/* ** ** File: fmopl.c -- software implementation of FM sound generator ** ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development ** ** Version 0.37a ** */ /* preliminary : Problem : note: */ /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include <math.h> //#include "driver.h" /* use M.A.M.E. */ #include "fmopl.h" #ifndef PI #define PI 3.14159265358979323846 #endif /* -------------------- for debug --------------------- */ /* #define OPL_OUTPUT_LOG */ #ifdef OPL_OUTPUT_LOG static FILE *opl_dbg_fp = NULL; static FM_OPL *opl_dbg_opl[16]; static int opl_dbg_maxchip,opl_dbg_chip; #endif /* -------------------- preliminary define section --------------------- */ /* attack/decay rate time rate */ #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ #define FREQ_BITS 24 /* frequency turn */ /* counter bits = 20 , octerve 7 */ #define FREQ_RATE (1<<(FREQ_BITS-20)) #define TL_BITS (FREQ_BITS+2) /* final output shift , limit minimum and maximum */ #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) #define OPL_MINOUT (-0x8000<<OPL_OUTSB) /* -------------------- quality selection --------------------- */ /* sinwave entries */ /* used static memory = SIN_ENT * 4 (byte) */ #define SIN_ENT 2048 /* output level entries (envelope,sinwave) */ /* envelope counter lower bits */ #define ENV_BITS 16 /* envelope output entries */ #define EG_ENT 4096 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ /* used static memory = EG_ENT*4 (byte) */ #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ #define EG_DED EG_OFF #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ #define EG_AED EG_DST #define EG_AST 0 /* ATTACK START */ #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ /* LFO table entries */ #define VIB_ENT 512 #define VIB_SHIFT (32-9) #define AMS_ENT 512 #define AMS_SHIFT (32-9) #define VIB_RATE 256 /* -------------------- local defines , macros --------------------- */ /* register number to channel number , slot offset */ #define SLOT1 0 #define SLOT2 1 /* envelope phase */ #define ENV_MOD_RR 0x00 #define ENV_MOD_DR 0x01 #define ENV_MOD_AR 0x02 /* -------------------- tables --------------------- */ static const int slot_array[32]= { 0, 2, 4, 1, 3, 5,-1,-1, 6, 8,10, 7, 9,11,-1,-1, 12,14,16,13,15,17,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1 }; /* key scale level */ /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ #define DV (EG_STEP/2) static const uint32_t KSL_TABLE[8*16]= { /* OCT 0 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, /* OCT 1 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, /* OCT 2 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, /* OCT 3 */ 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, /* OCT 4 */ 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 10.875/DV,11.250/DV,11.625/DV,12.000/DV, /* OCT 5 */ 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 13.875/DV,14.250/DV,14.625/DV,15.000/DV, /* OCT 6 */ 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 16.875/DV,17.250/DV,17.625/DV,18.000/DV, /* OCT 7 */ 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 19.875/DV,20.250/DV,20.625/DV,21.000/DV }; #undef DV /* sustain lebel table (3db per step) */ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST static const int32_t SL_TABLE[16]={ SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) }; #undef SC #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ /* TL_TABLE[ 0 to TL_MAX ] : plus section */ /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ static int32_t *TL_TABLE; /* pointers to TL_TABLE with sinwave output offset */ static int32_t **SIN_TABLE; /* LFO table */ static int32_t *AMS_TABLE; static int32_t *VIB_TABLE; /* envelope output curve table */ /* attack + decay + OFF */ static int32_t ENV_CURVE[2*EG_ENT+1]; /* multiple table */ #define ML 2 static const uint32_t MUL_TABLE[16]= { /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML }; #undef ML /* dummy attack / decay rate ( when rate == 0 ) */ static int32_t RATE_0[16]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /* -------------------- static state --------------------- */ /* lock level