/*
 * Xilinx Versal Virtual board.
 *
 * Copyright (c) 2018 Xilinx Inc.
 * Written by Edgar E. Iglesias
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 or
 * (at your option) any later version.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "sysemu/device_tree.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/sysbus.h"
#include "hw/arm/sysbus-fdt.h"
#include "hw/arm/fdt.h"
#include "cpu.h"
#include "hw/arm/xlnx-versal.h"

#define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt")
#define XLNX_VERSAL_VIRT_MACHINE(obj) \
    OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE)

typedef struct VersalVirt {
    MachineState parent_obj;

    Versal soc;
    MemoryRegion mr_ddr;

    void *fdt;
    int fdt_size;
    struct {
        uint32_t gic;
        uint32_t ethernet_phy[2];
        uint32_t clk_125Mhz;
        uint32_t clk_25Mhz;
    } phandle;
    struct arm_boot_info binfo;

    struct {
        bool secure;
    } cfg;
} VersalVirt;

static void fdt_create(VersalVirt *s)
{
    MachineClass *mc = MACHINE_GET_CLASS(s);
    int i;

    s->fdt = create_device_tree(&s->fdt_size);
    if (!s->fdt) {
        error_report("create_device_tree() failed");
        exit(1);
    }

    /* Allocate all phandles.  */
    s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt);
    for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) {
        s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt);
    }
    s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt);
    s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt);

    /* Create /chosen node for load_dtb.  */
    qemu_fdt_add_subnode(s->fdt, "/chosen");

    /* Header */
    qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic);
    qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2);
    qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2);
    qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc);
    qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt");
}

static void fdt_add_clk_node(VersalVirt *s, const char *name,
                             unsigned int freq_hz, uint32_t phandle)
{
    qemu_fdt_add_subnode(s->fdt, name);
    qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
    qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz);
    qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0);
    qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock");
    qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);
}

static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit)
{
    int i;

    qemu_fdt_add_subnode(s->fdt, "/cpus");
    qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0);
    qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1);

    for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) {
        char *name = g_strdup_printf("/cpus/cpu@%d", i);
        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));

        qemu_fdt_add_subnode(s->fdt, name);
        qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity);
        if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
            qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci");
        }
        qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu");
        qemu_fdt_setprop_string(s->fdt, name, "compatible",
                                armcpu->dtb_compatible);
        g_free(name);
    }
}

static void fdt_add_gic_nodes(VersalVirt *s)
{
    char *nodename;

    nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN);
    qemu_fdt_add_subnode(s->fdt, nodename);
    qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic);
    qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts",
                           GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ,
                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
    qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0);
    qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
                                 2, MM_GIC_APU_DIST_MAIN,
                                 2, MM_GIC_APU_DIST_MAIN_SIZE,
                                 2, MM_GIC_APU_REDIST_0,
                                 2, MM_GIC_APU_REDIST_0_SIZE);
    qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3);
    qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3");
    g_free(nodename);
}

static void fdt_add_timer_nodes(VersalVirt *s)
{
    const char compat[] = "arm,armv8-timer";
    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;

    qemu_fdt_add_subnode(s->fdt, "/timer");
    qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts",
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags,
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags,
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags,
            GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags);
    qemu_fdt_setprop(s->fdt, "/timer", "compatible",
                     compat, sizeof(compat));
}

static void fdt_add_uart_nodes(VersalVirt *s)
{
    uint64_t addrs[] = { MM_UART1, MM_UART0 };
    unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 };
    const char compat[] = "arm,pl011\0arm,sbsa-uart";
    const char clocknames[] = "uartclk\0apb_pclk";
    int i;

    for (i = 0; i < ARRAY_SIZE(addrs); i++) {
        char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]);
        qemu_fdt_add_subnode(s->fdt, name);
        qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200);
        qemu_fdt_setprop_cells(s->fdt, name, "clocks",
                               s->phandle.clk_125Mhz, s->phandle.clk_125Mhz);
        qemu_fdt_setprop(s->fdt, name, "clock-names",
                         clocknames, sizeof(clocknames));

        qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irqs[i],
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
        qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
                                     2, addrs[i], 2, 0x1000);
        qemu_fdt_setprop(s->fdt, name, "compatible",
                         compat, sizeof(compat));
        qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0);

        if (addrs[i] == MM_UART0) {
            /* Select UART0.  */
            qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name);
        }
        g_free(name);
    }
}

static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname,
                                     uint32_t phandle)
{
    char *name = g_strdup_printf("%s/fixed-link", gemname);

