dc->desc = "Non-Volatile Memory Express"; device_class_set_props(dc, nvme_props); dc->vmsd = &nvme_vmstate; } static void nvme_instance_init(Object *obj) { NvmeCtrl *s = NVME(obj); if (s->namespace.blkconf.blk) { device_add_bootindex_property(obj, &s->namespace.blkconf.bootindex, "bootindex", "/namespace@1,0", DEVICE(obj)); } } static const TypeInfo nvme_info = { .name = TYPE_NVME, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(NvmeCtrl), .instance_init = nvme_instance_init, .class_init = nvme_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_PCIE_DEVICE }, { } }, }; static const TypeInfo nvme_bus_info = { .name = TYPE_NVME_BUS, .parent = TYPE_BUS, .instance_size = sizeof(NvmeBus), }; static void nvme_register_types(void) { type_register_static(&nvme_info); type_register_static(&nvme_bus_info); } type_init(nvme_register_types)