of common table */ static int num_lock = 0; /* work table */ static void *cur_chip = NULL; /* current chip point */ /* currenct chip state */ /* static OPLSAMPLE *bufL,*bufR; */ static OPL_CH *S_CH; static OPL_CH *E_CH; static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; static int32_t outd[1]; static int32_t ams; static int32_t vib; static int32_t *ams_table; static int32_t *vib_table; static int32_t amsIncr; static int32_t vibIncr; static int32_t feedback2; /* connect for SLOT 2 */ /* log output level */ #define LOG_ERR 3 /* ERROR */ #define LOG_WAR 2 /* WARNING */ #define LOG_INF 1 /* INFORMATION */ //#define LOG_LEVEL LOG_INF #define LOG_LEVEL LOG_ERR //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x #define LOG(n,x) /* --------------------- subroutines --------------------- */ static inline int Limit( int val, int max, int min ) { if ( val > max ) val = max; else if ( val < min ) val = min; return val; } /* status set and IRQ handling */ static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag) { /* set status flag */ OPL->status |= flag; if(!(OPL->status & 0x80)) { if(OPL->status & OPL->statusmask) { /* IRQ on */ OPL->status |= 0x80; } } } /* status reset and IRQ handling */ static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag) { /* reset status flag */ OPL->status &=~flag; if((OPL->status & 0x80)) { if (!(OPL->status & OPL->statusmask) ) { OPL->status &= 0x7f; } } } /* IRQ mask set */ static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) { OPL->statusmask = flag; /* IRQ handling check */ OPL_STATUS_SET(OPL,0); OPL_STATUS_RESET(OPL,0); } /* ----- key on ----- */ static inline void OPL_KEYON(OPL_SLOT *SLOT) { /* sin wave restart */ SLOT->Cnt = 0; /* set attack */ SLOT->evm = ENV_MOD_AR; SLOT->evs = SLOT->evsa; SLOT->evc = EG_AST; SLOT->eve = EG_AED; } /* ----- key off ----- */ static inline void OPL_KEYOFF(OPL_SLOT *SLOT) { if( SLOT->evm > ENV_MOD_RR) { /* set envelope counter from envleope output */ SLOT->evm = ENV_MOD_RR; if( !(SLOT->evc&EG_DST) ) //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; SLOT->evc = EG_DST; SLOT->eve = EG_DED; SLOT->evs = SLOT->evsr; } } /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ /* return : envelope output */ static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT ) { /* calcrate envelope generator */ if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) { switch( SLOT->evm ){ case ENV_MOD_AR: /* ATTACK -> DECAY1 */ /* next DR */ SLOT->evm = ENV_MOD_DR; SLOT->evc = EG_DST; SLOT->eve = SLOT->SL; SLOT->evs = SLOT->evsd; break; case ENV_MOD_DR: /* DECAY -> SL or RR */ SLOT->evc = SLOT->SL; SLOT->eve = EG_DED; if(SLOT->eg_typ) { SLOT->evs = 0; } else { SLOT->evm = ENV_MOD_RR; SLOT->evs = SLOT->evsr; } break; case ENV_MOD_RR: /* RR -> OFF */ SLOT->evc = EG_OFF; SLOT->eve = EG_OFF+1; SLOT->evs = 0; break; } } /* calcrate envelope */ return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); } /* set algorithm connection */ static void set_algorithm( OPL_CH *CH) { int32_t *carrier = &outd[0]; CH->connect1 = CH->CON ? carrier : &feedback2; CH->connect2 = carrier; } /* ---------- frequency counter for operater update ---------- */ static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) { int ksr; /* frequency step counter */ SLOT->Incr = CH->fc * SLOT->mul; ksr = CH->kcode >> SLOT->KSR; if( SLOT->ksr != ksr ) { SLOT->ksr = ksr; /* attack , decay rate recalcration */ SLOT->evsa = SLOT->AR[ksr]; SLOT->evsd = SLOT->DR[ksr]; SLOT->evsr = SLOT->RR[ksr]; } SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } /* set multi,am,vib,EG-TYP,KSR,mul */ static inline void set_mul(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->mul = MUL_TABLE[v&0x0f]; SLOT->KSR = (v&0x10) ? 0 : 2; SLOT->eg_typ = (v&0x20)>>5; SLOT->vib = (v&0x40); SLOT->ams = (v&0x80); CALC_FCSLOT(CH,SLOT); } /* set ksl & tl */ static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ SLOT->ksl = ksl ? 3-ksl : 31; SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ if( !