    qemu_fdt_add_subnode(s->fdt, name);
    qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle);
    qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0);
    qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000);
    g_free(name);
}

static void fdt_add_gem_nodes(VersalVirt *s)
{
    uint64_t addrs[] = { MM_GEM1, MM_GEM0 };
    unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 };
    const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk";
    const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem";
    int i;

    for (i = 0; i < ARRAY_SIZE(addrs); i++) {
        char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]);
        qemu_fdt_add_subnode(s->fdt, name);

        fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]);
        qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id");
        qemu_fdt_setprop_cell(s->fdt, name, "phy-handle",
                              s->phandle.ethernet_phy[i]);
        qemu_fdt_setprop_cells(s->fdt, name, "clocks",
                               s->phandle.clk_25Mhz, s->phandle.clk_25Mhz,
                               s->phandle.clk_25Mhz, s->phandle.clk_25Mhz);
        qemu_fdt_setprop(s->fdt, name, "clock-names",
                         clocknames, sizeof(clocknames));
        qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irqs[i],
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI,
                               GIC_FDT_IRQ_TYPE_SPI, irqs[i],
                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
        qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
                                     2, addrs[i], 2, 0x1000);
        qemu_fdt_setprop(s->fdt, name, "compatible",
                         compat_gem, sizeof(compat_gem));
        qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1);
        qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0);
        g_free(name);
    }
}

static void fdt_nop_memory_nodes(void *fdt, Error **errp)
{
    Error *err = NULL;
    char **node_path;
    int n = 0;

    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    while (node_path[n]) {
        if (g_str_has_prefix(node_path[n], "/memory")) {
            qemu_fdt_nop_node(fdt, node_path[n]);
        }
        n++;
    }
    g_strfreev(node_path);
}

static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size)
{
    /* Describes the various split DDR access regions.  */
    static const struct {
        uint64_t base;
        uint64_t size;
    } addr_ranges[] = {
        { MM_TOP_DDR, MM_TOP_DDR_SIZE },
        { MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE },
        { MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE },
        { MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE }
    };
    uint64_t mem_reg_prop[8] = {0};
    uint64_t size = ram_size;
    Error *err = NULL;
    char *name;
    int i;

    fdt_nop_memory_nodes(fdt, &err);
    if (err) {
        error_report_err(err);
        return;
    }

    name = g_strdup_printf("/memory@%x", MM_TOP_DDR);
    for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) {
        uint64_t mapsize;

        mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size;

        mem_reg_prop[i * 2] = addr_ranges[i].base;
        mem_reg_prop[i * 2 + 1] = mapsize;
        size -= mapsize;
    }
    qemu_fdt_add_subnode(fdt, name);
    qemu_fdt_setprop_string(fdt, name, "device_type", "memory");

    switch (i) {
    case 1:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1]);
        break;
    case 2:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1],
                                     2, mem_reg_prop[2],
                                     2, mem_reg_prop[3]);
        break;
    case 3:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1],
                                     2, mem_reg_prop[2],
                                     2, mem_reg_prop[3],
                                     2, mem_reg_prop[4],
                                     2, mem_reg_prop[5]);
        break;
    case 4:
        qemu_fdt_setprop_sized_cells(fdt, name, "reg",
                                     2, mem_reg_prop[0],
                                     2, mem_reg_prop[1],
                                     2, mem_reg_prop[2],
                                     2, mem_reg_prop[3],
                                     2, mem_reg_prop[4],
                                     2, mem_reg_prop[5],
                                     2, mem_reg_prop[6],
                                     2, mem_reg_prop[7]);
        break;
    default:
        g_assert_not_reached();
    }
    g_free(name);
}

static void versal_virt_modify_dtb(const struct arm_boot_info *binfo,
                                    void *fdt)
{
    VersalVirt *s = container_of(binfo, VersalVirt, binfo);

    fdt_add_memory_nodes(s, fdt, binfo->ram_size);
}

static void *versal_virt_get_dtb(const struct arm_boot_info *binfo,
                                  int *fdt_size)
{
    const VersalVirt *board = container_of(binfo, VersalVirt, binfo);

    *fdt_size = board->fdt_size;
    return board->fdt;
}

#define NUM_VIRTIO_TRANSPORT 8
static void create_virtio_regions(VersalVirt *s)
{
    int virtio_mmio_size = 0x200;
    int i;

    for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
        char *name = g_strdup_printf("virtio%d", i);;
        hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
        int irq = VERSAL_RSVD_IRQ_FIRST + i;
        MemoryRegion *mr;
        DeviceState *dev;
        qemu_irq pic_irq;

        pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq);
        dev = qdev_create(NULL, "virtio-mmio");
        object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev),
                                  &error_fatal);
        qdev_init_nofail(dev);
        sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq);
        mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
        memory_region_add_subregion(&s->soc.mr_ps, base, mr);
        g_free(name);
    }

    for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) {
        hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size;
        int irq = VERSAL_RSVD_IRQ_FIRST + i;
        char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base);

        qemu_fdt_add_subnode(s->fdt, name);
        qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0);
        qemu_fdt_setprop_cells(s->fdt, name, "interrupts",
                               GIC_FDT_IRQ_TYPE_SPI, irq,
                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
        qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
                                     2, base, 2, virtio_mmio_size);
        qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio");
        g_free(name);
    }
}

static void versal_virt_init(MachineState *machine)
{
    VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine);
    int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;

    /*
     * If the user provides an Operating System to be loaded, we expect them
     * to use the -kernel command line option.
     *
     * Users can load firmware or boot-loaders with the -device loader options.
     *
     * When loading an OS, we generate a dtb and let arm_load_kernel() select
     * where it gets loaded. This dtb will be passed to the kernel in x0.
     *
     * If there's no -kernel option, we generate a DTB and place it at 0x1000
     * for the bootloaders or firmware to pick up.
     *
     * If users want to provide their own DTB, they can use the -dtb option.
     * These dtb's will have their memory nodes modified to match QEMU's
     * selected ram_size option before they get passed to the kernel or fw.
     *
     * When loading an OS, we turn on QEMU's PSCI implementation with SMC
     * as the PSCI conduit. When there's no -kernel, we assume the user
     * provides EL3 firmware to handle PSCI.
     */
    if (machine->kernel_filename) {
        psci_conduit = QEMU_PSCI_CONDUIT_SMC;
    }

    memory_region_allocate_system_memory(&s->mr_ddr, NULL, "ddr",
                                         machine->ram_size);

    sysbus_init_child_obj(OBJECT(machine), "xlnx-ve", &s->soc,
                          sizeof(s->soc), TYPE_XLNX_VERSAL);
    object_property_set_link(OBJECT(&s->soc), OBJECT(&s->mr_ddr),
                             "ddr", &error_abort);
    object_property_set_int(OBJECT(&s->soc), psci_conduit,
                            "psci-conduit", &error_abort);
    object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal);

    fdt_create(s);
    create_virtio_regions(s);
    fdt_add_gem_nodes(s);
    fdt_add_uart_nodes(s);
    fdt_add_gic_nodes(s);
    fdt_add_timer_nodes(s);
    fdt_add_cpu_nodes(s, psci_conduit);
    fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz);
    fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz);

    /* Make the APU cpu address space visible to virtio and other
     * modules unaware of muliple address-spaces.  */
    memory_region_add_subregion_overlap(get_system_memory(),
                                        0, &s->soc.fpd.apu.mr, 0);

    s->binfo.ram_size = machine->ram_size;
    s->binfo.loader_start = 0x0;
    s->binfo.get_dtb = versal_virt_get_dtb;
    s->binfo.modify_dtb = versal_virt_modify_dtb;
    if (machine->kernel_filename) {
        arm_load_kernel(s->soc.fpd.apu.cpu[0], machine, &s->binfo);
    } else {
        AddressSpace *as = arm_boot_address_space(s->soc.fpd.apu.cpu[0],
                                                  &s->binfo);
        /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL).
         * Offset things by 4K.  */
        s->binfo.loader_start = 0x1000;
        s->binfo.dtb_limit = 0x1000000;
        if (arm_load_dtb(s->binfo.loader_start,
                         &s->binfo, s->binfo.dtb_limit, as, machine) < 0) {
            exit(EXIT_FAILURE);
        }
    }
}

static void versal_virt_machine_instance_init(Object *obj)
{
}

static void versal_virt_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "Xilinx Versal Virtual development board";
    mc->init = versal_virt_init;
    mc->max_cpus = XLNX_VERSAL_NR_ACPUS;
    mc->default_cpus = XLNX_VERSAL_NR_ACPUS;
    mc->no_cdrom = true;
}

static const TypeInfo versal_virt_machine_init_typeinfo = {
    .name       = TYPE_XLNX_VERSAL_VIRT_MACHINE,
    .parent     = TYPE_MACHINE,
    .class_init = versal_virt_machine_class_init,
    .instance_init = versal_virt_machine_instance_init,
    .instance_size = sizeof(VersalVirt),
};

static void versal_virt_machine_init_register_types(void)
{
    type_register_static(&versal_virt_machine_init_typeinfo);
}

type_init(versal_virt_machine_init_register_types)