(OPL->mode&0x80) ) { /* not CSM latch total level */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } } /* set attack rate & decay rate */ static inline void set_ar_dr(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; int ar = v>>4; int dr = v&0x0f; SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; SLOT->evsa = SLOT->AR[SLOT->ksr]; if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; SLOT->evsd = SLOT->DR[SLOT->ksr]; if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; } /* set sustain level & release rate */ static inline void set_sl_rr(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; int sl = v>>4; int rr = v & 0x0f; SLOT->SL = SL_TABLE[sl]; if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; SLOT->RR = &OPL->DR_TABLE[rr<<2]; SLOT->evsr = SLOT->RR[SLOT->ksr]; if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; } /* operator output calcrator */ #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] /* ---------- calcrate one of channel ---------- */ static inline void OPL_CALC_CH( OPL_CH *CH ) { uint32_t env_out; OPL_SLOT *SLOT; feedback2 = 0; /* SLOT 1 */ SLOT = &CH->SLOT[SLOT1]; env_out=OPL_CALC_SLOT(SLOT); if( env_out < EG_ENT-1 ) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ if(CH->FB) { int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; CH->op1_out[1] = CH->op1_out[0]; *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); } else { *CH->connect1 += OP_OUT(SLOT,env_out,0); } }else { CH->op1_out[1] = CH->op1_out[0]; CH->op1_out[0] = 0; } /* SLOT 2 */ SLOT = &CH->SLOT[SLOT2]; env_out=OPL_CALC_SLOT(SLOT); if( env_out < EG_ENT-1 ) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ outd[0] += OP_OUT(SLOT,env_out, feedback2); } } /* ---------- calcrate rhythm block ---------- */ #define WHITE_NOISE_db 6.0 static inline void OPL_CALC_RH( OPL_CH *CH ) { uint32_t env_tam,env_sd,env_top,env_hh; int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); int32_t tone8; OPL_SLOT *SLOT; int env_out; /* BD : same as FM serial mode and output level is large */ feedback2 = 0; /* SLOT 1 */ SLOT = &CH[6].SLOT[SLOT1]; env_out=OPL_CALC_SLOT(SLOT); if( env_out < EG_ENT-1 ) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ if(CH[6].FB) { int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; CH[6].op1_out[1] = CH[6].op1_out[0]; feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); } else { feedback2 = OP_OUT(SLOT,env_out,0); } }else { feedback2 = 0; CH[6].op1_out[1] = CH[6].op1_out[0]; CH[6].op1_out[0] = 0; } /* SLOT 2 */ SLOT = &CH[6].SLOT[SLOT2]; env_out=OPL_CALC_SLOT(SLOT); if( env_out < EG_ENT-1 ) { /* PG */ if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); else SLOT->Cnt += SLOT->Incr; /* connectoion */ outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; } // SD (17) = mul14[fnum7] + white noise // TAM (15) = mul15[fnum8] // TOP (18) = fnum6(mul18[fnum8]+whitenoise) // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; env_tam=OPL_CALC_SLOT(SLOT8_1); env_top=OPL_CALC_SLOT(SLOT8_2); env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; /* PG */ if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); else SLOT7_1->Cnt += 2*SLOT7_1->Incr; if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); else SLOT7_2->Cnt += (CH[7].fc*8); if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); else SLOT8_1->Cnt += SLOT8_1->Incr; if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); else SLOT8_2->Cnt += (CH[8].fc*48); tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); /* SD */ if( env_sd < EG_ENT-1 ) outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; /* TAM */ if( env_tam < EG_ENT-1 ) outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; /* TOP-CY */ if( env_top < EG_ENT-1 ) outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; /* HH */ if( env_hh < EG_ENT-1 ) outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; } /* ----------- initialize time tabls ----------- */ static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) { int i; double rate; /* make attack rate & decay rate tables */ for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; for (i = 4;i <= 60;i++){ rate = OPL->freqbase; /* frequency rate */ if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ rate *= (double)(EG_ENT<<ENV_BITS); OPL->AR_TABLE[i] = rate / ARRATE; OPL->DR_TABLE[i] = rate / DRRATE; } for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) { OPL->AR_TABLE[i] = EG_AED-1; OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; } #if 0 for (i = 0;i < 64 ;i++){ /* make for overflow area */ LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); } #endif } /* ---------- generic table initialize ---------- */ static int OPLOpenTable( void ) { int s,t; double rate; int i,j; double pom; /* allocate dynamic tables */ if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL) return 0; if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL) { free(TL_TABLE); return 0; } if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL) { free(TL_TABLE); free(SIN_TABLE); return 0; } if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL) { free(TL_TABLE); free(SIN_TABLE); free(AMS_TABLE); return 0; } /* make total level table */ for (t = 0;t < EG_ENT-1 ;t++){ rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ TL_TABLE[ t] = (int)rate; TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ } /* fill volume off area */ for ( t = EG_ENT-1; t < TL_MAX ;t++){ TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; } /* make sinwave table (total level offet) */ /* degree 0 = degree 180 = off */ SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; for (s = 1;s <= SIN_ENT/4;s++){ pom = sin(2*PI*s/SIN_ENT); /* sin */ pom = 20*log10(1/pom); /* decibel */ j = pom / EG_STEP; /* TL_TABLE steps */ /* degree 0 - 90 , degree 180 - 90 : plus section */ SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; /* degree 180 - 270 , degree 360 - 270 : minus section */ SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ } for (s = 0;s < SIN_ENT;s++) { SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; } /* envelope counter -> envelope output table */ for (i=0; i<EG_ENT; i++) { /* ATTACK curve */ pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ ENV_CURVE[i] = (int)pom; /* DECAY ,RELEASE curve */ ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; } /* off */ ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; /* make LFO ams table */ for (i=0; i<AMS_ENT; i++) { pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ } /* make LFO vibrate table */ for (i=0; i<VIB_ENT; i++) { /* 100cent = 1seminote = 6% ?? */ pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ } return 1; } static void OPLCloseTable( void ) { free(TL_TABLE); free(SIN_TABLE); free(AMS_TABLE); free(VIB_TABLE); } /* CSM Key Control */ static inline void CSMKeyControll(OPL_CH *CH) { OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; /* all key off */ OPL_KEYOFF(slot1); OPL_KEYOFF(slot2); /* total level latch */ slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); /* key on */ CH->op1_out[0] = CH->op1_out[1] = 0; OPL_KEYON(slot1); OPL_KEYON(slot2); } /* ---------- opl initialize ---------- */ static void OPL_initialize(FM_OPL *OPL) { int fn; /* frequency base */ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; /* Timer base time */ OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); /* make time tables */ init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); /* make fnumber -> increment counter table */ for( fn=0 ; fn < 1024 ; fn++ ) { OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; } /* LFO freq.table */ OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; } /* ---------- write a OPL registers ---------- */ static void OPLWriteReg(FM_OPL *OPL, int r, int v) { OPL_CH *CH; int slot; int block_fnum; switch(r&0xe0) { case 0x00: /* 00-1f:control */ switch(r&0x1f) { case 0x01: /* wave selector enable */ OPL->wavesel = v&0x20; if(!OPL->wavesel) { /* preset compatible mode */ int c; for(c=0;c<OPL->max_ch;c++) { OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; } } return; case 0x02: /* Timer 1 */ OPL->T[0] = (256-v)*4; break; case 0x03: /* Timer 2 */ OPL->T[1] = (256-v)*16; return; case 0x04: /* IRQ clear / mask and Timer enable */ if(v&0x80) { /* IRQ flag clear */ OPL_STATUS_RESET(OPL,0x7f); } else { /* set IRQ mask ,timer enable*/ uint8_t st1 = v&1; uint8_t st2 = (v>>1)&1; /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ OPL_STATUS_RESET(OPL,v&0x78); OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); /* timer 2 */ if(OPL->st[1] != st2) { double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; OPL->st[1] = st2; if (OPL->TimerHandler) { (OPL->TimerHandler)(OPL->TimerParam, 1, interval); } } /* timer 1 */ if(OPL->st[0] != st1) { double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; OPL->st[0] = st1; if (OPL->TimerHandler) { (OPL->TimerHandler)(OPL->TimerParam, 0, interval); } } } return; } break; case 0x20: /* am,vib,ksr,eg type,mul */ slot = slot_array[r&0x1f]; if(slot == -1) return; set_mul(OPL,slot,v); return; case 0x40: slot = slot_array[r&0x1f]; if(slot == -1) return; set_ksl_tl(OPL,slot,v); return; case 0x60: slot = slot_array[r&0x1f]; if(slot == -1) return; set_ar_dr(OPL,slot,v); return; case 0x80: slot = slot_array[r&0x1f]; if(slot == -1) return; set_sl_rr(OPL,slot,v); return; case 0xa0: switch(r) { case 0xbd: /* amsep,vibdep,r,bd,sd,tom,tc,hh */ { uint8_t rkey = OPL->rhythm^v; OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; OPL->rhythm = v&0x3f; if(OPL->rhythm&0x20) { #if 0 usrintf_showmessage("OPL Rhythm mode select"); #endif /* BD key on/off */ if(rkey&0x10) { if(v&0x10) { OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); } else { OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); } } /* SD key on/off */ if(rkey&0x08) { if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); }/* TAM key on/off */ if(rkey&0x04) { if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); } /* TOP-CY key on/off */ if(rkey&0x02) { if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); } /* HH key on/off */ if(rkey&0x01) { if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); } } } return; } /* keyon,block,fnum */ if( (r&0x0f) > 8) return; CH = &OPL->P_CH[r&0x0f]; if(!(r&0x10)) { /* a0-a8 */ block_fnum = (CH->block_fnum&0x1f00) | v; } else { /* b0-b8 */ int keyon = (v>>5)&1; block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); if(CH->keyon != keyon) { if( (CH->keyon=keyon) ) { CH->op1_out[0] = CH->op1_out[1] = 0; OPL_KEYON(&CH->SLOT[SLOT1]); OPL_KEYON(&CH->SLOT[SLOT2]); } else { OPL_KEYOFF(&CH->SLOT[SLOT1]); OPL_KEYOFF(&CH->SLOT[SLOT2]); } } } /* update */ if(CH->block_fnum != block_fnum) { int blockRv = 7-(block_fnum>>10); int fnum = block_fnum&0x3ff; CH->block_fnum = block_fnum; CH->ksl_base = KSL_TABLE[block_fnum>>6]; CH->fc = OPL->FN_TABLE[fnum]>>blockRv; CH->kcode = CH->block_fnum>>9; if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); } return; case 0xc0: /* FB,C */ if( (r&0x0f) > 8) return; CH = &OPL->P_CH[r&0x0f]; { int feedback = (v>>1)&7; CH->FB = feedback ? (8+1) - feedback : 0; CH->CON = v&1; set_algorithm(CH); } return; case 0xe0: /* wave type */ slot = slot_array[r&0x1f]; if(slot == -1) return; CH = &OPL->P_CH[slot/2]; if(OPL->wavesel) { /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; } return; } } /* lock/unlock for common table */ static int OPL_LockTable(void) { num_lock++; if(num_lock>1) return 0; /* first time */ cur_chip = NULL; /* allocate total level table (128kb space) */ if( !OPLOpenTable() ) { num_lock--; return -1; } return 0; } static void OPL_UnLockTable(void) { if(num_lock) num_lock--; if(num_lock) return; /* last time */ cur_chip = NULL; OPLCloseTable(); } /*******************************************************************************/ /* YM3812 local section */ /*******************************************************************************/ /* ---------- update one of chip ----------- */ void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length) { int i; int data; int16_t *buf = buffer; uint32_t amsCnt = OPL->amsCnt; uint32_t vibCnt = OPL->vibCnt; uint8_t rhythm = OPL->rhythm&0x20; OPL_CH *CH,*R_CH; if( (void *)OPL != cur_chip ){ cur_chip = (void *)OPL; /* channel pointers */ S_CH = OPL->P_CH; E_CH = &S_CH[9]; /* rhythm slot */ SLOT7_1 = &S_CH[7].SLOT[SLOT1]; SLOT7_2 = &S_CH[7].SLOT[SLOT2]; SLOT8_1 = &S_CH[8].SLOT[SLOT1]; SLOT8_2 = &S_CH[8].SLOT[SLOT2]; /* LFO state */ amsIncr = OPL->amsIncr; vibIncr = OPL->vibIncr; ams_table = OPL->ams_table; vib_table = OPL->vib_table; } R_CH = rhythm ? &S_CH[6] : E_CH; for( i=0; i < length ; i++ ) { /* channel A channel B channel C */ /* LFO */ ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; outd[0] = 0; /* FM part */ for(CH=S_CH ; CH < R_CH ; CH++) OPL_CALC_CH(CH); /* Rythn part */ if(rhythm) OPL_CALC_RH(S_CH); /* limit check */ data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); /* store to sound buffer */ buf[i] = data >> OPL_OUTSB; } OPL->amsCnt = amsCnt; OPL->vibCnt = vibCnt; #ifdef OPL_OUTPUT_LOG if(opl_dbg_fp) { for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) if( opl_dbg_opl[opl_dbg_chip] == OPL) break; fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); } #endif } /* ---------- reset one of chip ---------- */ static void OPLResetChip(FM_OPL *OPL) { int c,s; int i; /* reset chip */ OPL->mode = 0; /* normal mode */ OPL_STATUS_RESET(OPL,0x7f); /* reset with register write */ OPLWriteReg(OPL,0x01,0); /* wabesel disable */ OPLWriteReg(OPL,0x02,0); /* Timer1 */ OPLWriteReg(OPL,0x03,0); /* Timer2 */ OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); /* reset operator parameter */ for( c = 0 ; c < OPL->max_ch ; c++ ) { OPL_CH *CH = &OPL->P_CH[c]; /* OPL->P_CH[c].PAN = OPN_CENTER; */ for(s = 0 ; s < 2 ; s++ ) { /* wave table */ CH->SLOT[s].wavetable = &SIN_TABLE[0]; /* CH->SLOT[s].evm = ENV_MOD_RR; */ CH->SLOT[s].evc = EG_OFF; CH->SLOT[s].eve = EG_OFF+1; CH->SLOT[s].evs = 0; } } } /* ---------- Create one of vietual YM3812 ---------- */ /* 'rate' is sampling rate and 'bufsiz' is the size of the */ FM_OPL *OPLCreate(int clock, int rate) { char *ptr; FM_OPL *OPL; int state_size; int max_ch = 9; /* normaly 9 channels */ if( OPL_LockTable() ==-1) return NULL; /* allocate OPL state space */ state_size = sizeof(FM_OPL); state_size += sizeof(OPL_CH)*max_ch; /* allocate memory block */ ptr = malloc(state_size); if(ptr==NULL) return NULL; /* clear */ memset(ptr,0,state_size); OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; /* set channel state pointer */ OPL->clock = clock; OPL->rate = rate; OPL->max_ch = max_ch; /* init grobal tables */ OPL_initialize(OPL); /* reset chip */ OPLResetChip(OPL); #ifdef OPL_OUTPUT_LOG if(!opl_dbg_fp) { opl_dbg_fp = fopen("opllog.opl","wb"); opl_dbg_maxchip = 0; } if(opl_dbg_fp) { opl_dbg_opl[opl_dbg_maxchip] = OPL; fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, type, clock&0xff, (clock/0x100)&0xff, (clock/0x10000)&0xff, (clock/0x1000000)&0xff); opl_dbg_maxchip++; } #endif return OPL; } /* ---------- Destroy one of vietual YM3812 ---------- */ void OPLDestroy(FM_OPL *OPL) { #ifdef OPL_OUTPUT_LOG if(opl_dbg_fp) { fclose(opl_dbg_fp); opl_dbg_fp = NULL; } #endif OPL_UnLockTable(); free(OPL); } /* ---------- Option handlers ---------- */ void OPLSetTimerHandler(FM_OPL *OPL, OPL_TIMERHANDLER TimerHandler, void *param) { OPL->TimerHandler = TimerHandler; OPL->TimerParam = param; } /* ---------- YM3812 I/O interface ---------- */ int OPLWrite(FM_OPL *OPL,int a,int v) { if( !(a&1) ) { /* address port */ OPL->address = v & 0xff; } else { /* data port */ #ifdef OPL_OUTPUT_LOG if(opl_dbg_fp) { for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) if( opl_dbg_opl[opl_dbg_chip] == OPL) break; fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); } #endif OPLWriteReg(OPL,OPL->address,v); } return OPL->status>>7; } unsigned char OPLRead(FM_OPL *OPL,int a) { if( !(a&1) ) { /* status port */ return OPL->status & (OPL->statusmask|0x80); } /* data port */ switch(OPL->address) { case 0x05: /* KeyBoard IN */ return 0; #if 0 case 0x0f: /* ADPCM-DATA */ return 0; #endif case 0x19: /* I/O DATA */ return 0; case 0x1a: /* PCM-DATA */ return 0; } return 0; } int OPLTimerOver(FM_OPL *OPL,int c) { if( c ) { /* Timer B */ OPL_STATUS_SET(OPL,0x20); } else { /* Timer A */ OPL_STATUS_SET(OPL,0x40); /* CSM mode key,TL control */ if( OPL->mode & 0x80 ) { /* CSM mode total level latch and auto key on */ int ch; for(ch=0;ch<9;ch++) CSMKeyControll( &OPL->P_CH[ch] ); } } /* reload timer */ if (OPL->TimerHandler) { (OPL->TimerHandler)(OPL->TimerParam, c, (double)OPL->T[c] * OPL->TimerBase); } return OPL->status>>7; }